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Introduction SCZ tissue. Additionally, we will focus on several models that shed insight

Schizophrenia (SCZ) is a heterogeneous, heritable, neuropsychiatric
disorder that affects about 1% of the population worldwide. It is charac-
terized by positive symptoms (hallucinations and delusions), negative
symptoms (social withdrawal, avolition and anhedonia) and cognitive
symptoms (impairments in working memory, basic sensory processing
and higher order cognitive functions). Although the positive and nega-
tive symptoms are often the most striking features of the disease, the
cognitive defects lie at the core of the disorder and may precede the
development of other symptoms (Green, 2006; Keefe and Fenton,
2007; Lesh et al., 2011; Reichenberg et al., 2010; Walker et al., 1994).

One of the most prominent cognitive deficits observed in SCZ involves
working memory, an aspect of short-term memory by which information
is consciously maintained during the execution of other cognitive tasks.
An important aspect of working memory is the sustained firing of dorso-
lateral prefrontal cortex (DLPFC) pyramidal neurons between cue pre-
sentation and behavioral response (Funahashi et al., 1993). During this
period, GABAergic transmission is required for working memory, and in-
fusion of GABA antagonists into the DLPFC perturbs working memory by
disrupting the spatial tuning of these cells (Rao et al., 2000; Sawaguchi et
al, 1989).

Another cognitive deficit in SCZ patients is their inability to filter irrel-
evant sensory information (Javitt, 2009). A neurophysiological correlate
of this deficit is evaluated by a pre-attentive paradigm called paired
pulse inhibition (PPI). In PPI, subjects are presented a startling (test) stim-
ulus with or without a preceding non-startling (conditioning) stimulus.
In control subjects, the response to the test stimulus is suppressed by
the conditioned stimulus, but this suppression is reduced in SCZ subjects
(Freedman et al., 1996). Investigation of the neurophysiological correlates
of PPI identified a crucial role for GABAergic transmission through pre-
synaptic GABAg receptors on glutamatergic terminals (Freedman et al.,
2000). Although deficits in neither PPI nor working memory are unique
to SCZ (Daskalakis et al., 2007), a detailed understanding of the physiolog-
ical basis for these cognitive functions would likely advance efforts to
improve therapies for SCZ.

Cognitive functions depend on the precise balance of excitatory
and inhibitory (E-I) activity of cortical circuits. Any alteration in the
E-I balance could perturb brain function unless there are compensatory
mechanisms to counteract this change. Much of the data presented in
this review supports the hypothesis that this E-I balance is altered in
SCZ. For example, a recent study used optogenetics to manipulate cortical
circuits and found that elevated excitation, but not elevated inhibition, in
neurons of the prefrontal cortex (PFC), leads to impaired cognition and
social behavior (Yizhar et al.,, 2011). Additionally, increasing inhibition
during elevated excitation, which likely restores the normal E-I balance,
reduced these behavioral deficits. Although it was not possible to directly
test disinhibition in this study, it is likely that deficits in GABAergic
transmission tip the E-I balance in the cortex. A gradual increase in
the E-I imbalance may occur in SCZ, which could eventually increase
the vulnerability of cortical circuits due to insufficiency of compensatory
mechanisms. Such a scenario is also consistent with the progressive
worsening of SCZ symptoms.

Cortical GABAergic neurotransmission plays a central role in control-
ling cognitive processes that are disrupted in SCZ. In this review, we dis-
cuss the recent evidence that links perturbations in GABAergic cortical
interneuron function to SCZ. We will summarize findings detailing the
deficits in neurochemical and synaptic markers in cINs from postmortem

into how cIN dysfunction could underlie many of the cognitive symptoms
associated with SCZ.

GABAergic interneurons of the cortex

In the cerebral cortex, the majority of GABAergic neurons are local
circuit neurons and referred to as cortical interneurons (cINs). cINs are
classified into subgroups and subtypes according to their morphology
(e.g. chandelier, martinotti, neurogliaform), intrinsic physiology
(e.g. fast-spiking, low threshold spiking), neurochemical markers and
their targeting of specific subcellular compartments (Ascoli et al., 2008).
Different forms of inhibition (tonic, feed-forward, feedback and shunting)
by distinct subtypes of cINs modulate cortical excitability and neuronal
plasticity (Daskalakis et al., 2007; Hensch, 2005).

Most cortical interneurons can be divided into three distinct sub-
groups based on several neurochemical markers: parvalbumin- (PV ™),
somatostatin- (Sst™), or calretinin-expressing (CR™) interneurons, al-
though a small percentage of cINs express both CR and Sst. PV" cINs
are fast-spiking (FS) and comprise two major subtypes: basket and chan-
delier cells. Basket cells can be divided into several subgroups morpholog-
ically while chandelier cells (ChCs) appear to be a homogeneous group
(Ascoli et al., 2008; Markram et al.,, 2004; Woodruff et al.,, 2011). Basket
cells primarily innervate the somata and proximal dendrites of pyramidal
neurons, as well as other interneurons, whereas chandelier cells selec-
tively target the axon initial segments of pyramidal neurons (AIS). Thus,
both basket and chandelier cells synapse near the site of action potential
initiation. Due to their rapid and non-accommodating spiking properties,
PV cINs are potent regulators of cortical circuits and could play impor-
tant roles in neurological diseases (Keefe and Fenton, 2007; Uhlhaas
and Singer, 2010; Uhlhaas et al., 2009; Woodruff et al., 2009, 2011).

The effect of GABAergic transmission depends on the postsynaptic
chloride equilibrium potential (Ec), since GABA receptors are permeable
to CI™ and their reversal potential (Egapa) is close to Eq;. If Egapa is more
negative than the resting membrane potential (V,es¢) then it has a hyper-
polarizing (inhibitory) effect. If Ecapa is higher than Ve then it has a
depolarizing (excitatory) effect. During development, intracellular Cl~ is
high due to relatively high levels of NKCC1 and low levels of KCC2,
co-transporters that uptake and extrude Cl—, respectively. Relative Cl—
concentration and Egaga are also different in distinct subcellular neuronal
compartments, with lower Cl~ levels in dendrites and higher Cl~ levels
in AIS (Khirug et al., 2008). Hence, although basket cell synapses are
always inhibitory, the cortical axo-axonic synapses of ChCs can be
depolarizing (Khirug et al., 2008; Szabadics et al., 2006; Woodruff et al.,
2009). On the other hand, examination of ChC influence on pyramidal
neuron excitability, under conditions designed to mimic pyramidal neu-
ron activity in vivo, revealed an inhibitory effect (Woodruff et al., 2011).
In addition, GABAergic transmission at axo-axonic synapses of the hippo-
campus was reported to be hyperpolarizing (Glickfeld et al., 2009).

Cortical interneurons and brain oscillations in SCZ

There is extensive literature on the role of GABAergic transmission in
synchronization of network oscillations through electrical and synaptic
coupling of cINs (Beierlein et al, 2000; Moran and Hong, 2011;
Szabadics et al., 2001; Tamas et al., 2000; Uhlhaas and Singer, 2010).
This rhythmic inhibition synchronizes cortical circuits by generating a
narrow window for effective excitation. For example, Sst™ Martinotti
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cells were reported to fire rhythmically at theta frequency (Fanselow et
al., 2008) and neurogliaform cells were suggested to have the potential
to shape cortical oscillations due to their extensive electrical coupling
even with different subtypes of cINs (Simon et al., 2005). PV cINs can
entrain gamma frequency oscillations via the combinatorial action of
synaptic and electrical coupling (Bartos et al., 2002; Tamas et al., 2000),
and loss of PV* cells in the PFC correlates with reduced gamma-band
response in a mouse model of SCZ (Lodge et al., 2009). Additionally,
recent in vivo studies demonstrated that PV cIN driven gamma oscilla-
tions enhance responsiveness to sensory input (Cardin et al., 2009; Sohal
et al., 2009).

Cortical EEG synchronization in response to a visual gestalt task
increases dramatically during late adolescence (Uhlhaas et al., 2009),
the time period when SCZ symptoms often manifest. Although EEG
abnormalities have been reported in SCZ at all frequencies (Boutros et
al,, 2008; Cho et al, 2006; Moran and Hong, 2011; Siekmeier and
Stufflebeam, 2010; Spencer et al., 2003, 2004; Sponheim et al., 1994),
gamma frequency oscillations have attracted the most attention due to
their association with cognitive functions that are commonly disrupted
in SCZ, such as working memory and attention (Howard et al., 2003;
Jefferys et al., 1996; Lisman and Idiart, 1995; Spencer, 2008; Steriade et
al,, 1996; Tallon-Baudry et al., 2005). These findings, together with the
role of PV™ cINs in gamma oscillations and abnormalities observed at
PV™ cIN synapses (see below), led to the hypothesis that cognitive dys-
function in SCZ may arise from abnormal cortical gamma oscillations
due to deficiencies at PV" cIN synapses (Lewis et al., 2012; Nakazawa
et al., 2011; Uhlhaas and Singer, 2010).

So how does disinhibition affect gamma oscillations and cortical
activity? One might expect reduced cIN activity to produce enhanced
pyramidal neuron activity. Consistent with this idea, there is a robust
enhancement of cerebral blood flow in the ventral hippocampus of SCZ
patients, where a reduction of both PV™ and Sst™ cINs may be present
(Konradi et al.,, 2011). This increased blood flow is thought to be second-
ary to enhanced pyramidal neuron activity (Schobel et al., 2009). More-
over, activity correlates with the degree of psychosis experienced,
corroborating the importance of E-I balance for proper brain activity.
SCZ has also been associated with “hypfrontality” during tasks requiring
frontal activation (Glahn et al., 2005), albeit in the context of enhanced
gamma power at baseline (pre-stimulus) conditions. It is conceivable
that reduced activity of cINs could result in some basal increase in pyra-
midal neuron activity leading to an enhanced gamma power at baseline.
However, the cIN deficit becomes functionally relevant when phase
synchrony of gamma oscillations fail to occur normally during tasks
that strongly engage the frontal cortex, resulting in reduced gamma
stimulus-to-baseline ratios in SCZ (Gandal et al., 2012).

Deficits of cIN neurochemical subgroup markers in SCZ

Numerous studies have examined changes in neurochemical cIN
markers and overall cIN numbers in postmortem SCZ brains, but there
is often conflicting results. For example, despite the consensus that
GAD67 mRNA levels are generally decreased in schizophrenic cortex,
there is evidence both for (Konradi et al., 2011; Todtenkopf et al.,
2005) and against (Akbarian et al, 1995; Hashimoto et al, 2003;
Selemon et al., 1995; Thune et al., 2001; Woo et al., 1997) a reduction
of cIN numbers. It is likely that methodological differences (i.e. marker
used, controls for postmortem status, cortical region evaluated) underlie
these conflicting data. Additionally, the tremendous genetic and diag-
nostic heterogeneity in SCZ minimizes the power to identify real differ-
ences in the context of relatively small sample sizes (generally less than
20 brains per group). Critical evaluation of the literature remains key to
separating well-designed studies (preferably N= 10 or more brains for
SCZ and control groups matched for age, sex, and post-mortem interval
or brain pH; Table 1) from less complete studies. For example, one study
reported an increase in PV interneurons in the cingulate cortex of SCZ
brains (Kalus et al., 1997), which is in contrast to most of the literature.

In this study, the authors analyzed N =5 SCZ and control brains, with a
post-mortem interval averaging around 40 and 20 h for the SCZ individ-
uals and controls, respectively. Such dramatic differences between
groups can certainly introduce significant artifacts into the results.

In terms of neurochemically-defined interneuron subgroups, Sst
mRNA is reduced in the DLPFC of SCZ patients, with some data supporting
both a reduction in the total number of Sst* cINs and Sst levels within
individual cINs (Hashimoto et al., 2008a,b; Morris et al., 2008). Concur-
rently, there is a decrease in the expression of the Sst receptor subtype
2 (SSTR2) in pyramidal cells of SCZ patients (Beneyto et al., 2012). The
specific Sst™ subtype that is affected, as well as a functional consequence
for this decrease in Sst signaling, remains unclear.

Regarding the PV interneurons, there is mixed evidence regarding
reductions of PV levels in SCZ patients. While some data supported a
decrease in PV cells in SCZ patients (Beasley and Reynolds, 1997), others
found similar densities of PV* neurons in the DLPFC of SCZ and control
patients (Beasley et al.,, 2002; Woo et al., 1997). At the same time, PV
mRNA levels are diminished in the DLPFC of SCZ patients (Fung et al.,
2010; Hashimoto et al., 2003, 2008b). As PV is an activity-regulated
gene (Patz et al., 2004; Philpot et al., 1997), an intracellular reduction in
PV could indicate a decrease in cIN activity and a potential shift in the
E/I balance.

In contrast to the PV™ and Sst™ subgroups, the levels of CR mRNA
and the density of CR™ neurons appears to be normal in SCZ tissue
(Daviss and Lewis, 1995; Hashimoto et al., 2003; Woo et al,, 1997). As
most CR™ cINs have a distinct embryonic origin from the Sst* and
PV* subgroups in rodents (Xu et al., 2004) and probably in humans
(Fertuzinhos et al., 2009), the above results suggest that cINs derived
from the medial ganglionic eminence may be most likely to be altered
in SCZ. Given the evidence that ventral hippocampal overactivation
may drive psychotic symptoms in SCZ (Schobel et al., 2009), it would
be interesting to see if other groups can replicate the recent finding of
a reduction in PV" and Sst™ cINs in the hippocampus (Konradi et al,,
2011).

Synaptic deficits of cINs in SCZ

Evidence for the role of GABAergic neurotransmission in the cogni-
tive functions that are impaired in SCZ led researchers to examine the
components of GABA signaling (Table 1). Several studies performed
DNA microarray analyses to identify large populations of genes whose
expression was altered in the DLPFC of SCZ patients (Hashimoto et al.,
2008a; Mirnics et al., 2000; Vawter et al., 2002) whereas other studies
were based on candidate gene approaches. Identifying genes and geno-
mic regions that underlie the pathogenesis of SCZ has been a formidable
challenge. Initial linkage studies identified numerous loci that were
linked with SCZ, but only a few of these regions were successfully repli-
cated (several of which are discussed below). A series of genome-wide
association studies failed to identify any clear SCZ susceptibility alleles,
while many studies examining copy number variations and de novo mu-
tations have provided little insight (reviewed in (Girard et al.,, 2012)).
There appears to be significant genetic heterogeneity in SCZ, which pre-
sents a major challenge for developing genetic models of SCZ and linking
these findings with human disease. Here we will focus on several candi-
date genes and mechanisms that appear to be associated with defects
cIN synaptic transmission defects in SCZ.

Deficits at input synapses onto cINs

NMDA receptor hypofunction

N-Methyl-D-asparatic acid (NMDA) receptors (NMDARs) are mo-
lecular coincidence detectors that are only active when the synaptic
membrane is depolarized and glutamate is bound to the receptor.
Activation and opening of NMDARs leads to an influx of Ca2™,
which can activate many downstream signaling cascades. One impor-
tant function of NMDAR activation is the regulation of AMPA receptor
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Table 1

Summary of the molecular deficits in cINs found in SCZ patients and the phenotypes observed. Only postmortem studies that included>10 SCZ and age-matched control brains are
included in the table. All postmortem studies controlled for postmortem interval, brain pH or both between SCZ and control subjects. All measurements of mRNA and/or protein
were taken from the prefrontal cortex of postmortem brains (specifically Brodmann's areas 9, 10 or 46) unless indicated below. * Konradi et al., 2011 — only examined the hippo-
campus. ** Hashimoto et al., 2008 — also examined anterior cingulated, M1 and V1. *** Guidotti et al., 2000 — also examined cerebellum. **** Thompson et al., 2009 — examined PFC
and other cortical areas, as well as striatum and thalamus. Chandelier cell, Chc; pyramidal cell, PC; basket cell, BC.

GABAergic mRNA/ Post-mortem SCZ brains Linkage studies Behavioral Biochemical  Physiological
cIN deficits protein phenotype phenotype phenotype
cIN subgroup |Parvalbumin Beasley et al., 2002; Hashimoto
markers et al,, 2003; Konradi et al., 2011*
|Somatostatin Hashimoto et al., 2008a,b**;
Konradi et al., 2011%;
Morris et al., 2008
Input synapses Neuregulin tChong et al., 2008; Hashimoto et Harrison et al., 2006; Chen et al., 2008b; Deakin et al., 2009; Fazzari et al., Chen et al., 2010a
(presynaptic al., 2004; Law et al., 2006 Mei et al., 2008; Duffy et al,, 2010; Ehrlichman et al., 2009; 2010; Hahn
changes) |Bertram et al., 2007 Stefansson et al., 2002;  Karl et al., 2007; Kato et al., 2010; et al., 2006;
Walss-Bass et al., 2006 ~ O'Tuathaigh et al., 2007, 2008, 2010; Shibuya et al.,
Stefansson et al., 2002 2010
Input synapses | NMDAR Belforte et al., 2010; Bitanihirwe  Belforte et al.,
(postsynaptic Korotkova et al., 2010 etal, 2009; 2010; Homayoun
changes) Woo et al., et al., 2007;
2004, 2008 Korotkova et al.,
2010
ErbB4 tChong et al., 2008; Benzel et al., 2007; Barros et al., 2009; Chen et al., 2010b; Hahn et al., Barros et al.,
Law et al., 2007 Nicodemus et al., 2006;  Fazzari et al., 2010; Golub et al., 2004; 2006 2009; Chen et al.,
Norton et al., 2006; Stefansson et al., 2002; Wen et al., 2010; 2010b; Fazzari et
Silberberg et al., 2006; al., 2010; Wen et
Walsh et al., 2008 al,, 2010;
Output |GAD67 in Akbarian et al., 1995; Curley et al.,
synapses PV* cINs 2011; Guidotti et al., 2000***;
(presynaptic Hashimoto et al., 2003, 2008a,b**;
changes) Thompson et al., 2009****; Volk et
al,, 2000
IGAT1 in ChC Pierri et al., 1999; Volk et al.,
2001; Woo et al., 1998
Output |GABAA a1l at  Beneyto et al.,, 2011; Glausier et
synapses BC synapses al., 2011; Hashimoto et al.,
(postsynaptic onto PC 2008a,b**
changes) 1GABAA a2 at  Beneyto et al., 2011;
ChC synapses  Volk et al., 2002;
onto PC

trafficking, which plays a major role in synaptic plasticity. NMDARs are
important mediators of various forms of synaptic plasticity, such as
spike-timing dependent plasticity (STDP), long-term potentiation (LTP)
and long-term depression (LTD). NMDAR-dependent plasticity plays a
major role in learning and memory (Takahashi et al., 2003) and synapse
formation (Inan and Crair, 2007; Lamsa et al., 2010). Synaptic plasticity
can be induced at glutamatergic synapses on to cINs as well as at
GABAergic synapses, but the form of synaptic plasticity at these synapses
is specific to the brain region and cIN subtype (Kullmann and Lamsa,
2011; Lamsa et al., 2010).

The theory of NMDA receptor (NMDAR) hypofunction as a root
cause of SCZ has been a long-standing hypothesis since phencyclidine
(PCP), a drug that induces SCZ-like symptoms, was found to be a non-
competitive NMDAR antagonist (Lodge and Anis, 1982). Administration
of NMDAR antagonists such as PCP, ketamine and MK801 results in cor-
tical excitatory neuron hyperactivation (Jackson et al., 2004; Krystal et
al., 1994; Suzuki et al,, 2002) and decreased GAD67 and PV expression
in cINs (Behrens et al., 2007; Cochran et al,, 2003; Gietl et al., 2007;
Keilhoff et al., 2004; Kinney et al., 2006; Morrow et al., 2007; Rujescu
et al., 2006). This excitatory neuron hyperactivation is possibly due to
disinhibition of excitatory neurons via NMDAR hypofunction in cINs
(Homayoun and Moghaddam, 2007). Additionally, the density of cINs
(specifically PV cINs) expressing the NR2A subunit of NMIDAR is notably
reduced in SCZ brains (Bitanihirwe et al., 2009; Woo et al., 2004, 2008).
Furthermore, transplantation of cIN progenitor cells can prevent the in-
duction of PCP-induced cognitive defects (Tanaka et al., 2011). These
studies led to the hypothesis that NMDAR hypofunction in GABAergic
interneurons contributes to excitatory neuron hyperexcitability in the
etiology of SCZ-like symptoms (Fig. 1).

Compelling evidence exists for NMDAR hypofunction in PV* cINs :
contributing to hyperactivity in DLPFC excitatory neurons. However, :

NMDAR-mediated synaptic currents appear to decrease in PV™ cINs
with age (Rotaru et al.,, 2011; Wang and Gao, 2009, 2010). Thus, it is
unclear how NMDAR hypofunction in PV* cINs would manifest into a

later-developing disease like SCZ, when NMDAR-mediated currents :
are already low in these neurons at this stage of development. A recent :

study may explain this conflict with the finding that prolonged exposure
of MK801 leads to a reduction in the amplitude of AMPAR-mediated
synaptic currents in FS PV cINs but an increase in the amplitude of
AMPAR-mediated synaptic currents in pyramidal cells (Wang and Gao,
2012). Hence, early NMDAR hypofunction may lead to a reduction in

AMPA-mediated synaptic currents specifically in FS cINs, possibly :

through an LTD-like mechanism, although an NMDAR-dependent LTD
is yet to be shown at these synapses. Reduced activation of FS cINs

could lead to disinhibition of pyramidal cells resulting in an increase in :

AMPAR-mediated synaptic currents during basal synaptic transmission.

On the other hand, MK801 also induced an increase in the frequency :
of AMPAR-mediated currents in DLPFC pyramidal cells but not in FS :

PV cINs. Furthermore, the addition of new presynaptic NMDARs is ob-
served in axon terminals targeting pyramidal cells but not FS PV cINs
(Wang and Gao, 2012). Since presynaptic NMDARs can facilitate gluta-
mate release (Corlew et al., 2008), this mechanism likely explains the

observation of increased frequency of AMPAR-mediated synaptic cur- :
rents of pyramidal cells and not that of FS PV* cINs. Hence, consistent :

with earlier findings, this study provided a plausible mechanism on
how chronic MK801 treatment can have opposing effects on these two

cell types: reduction of FS cIN activity via decreased AMPAR-mediated 3:

currents while hyperactivation of pyramidal cells by increased glutamate
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release and reduced inhibition. These findings provide a clearer explana-
tion by which NMDAR hypofunction could induce distinct processes at
different synapses to underlie the complex SCZ pathophysiology. Addi-
tional support for this mechanism could be obtained by determining if
other NMDAR antagonists such as PCP or ketamine can replicate these
findings.

In order to better tease a part NMDAR function and its relation to
SCZ in different cell types, several groups disrupted NMDAR function
specifically in a subset of GABAergic cINs. Removal of the NR1 subunit
(the mandatory subunit for NMDAR function) in ~50% of cINs, the
majority of which were PV™, during the second postnatal week led
to behavioral phenotypes similar to the symptoms observed in SCZ
patients such as hyperactivity, increased anxiety, and perturbations in
working memory and PPI (Belforte et al., 2010). NR1-null cINs contained
reduced levels of GAD67 and PV, and excitatory neurons displayed
increased firing rates, which are possibly due to disinhibition. These
findings are consistent with activity-dependent PV expression and
they suggest that NMDAR-dependent activity is upstream of GABAergic

Pyramidal
cell

transmission in this model. Furthermore, ablation of NMDAR func-
tion in cINs at a later age (~8 weeks old, which corresponds to
post-adolescence) did not reveal any SCZ-like behavioral phenotype.
These findings suggest a crucial role for intact NMDAR function in cINs
during early development.

Two other groups utilized a PV-Cre mouse line to remove NR1 in
PV cINs and found that these mice have impairments in gamma oscil-
lations and in spatial and working memory tasks (Carlen et al., 2012;
Korotkova et al., 2010). In contrast to the previous study, these groups
did not observe abnormal social behavior, which may be due to the rel-
atively later knockout of NMDAR function in PV-Cre mice (3rd postnatal
week), again emphasizing the developmental role of NMDAR function
in these cINs.

These studies addressing the role of NMDAR hypofunction in FS
PV* cINs have several caveats. First, the phenotypes analyzed are
not symptoms unique to SCZ, making it difficult to draw clear connec-
tions between the observed findings and SCZ. Second, these studies
either do not specifically ablate NMDARs only from FS PV* cINs, or

® GABA

& Cliitaiats °GABA,(12 °GABAAU.1 NMDAR

Basket cell

Fig. 1. Schematic depicting a simplified cortical circuit (A) and some of the cortical interneuron (cIN)-related changes that are reported in SCZ patients (B). Sst, PV, GAD67 and GAT1
expression are reduced in SCZ patients. Postmortem studies reveal an increase in GABA, o2 receptors at chandelier cell synapses onto pyramidal cells (1), a decrease in GABA, a1
receptors at basket cell synapses onto pyramidal cells (2), and a decrease of NMDA receptors (NR2A subunit, in particular) at excitatory synapses onto PV* cINs (3). Although only
pyramidal synapses onto basket cells are shown, the reduction of NMDA receptors may also occur at synapses onto chandelier cells.
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they ablate NMDARs in FS cINs at a relatively late developmental stage.
Third, studies using NMDAR antagonists to model SCZ inhibit NMDARs
throughout the brain, making it difficult to correlate site of action with
phenotype. Future studies are needed to ablate NMDARs specifically in
FS PV*' cINs early during development to determine if NMDA hypo-
function in PV cells is sufficient to produce SCZ-like symptoms. While
this aim will be aided by the recent production of many cIN subtype-
specific Cre lines (Taniguchi et al., 2011), an early marker of PV-fated
cINs is still unknown. Another beneficial approach would be to analyze
whether animal models that better mimic mutations identified in genetic
linkage studies, such as 22q11.2 or ErbB4 deletion models (see below),
have NMDAR deficits in their FS PV* cINs.

Perturbation in Neuregulin1/ErbB4 signaling

One of the replicated hits from linkage studies was located on chro-
mosome 8p. Extensive haplotype analysis from several Icelandic SCZ
families identified a series of SNPs and microsatellites within the 5’
through the second intron of the Nrgl, making Nrgl a candidate SCZ
susceptibility gene (Stefansson et al,, 2002). Additional studies have
found genetic associations between Nrgl1 and SCZ in multiple affected
populations (Harrison and Law, 2006; Mei and Xiong, 2008).

Neuregulins are trophic growth factors that stimulate ErbB receptor
tyrosine kinases. There are four different Neuregulin genes, with
Neuregulin1 (Nrg1) being the best characterized and most prominent in
the developing and adult brain. Although there are multiple ErbB recep-
tors, ErbB4 is the only autonomous Nrg1-specific receptor that becomes
catalytically active upon Nrgl interaction. Numerous studies identified
ErbB4 as a candidate susceptibility gene for SCZ (Benzel et al.,, 2007;
Nicodemus et al., 2006; Norton et al, 2006; Silberberg et al., 2006;
Walsh et al.,, 2008). The Nrg1-ErbB4 interaction plays a prominent role
in many aspects of neuronal development, including neuronal migration,
axon guidance and synapse formation and plasticity (Mei and Xiong,
2008; Rico and Marin, 2011).

Most SNPs for Nrgl and ErbB4 are found in non-coding regions
(introns, 5’ or 3’ sequences), making it unclear how these SNPs regulate
gene expression or function. There are conflicting reports for both an
increase (Chong et al., 2008; Hashimoto et al., 2004; Law et al., 2006)
and decrease (Bertram et al., 2007) of Nrgl mRNA in the PFC cortex
and hippocampus of SCZ postmortem brains. Although the levels of
Nrg1 protein in the brain of SCZ patients remain unknown, Nrg1 levels
are decreased in the serum of SCZ patients compared to controls
(Shibuya et al.,, 2011). Additionally, some isoforms of the ErbB4 mRNA
were also increased in SCZ brains (Law et al,, 2007; Silberberg et al,
2006), and there is some evidence for increased expression of Nrgl
and ErbB4 protein in the DLPFC of SCZ patients (Chong et al., 2008).
Another study reported that the expression levels of Nrgl and
ErbB4 are similar between SCZ postmortem tissue and controls, but
there is an increase in Nrgl1-induced ErbB4 activation and increases in
ErbB4-PSD95 interactions (Hahn et al., 2006).

Until recently, the cellular localization of ErbB4 in the cortex was
controversial, with the predominant view being that Nrg1/ErbB4 signal-
ing functioned at excitatory synapses. However, several recent studies
have demonstrated that ErbB4 is largely restricted to PVt GABAergic in-
terneurons in the murine cortex and hippocampus, with limited (if any)
expression in projection neurons or Sst* interneurons (Fazzari et al,,
2010; Neddens and Buonanno, 2010; Vullhorst et al., 2009; Woo et al.,
2007). Specifically, ErbB4 was present in the postsynaptic densities of
PV™ cINs receiving glutamatergic inputs and the presynaptic axon ter-
minals of both basket cells and chandelier cell cartridges. This Nrgl-
ErbB4 interaction regulates synapse formation and GABAergic transmis-
sion (Woo et al.,, 2007). In addition, there is some evidence that this
ErbB4 expression pattern is conserved in higher mammals (Neddens
etal, 2011).

Nrg1 and ErbB4 knockout mice die during embryogenesis, so the
initial data obtained from mouse models came from heterozygous or
hypomorphic mice. Nrgl mutant mice display impairments in behavioral

tasks that are relevant to the negative and cognitive symptoms of SCZ,
such as decreased PPI, hyperexcitability, and perturbations in social in-
teractions and fear conditioning (Duffy et al., 2010; Ehrlichman et al.,
2009; Karl et al., 2007; O'Tuathaigh et al., 2007, 2008, 2010; Stefansson
et al., 2002). Spatial and working memory remains intact in these
mice, but mice with specific mutations of Type IIl Nrg1 did show evi-
dence of impaired working memory (Chen et al., 2008b). Surprisingly,
overexpression of Nrg1 also increased locomotor activity, reduced PPI
and perturbed fear conditioning and social interactions (Deakin et al.,
2009; Kato et al., 2010). Restricted Nrg1 overexpression in individual py-
ramidal neurons greatly enhanced the number of GAD65" boutons
targeting somata and AIS (likely basket and chandelier cells, respectively)
(Fazzari et al,, 2010).

ErbB4 mutant mice also display increased hyperactivity, impaired
working memory and decreased PPI (albeit to a lesser extent compared
to Nrgl mutants) (Barros et al.,, 2009; Golub et al., 2004; Stefansson et
al., 2002). The discovery of ErbB4 restriction to PV cINs has allowed re-
searchers to knockout ErbB4 specifically in these cells to better character-
ize its function in cINs. Early disruption of ErbB4 using GFAP-Cre or DIx5/
6-Cre mice decreased excitatory synapses, overall spine number, the
number of chandelier synapses, synaptic transmission between cINs
and projection neurons, and impaired PPI (Barros et al., 2009; Fazzari et
al, 2010). Elimination of ErbB4 with PV-Cre decreased GABAergic trans-
mission, induced locomotor hyperactivity, and caused impairments in
PPI, working memory and fear conditioning (Chen et al., 2010b; Wen et
al, 2010).

These studies outline the function Nrg1-ErbB4 in cIN synaptic trans-
mission and demonstrate that perturbations in this signaling system in-
duce cellular and behavioral changes that are consistent with a SCZ
phenotype. However, since SCZ-associated Nrgl and ErbB4 SNPs are
generally restricted to non-coding regions (but see (Walss-Bass et al.,
2006; Walsh et al., 2008)), it will be interesting to determine whether
Nrg1 or ErbB4 mouse models that better mimic SCZ-associated SNPs in-
duce similar effects as the above studies (Chen et al., 2010a).

Deficits at output synapses of cINs

Presynaptic defects

Glutamate is converted to GABA via two isoforms of glutamatic acid
decarboxylase (GAD), GAD65 and GAD67. Numerous postmortem studies
have found that GAD67 mRNA (Akbarian et al., 1995; Volk et al., 2000)
and protein (Curley et al., 2011; Guidotti et al., 2000) are decreased in a
subset (~25-35%) of DLPFC interneurons in SCZ patients, whereas
GADG5 expression is largely intact in these brains (Benes et al., 2000;
Guidotti et al, 2000). Further studies found that the loss of GAD67
mRNA and protein was restricted to PV cells, with nearly 50% of PV*
cINs in the PFC of SCZ patients lacking GAD67 expression (Curley et al.,
2011; Hashimoto et al., 2003). It appears that reduced GADG7 levels are
present in basket cells (Fig. 1), since decreased GAD67 protein was
observed in non-chandelier PV" axon terminals (Curley et al, 2011),
but more definitive data on the cIN subtype distribution of decreased
GADG67 levels in SCZ is needed. GAD67 expression is also decreased
in other cortical regions of SCZ patients (Hashimoto et al., 2008b;
Thompson et al., 2009), indicating that this defect is not specific to
GABAergic DLPFC cINs. Of note, a decrease in GAD67 does not necessarily
indicate a decrease in GABA levels, and attempts at measuring GABA
levels in SCZ patients has produced conflicting results (Goto et al., 2009;
Ongur et al., 2010). However, GAD67 is activity regulated (Benson et al.,
1994), indicating that cells with a reduction in GAD67 level may be firing
less than normal. These findings suggest that there is a reduction in
GABAergic neurotransmission in PV ™ cINs of SCZ patients, which could
lead to disinhibition of cortical excitatory neurons.

In addition to GAD67, expression of the GABA membrane transporter
1 (GAT1), which is involved in the reuptake of GABA, is reduced in a sub-

set of cINs in the PFC of SCZ patients (Ohnuma et al., 1999; Volk et al., *

2001). Several studies utilized GAT1 staining of chandelier cell cartridges
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to identify a decrease in the density of GAT1 ™ cartridges in the PFC of SCZ
patients (Fig. 1) (Pierri et al., 1999; Woo et al., 1998). It remains unclear
whether these findings reflect a decrease in GAT1 levels with normal
cartridge numbers, or a decrease in the number of cartridges in SCZ pa-
tients. Interestingly, the density of non-chandelier GAT1™" terminals
was unchanged in SCZ patients. Similar to GAD67, the exact distribution
of decreased GAT1 levels between basket and chandelier cells is un-
known and requires further study.

Postsynaptic defects

Two prominent GABA4 receptor subunits have been examined in SCZ
patients: GABA, a1 receptors are postsynaptic to basket cell synapses on
pyramidal neuron cell bodies and proximal dendrites, whereas GABA; a2
receptors are primarily postsynaptic to chandelier cells on the AIS of py-
ramidal neurons. Several studies have identified a decrease in GABA, a1
receptor mRNA in the DLPFC cortex of SCZ patients (Beneyto et al., 2011;
Hashimoto et al., 2008a,b), with some evidence that the decrease is spe-
cific to pyramidal cells (Fig. 1) (Glausier and Lewis, 2011). These findings
suggest that inhibition is reduced at basket cell synapses on pyramidal
neurons. Consistent with this idea, two kinases that differentially modu-
late the chloride ion transporters NKCC1 and KCC2 were found to be ele-
vated in the DLPFC of SCZ patients (Arion and Lewis, 2011). Enhanced
activation of NKCC1 relative to KCC2 would be expected to increase intra-
cellular chloride levels and thus diminish GABA-mediated inhibition of
pyramidal neurons. These molecular deficits are consistent with the neu-
rophysiological defects observed for cortical inhibition in SCZ patients
(Daskalakis et al., 2007) as well as the disinhibition hypothesis of excit-
atory neurons in SCZ. Recently, such a reduction in inhibition at basket
cell synapses was proposed to be a homeostatic response to the pyrami-
dal neuron's receiving decreased excitatory inputs in SCZ (Lewis et al.,
2012).

GABA4 a2 receptor protein (Volk et al., 2002) and mRNA (Beneyto et
al,, 2011) expression is increased in the PFC of SCZ patients compared to
controls, with a clear enrichment of GABAs o2 receptor protein at the
AIS (Fig. 1). Both the decrease in GAT1 in chandelier cartridges and the
increase in postsynaptic GABA, a2 receptors were suggested to be com-
pensatory mechanisms to enhance GABA transmission at the axo-axonic
synapses of SCZ patients (Lewis et al., 2012).

The role of cINs in other SCZ models

In addition the models described above, there are other SCZ-
associated genes that have received significant attention. Here we de-
scribe several SCZ mouse models in which cIN function is beginning to
be examined.

Dysbindin and clathrin-mediated endocytosis

Dysbindin-1 is encoded by dystrobrevin-binding protein 1 gene
(DTNBP1) located at chromosome 6p22.3. SNP and haplotype analyses
of the DTNBP1 locus of SCZ patients from multiple populations found link-
age between DTNBP-1 and SCZ, making dysbindin a potential SCZ suscep-
tibility gene (Rethelyi et al.,, 2010; Riley et al., 2009; Talbot et al., 2009; Zuo
et al,, 2009). DTNBP1 gene variations were also shown to influence cogni-
tive functions related to the PFC (Burdick et al,, 2006; Fallgatter et al,,
2006). DTNBP1 haplotypes with increased protein expression are associ-
ated with enhanced working memory performance (Wolfetal,,2011). On
the other hand, risk haplotypes of DTNBP1 are associated with reduced
spatial memory (Donohoe et al., 2007). Dysbindin-1 is found at both pre-
synaptic and postsynaptic sites of glutamatergic synapses (Talbot et al.,
2006), and it is found to be reduced in the hippocampus and PFC of SCZ
brains (Talbot et al., 2004, 2011; Tang et al., 2009a).

Dysbindin-1 regulates biogenesis of lysosome-related organelles and
is involved in protein trafficking through the lysosomal pathway. Recep-
tor trafficking is mediated by recycling endosomes or clathrin-mediated
endocytosis (CME), which targets proteins to lysosomes for degradation.

Alteration in Dysbindin-1 expression was found to affect surface expres-
sion of the D2 subunit of dopamine receptors, as well as NR1 and NR2A
subunits of NMDAR, all of which are trafficked via CME (Jeans et al.,
2011; Ji et al., 2009; Karlsgodt et al., 2011; Schubert et al.,, 2011; Tang et
al,, 2009b). Consistent with its role in NMDAR trafficking, Dysbindin-1
knockout mice (Dys~) have altered NMDAR-mediated currents and
synaptic plasticity. Of note, loss of Dysbindin-1 was found to have differ-
ential effects on the NMDAR-mediated currents at hippocampal and PFC
glutamatergic synapses, which may be due to differential regulation of
distinct NMDAR subunits (Jentsch et al., 2009; Ji et al., 2009; Karlsgodt
et al, 2011; Tang et al.,, 2009b).

Dys~/~ mice also display deficits in spatial working memory and PP, 59:

increased locomotion, impaired gamma-band oscillations, and reduced
inhibition in the hippocampus with no change in excitation (Carlson et
al,, 2011; Jentsch et al., 2009; Karlsgodt et al., 2011). One group observed
a reduction in the number of PV ™" cells in the hippocampus (Carlson et
al., 2011). Dys—/~ mice also have reduced inhibition of layer V PFC pyra-
midal neurons, possibly due to decreased excitability of FS cINs (Ji et al.,
2009). Deficits in dysbindin-1 mutants may not be restricted to the post-
synaptic side. In the Sandy mouse (Sdy), an inbred line carrying a spon-
taneous mutation in dysbindin-1, larger vesicle size and reduced readily
releasable pool of synaptic vesicles were detected (Chen et al., 2008a).
In sum, by regulating multiple neurotransmitter systems on both
sides of the synapse, dysbindin-1 function may be relevant for multiple
aspects of synaptic activity and SCZ pathophysiology. However, further
analysis is necessary to understand the molecular basis of this regula-
tion. Finally, although Dysbindin-1 was detected at glutamatergic synap-
ses of the hippocampus, its presence at GABAergic synapses of the cortex
is still unclear. Since GABA receptor subunits are trafficked to the post-
synaptic membrane via CME (Tretter and Moss, 2008), it is also possible
that Dysbindin-1 regulates the surface expression of GABA receptors.

Disrupted in Schizophrenia-1 (DISC1)

A truncating mutation in the Disrupted in Schizophrenia-1 (DISC1)

gene was first identified in a Scottish family with a high incidence of ¢

psychiatric disorders including SCZ, depression and anxiety diseases
(Blackwood et al., 2001; Millar et al., 2000; St Clair et al., 1990). Although
many independent genetic linkage and association studies support a
linkage between DISC1 and psychiatric illnesses, there is significant con-
troversy whether a specific linkage between DISC1 and SCZ actually
exists (Kvajo et al., 2011b). DISCI encodes a large protein with relatively
little sequence homology to other known genes, hampering progress for
identifying a clear function for DISC1. Despite these drawbacks, DISC1
has been shown to play a role in neuronal cell proliferation, maturation,
migration, neuronal plasticity, and regulation of numerous intracellular
signaling cascades (Singh et al., 2011; Soares et al,, 2011). However,
these studies used knockdown or overexpression approaches to study
DISC1 function in a manner that does not model the susceptibility allele.
In fact, many of these migration and maturation defects were not
observed in a mouse model with a truncating lesion in the Disc1 gene
that mimics the mutation in the Scottish family (Kvajo et al., 2008,
2011a), highlighting the importance for creating transgenic mice that
best recapitulate the human SCZ-related genetic mutations.

Eight distinct DISC1 mutant mice have been reported, several of which
display some SCZ symptoms, such as impairments in working memory
and deficits in PPI (Kelly and Brandon, 2011). In several mouse models
that overexpress a truncated version DISCI, PV immunoreactivity was
decreased in the medial PFC compared to controls (Ayhan et al., 2011;
Hikida et al., 2007; Shen et al., 2008). There was no decrease in either
calretinin or calbindin in Disc1 mutant mice. Of note, although there
was no reduction of PV cells in the DLPFC, the laminar organization of
PV™ cells was perturbed (Shen et al., 2008). However, no changes in
the number of PV or calbindin™ cINs were detected in a mouse model
that mimics the Disc1 allele from the Scottish family (Kvajo et al.,, 2008).
shRNA-mediated knockdown of Disc1 in pyramidal cells of the prefrontal
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cortex also led to a reduction in PV cells in this area, indicating that the
decrease in PV interneurons could be non-autonomous (Niwa et al.,
2010). Recent evidence indicates that Discl may regulate dendritic
growth during periods of prolonged GABA-mediated depolarization in
hippocampal neurogenesis (Kim et al., 2012). It also appears that
DISC1 functions in cIN tangential migration (Steinecke et al., 2012).
Future studies are needed to link dysfunction of Disc1-containing risk
alleles to the specific pathobiology of SCZ.

22q11.2 deletion syndrome (22qDS)

One known genetic factor underlying the risk of developing SCZ is
the microdeletion in the chromosomal region 22q11.2, which occurs
in roughly 1 in 3000 births and leads to the 22q deletion syndrome
(22gDS, DiGeorge syndrome, velocardiofacial syndrome) (Shprintzen
et al,, 2005). 22qDS patients display impairments in a variety of cogni-
tive tasks (Karayiorgou et al., 2010), and roughly 30% of carriers with
this deletion are diagnosed with SCZ (Murphy et al., 1999; Pulver et
al.,, 1994), such that this mutation constitutes approximately 1-2% of
the sporadic cases of SCZ (Bassett et al., 2008; Xu et al., 2008). The
size of the microdeletion is either 1.5 Mb or 3 Mb, and both deletions
are associated with a higher risk of SCZ (Karayiorgou et al., 1995). The
1.5 Mb region contains 27 functional genes (Edelmann et al., 1999)
whose dosage reductions are proposed to have adverse effects on
early patterning, neurogenesis and synaptogenesis (Meechan et al.,
2011). In mice, orthologues of 26 of these genes are located on chromo-
some 16, although the gene order is slightly different (Maynard et al.,
2006; Puech et al,, 1997).

Among several mouse lines with different chromosome 16 deletions,
two lines, Df(16A™/~) and Lgdel, carry a deletion in chromosome 16 that
is syntenic to the 1.5 Mb microdeletion of the human chromosome
22q11.2 (Meechan et al., 2006; Stark et al., 2008). Both Df(16A*/~)
and Lgdel display impaired PP, but only Df(16A™~) mice have condi-
tioned fear and spatial working memory deficits (Long et al., 2006;
Stark et al,, 2008). Analyses of network oscillations during a working
memory task, in which Df(16A™/~) mice show impairments, revealed
reduced synchrony of hippocampal and PFC oscillations (Sigurdsson et
al,, 2010). Whether the underlying pathophysiology of hippocampal-
cortical oscillation synchrony in Df(16A™/~) mice involves cINs is not
clear. However, inhibition of pyramidal neurons in the CA1 region of
the hippocampus is also reduced in Df(16A™/~) mice (Drew et al,
2011b). Lgdel mice display alterations in PV* cIN layer distribution and
cIN migration deficits, although the total number of PV™ cINs is not
changed (Meechan et al., 2009). A recent study found that cIN migration
and lamination defects in Lgdel mice might be caused by disruption of
C-X-C chemokine receptor type 4 (Cxcr4) signaling (Meechan et al.,
2012), a well-characterized guidance mechanism required for proper
cIN migration (Wang et al., 2011). Thus, unlike several of the mouse
models mentioned above, Df(16A*/~) and Lgdel mice may provide a
more accurate model of the human 22q deletion, though the extent to
which these mice recapitulate SCZ symptoms is still under investigation
(Drew et al., 2011a).

Interneuron dysfunction in SCZ: cause or effect?

The evidence for various input and output-related deficits in cINs
from SCZ studies begs the question of whether cIN alterations could be
an effect, rather than a cause, of the core SCZ pathology. A wealth of
data from imaging studies suggest that SCZ is associated with reduced
gray matter thickness that is present early in the illness. Postmortem
studies suggest that the volume loss mainly results from a reduction in
neuropil and not cells (Selemon et al.,, 1995; Thune et al., 2001). Several
lines of evidence indicate that SCZ is associated with a network-wide
reduction of PFC pyramidal neuron activity that could lead to reduced ex-
citatory drive of cINs (Berman et al., 1992; Buchsbaum et al., 1984a,b).
This could result in downregulation of various activity-dependent cIN

parameters, such as PV or GAD expression. Coupled with evidence for
loss of dendritic spines (Garey et al., 1998; Glantz and Lewis, 2000), the
above findings suggest that the onset of SCZ may originate from reduced
excitatory neurotransmission in the PFC, resulting in secondary cIN defi-
cits. Interestingly, adolescence is normally associated with extensive
pruning of excitatory connectivity within the PFC (Mirnics et al., 2000).
Since plasticity of excitatory connectivity during adolescence is influenced
by the maturation and function of PV cINs (Katagiri et al., 2007), early
cIN dysfunction could conceivably contribute to overpruning of excitatory
connectivity onto pyramidal neurons early in the illness progression,
which would then result in the reduction of cIN activity.

In addition to pyramidal neuron excitation, two other mechanisms
associated with SCZ have also been suggested to influence cIN activity.
PV" cINs receive stimulatory dopaminergic inputs (Mrzljak et al,
1996) that increase during adolescence (Tang et al., 2011; Tseng and
O'Donnell, 2007; Tseng et al, 2006). In a hippocampal rat lesion
model of SCZ, PFC dysfunction involves alteration of cIN responsiveness
to dopamine (DA) (Gruber et al., 2010). In a mouse model of SCZ in
which striatal D2 receptor activity is genetically enhanced, resulting in
decreased DA in the PFC, GABAergic inputs onto cortical pyramidal neu-
rons are also decreased (Li et al,, 2011). Therefore, reduced cortical DA
can result in dampened interneuron activity, and is thus a potential
upstream mediator of cIN-related pathology in SCZ.

Finally, cholinergic inputs provide a critical excitatory drive to cINs
(Arnaiz-Cot et al, 2008; Mok and Kew, 2006) and appear to mainly
target cINs during the first two weeks of postnatal development
(Janiesch et al., 2011). Cholinergic terminals can also enhance GABA
release at perisomatic synapses onto hippocampal pyramidal neurons
(Tang et al, 2011). In addition, cholinergic antagonists block PV*
cIN-mediated gamma oscillations in the hippocampus, while nicotine
administration reduces the methylation status of the GAD67 promoter
(Satta et al, 2008). Post-mortem findings on cholinergic deficits are
sparse, but some evidence exists for a reduction in SCZ brains
(Freedman et al.,, 2000; Guan et al., 1999; Holt et al, 1999; Hyde and
Crook, 2001).

In sum, due to extensive connectivity and crosstalk between different
neurotransmitter systems in the cortex, a deficit in any of these systems
could induce significant changes within the circuitry. Thus, whether the
neuropathology of SCZ originates in excitatory pyramidal neuron connec-
tivity, inhibitory cINs, or subcortical DA or cholinergic systems remains
unclear. Regardless of the molecular and genetic causes of SCZ, cIN dys-
function is a consistent symptom and remains a promising therapeutic
target.

Future directions

Research over the last decade has significantly advanced our under-
standing of cIN function. While cINs appear to play a vital role in the eti-
ology of SCZ, there are still many questions that remain unanswered. A
significant challenge in studying the genetic basis of SCZ is generating
accurate models of the disorder. Single gene knockouts may replicate
certain phenotypes associated with SCZ and provide potential tools to
understand the molecular and genetic mechanisms underlying these
phenotypes. However, transgenic models that better mimic the genetic
mutations in humans, such as Lgdel/Df(16™/~) mice, are promising
tools to study disease mechanisms in which cIN phenotypes can further
be deciphered.

The advent of embryonic stem cell (ESC) and induced pluripotent
stem cell (iPSC) technology has opened up a new gateway for studying
normal neuronal development and disease (Cundiff and Anderson,
2011; Petros et al.,, 2011). Recently, several groups have succeeded in
generating cINs from mouse (Danjo et al., 2011; Maroof et al,, 2010)
and human (Goulburn et al,, 2011) ESCs. The ability to produce an
unlimited source of cINs will expand our ability to study hypotheses
on interneuron dysfunction in SCZ. In addition, the ability to create pa-
tient specific iPSCs permits the study of different genetic predispositions
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to SCZ. Several groups have successfully created iPSCs from SCZ patients
(Brennand et al., 2011; Chiang et al., 2011; Pedrosa et al.,, 2011), with
some evidence that iPSC-derived neurons from SCZ patients have gener-
al defects in neuronal connectivity (Brennand et al,, 2011). Application
of this technology to the study of specific hypotheses on cortical pyrami-
dal and interneuron dysfunction in SCZ promises to open new avenues
of research on the cellular and molecular bases, and treatments, of this
highly debilitating and treatment-resistant mental illness.
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