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During the last decade brain transcriptome profiling by DNA microarrays has matured, developed sound
experimental design standards, reporting practices, analytical procedures, and data sharing resources. It has
become a powerful scientific tool in the exploratory research portfolio. Along this journey by trial and error,
we encountered a number of intriguing questions and comments—pondering the value of hypothesis-driven
research, appropriate sample size, the importance and interpretation of transcripts changes vis-a-vis protein
changes, the role of statistical stringency, false discovery and magnitude of expression change, and many
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DNA microarray other interesting questions. Our field fully acknowledges and tries to address all of these challenges associated
Transcriptome with high-throughput, data-driven transcriptomics. As a research field, we strongly advocate implementing
Brain the highest standards of our trade, and we deeply believe that transcriptome profiling studies will continue to
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be essential for deciphering the pathophysiological mechanisms leading to complex brain disorders.
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It has been over a decade since the publication of the first high-
throughput gene expression profiling studies of the brain (Hakak
etal., 2001; Lockhart and Barlow, 2001; Mimmack et al., 2002; Mirnics
et al., 2000; Pasinetti, 2001). During the last decade the opinion and
attitude of the scientific community has changed toward these
technologies multiple times. The first phase, lasting about 3-4 years,
was characterized by enthusiasm, excitement, and often unjustified
optimism. Many viewed DNA microarray technology as a “magic
bullet” that would fundamentally change our understanding of
various brain disorders, and during this golden era of microarrays
funding agencies were generous in supporting data-driven explor-
atory efforts. As a result, several important studies were generated,
along with a large number of mediocre studies that resulted in long
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findings. The backlash was predictable, and over a relatively short
time period the dominant scientific opinion transformed itself to one
of skepticism toward anything that was DNA microarray-generated.
In the meanwhile, proteomics became “hot,” followed by other novel
“omics” technologies, and microarray expression studies fell in
disgrace: microarray manuscripts started to be considered “descrip-
tive studies”, and as such they routinely started to receive editorial
rejections by the top journals in the field of neuroscience. The attitude
of many journals and editors was best summarized by the boilerplate
rejection letter of the Journal of Neuroscience from 2005, stating that
“We tend to be circumspect when we receive an expression array
paper.” (Journal-of-Neuroscience, 2005)—not caring about the quality
of the presented science, but condemning the technology. Many
microarray enthusiasts jumped on a bandwagon of new, hotter and
better-funded “omic” technologies—while the real puritans of
microarray technology went to work: they teamed up with expert
teams of biostatisticians and bioinformaticians and started to generate
standards of performing, reporting (Brazma et al., 2001), analyzing
(Irizarry et al., 2003; Subramanian et al., 2005; Tusher et al., 2001) and
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sharing (Barrett et al., 2005) the experiments. To the classical “most
changed gene” analyses novel pathway assessments were added
(Curtis et al., 2005; Dennis et al., 2003; Langfelder and Horvath, 2008;
Mirnics et al., 2000, 2001; Subramanian et al., 2005), and the best
microarray experiments started to include both data verification and
functional follow-up assays. The gene expression profiling field grew
up, entered its current phase of “accepted method” and took its place
as a powerful, yet not omnipotent, scientific tool in the exploratory
research portfolio.

Being part of this evolution process was both fascinating and
frustrating. Over the years we received many criticisms from our
peers, editors and reviewers. Some were fully justified and pointed
out our own ignorance, while others were clearly malicious and had
no foundation in reality. However, a number of observations and
statements made in this process constituted great starting points for
interesting discussions. The latter ones are the topic of this
manuscript, in a hope that public pondering of some of these issues
will help achieve better experimental design, higher quality data,
enhanced recognition of a good microarray experiment, and improved
interpretation of findings.

“Without a testable hypothesis, there is no good science.”

We strongly disagree with this notion. “I believe in ignorance-
based methods because humans have a lot of ignorance and we
should play to our strong suit ...you take raw ignorance and turn it
into processed ignorance, and processed ignorance, well-defined
ignorance, well-asked questions that we don't know the answer to,
that's the root of experiment”—Dr. Eric Lander, founding director of
the Broad Institute, eloquently pointed out the prevailing philosophy
of data-driven researchers (Lander, 2002). It should be noted that
initial and unproven hypotheses per se carry little value, and are
limited by our current perception of how a biological system might
work (Horvath et al., 2010; Mirnics and Pevsner, 2004). Data-
driven, hypothesis-free approaches allow simultaneous testing of
thousands of unformulated hypotheses: comparing the whole
genome transcription machinery allows us to find the truly unknown,
the unexpected, and the counterintuitive. It allows us to generate
novel hypotheses, which can, and should be followed up in detail, in a
hypothesis-driven fashion. Thus, in our experiments the precise initial
hypothesis becomes secondary to a stellar experimental design that
maximizes the chance of finding meaningful and fundamentally novel
data (Mirnics et al., 2006). What to analyze (e.g. which cell types or
brain regions), which subjects to include (e.g. co-morbidity, endo-
phenotypes, technical exclusion), how to analyze the dataset are
critical, and often very challenging considerations, and the poorly
performed expression profiling studies almost invariably fail at this.

“Sample size should be increased...”

In theory, this is true. I have never met a biostatistician who did not
advocate an increased sample size. Yet, the reality is that in expression
profiling studies sample size will always be limited, especially in
postmortem brain studies. We simply cannot even approach the
sample size of genome-wide association studies (GWAS) studies
(Sullivan, 2010), where thousands of samples are required to perform
a meaningful study—we can be considered fortunate if we have
several dozens of high-quality postmortem samples to work with
(Mirnics et al., 2006). So, due to the limited sample size, should we
abandon this line of research? Absolutely not! There is a huge
difference between the gene expression profiling and genome wide
association studies, which is strongly in favor of transcriptome
assessment: invariably the disease associated gene expression
signature is much stronger than the genetic association signal! For
example, genetics studies of schizophrenia (and also bipolar disorder,
ADHD, major depression, and a host of other disorders) could only

identify miniscule genetic signals for any putative susceptibility genes
(Harrison and Weinberger, 2005), yet, gene expression studies,
despite the small sample sizes, have successfully identified expression
changes that are characteristic of >50% of the diseased cohort (Arion
et al.,, 2007; Garbett et al., 2008; Hakak et al., 2001; Middleton et al.,
2002; Mirnics et al., 2000). The explanation for this is functional
convergence and the fundamental nature of the brain transcriptome
itself—gene expression networks are interdependent (Horvath and
Mirnics, 2009; Mirnics, 2008; Winden et al., 2009), and the various
genetic and environmental insults converge at critical molecular
pathways, resulting in common alteration of transcript levels of
different origin (Mirnics et al., 2006). As a result, one might argue that
while genetic predispositions speak of the origins of the disturbance
seen in psychiatric disorders, gene expression changes give us clues
about the mechanisms by which the pathophysiology progresses and
the disease symptoms arise.

“Transcript changes do not matter if the protein levels are not
altered.”

This is an interesting reasoning, and at the first glance it makes a
lot of sense—or does it? Let us follow this line of reasoning for a
second. If the transcript alteration does not matter in the absence of an
obvious protein change, than the protein level is also unimportant if
the protein is not activated or transported to its place of action.
Obviously, this trafficking also becomes irrelevant unless it affects the
electrical conductivity and the responsiveness of the neuron.
Similarly, any change in excitability of the single cell also becomes
meaningless unless the activity of a whole neural network is altered,
and neural network activity fluctuations mean virtually nothing if the
behavior of an individual is not altered... This logic could be applied in
such a manner to make any important discovery seem meaningless.
We believe that such a line of reasoning is deeply flawed, and put
serious limits on future discoveries.

Furthermore, the argument that the transcript changes are trivial
in the absence of changing protein levels also demonstrates disrespect
for the most fundamental principles of brain anatomy. The majority of
neurons project out from the brain regions where the cell bodies
reside, and they traffic proteins from the somata to thousands of
synaptic terminals in remote brain regions. So, a proteomic profile of
any brain region at any given moment is a sum of proteins that are
produced by the cell somata which reside in the harvested area
(intrinsic proteins) and proteins that are contained within the
synaptic terminals that project into the area from other brain regions
(extrinsic proteins). Importantly, many proteins (such as synaptic
release machinery) have both an intrinsic and an extrinsic source, and
bulk tissue proteomics cannot differentiate between them. In contrast,
the mRNA expression profile is primarily made up by the somatoden-
dritic transcripts of cells that reside in the harvested brain region
(intrinsic transcripts), with a minimal contribution from extrinsic
mRNA species. Thus, transcriptomics and proteomics measure
different anatomical substrates, and this is very important for the
interpretation of both “omics” findings: a change in mRNA, without a
corresponding protein change might mean that the intrinsic cell
population is affected at both the mRNA and protein level, but the
substantial extrinsic source of the same protein (which is unchanged),
makes impossible to detect the intrinsic protein change (Pongrac
et al., 2002).

“The magnitude of gene expression change is too small to be
physiologically relevant”

This is clearly an assumption, yet it is surprising how little
discussion it has attracted over the years. The “bigger is better”
mentality, while characteristic of our society, is not clearly applicable
to biological systems. Homeostatic systems are differently tuned,
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with various degrees of tolerances. For example, changing the blood
pH by 20% is lethal, yet dynamic blood glucose concentration
doubling after meals or significant hormonal oscillations are part
of normal physiology. The same principle applies to gene expression
changes—many knockout animals do not show any readily discern-
able phenotypes (McMahon et al., 1996; Schluter et al., 1999) and
copy-number variations (CNVs) normally occur at a high rate in the
disease-free human population (Vogler et al., 2010). Yet, modest
decreases in mRNA expression of the 67-kilodalton isoform of
glutamic acid decarboxylase (GAD67) appear to be a critical,
functional component of schizophrenia pathophysiology (Hashimoto
et al., 2008). Thus, it appears that the individual function of the
gene, its place in the transcriptome network, other genes performing
a similar function, associated regulatory and compensatory mecha-
nisms, simultaneously occurring gene expression changes in
the same molecular pathway and many other factors decide the
functional consequence of a gene expression change. While the
magnitude of the gene expression change is also certainly one part
of this equation, by itself it is a poor predictor of functional
consequences.

“The most significant expression changes are the most important”

This is clearly another assumption. While statistical assessment is
essential, probability values in a transcriptome profiling experiments
represent a continuum, and there is no way to predict if a gene
expression change associated with a p=0.0001 is more functionally
relevant than an expression alteration reporting a p=0.01.

Furthermore, if statistical assessments are not selected carefully,
the results can be quite misleading. In the following example, the
frontal cortex of a genetically altered mouse was compared to the
frontal cortex of its wild-type littermates using whole-genome
expression profiling. The analysis of 5 transgenic and 5 control mice,
after RMA normalization, revealed the following log, expression
values for Gene X: 6.0, 6.8, 7.0, 6.2, 6.5 for WT, and 7.2, 10.0, 15.0, 8.0,
7.8 for TG samples. Performing a standard, two-tailed groupwise,
equal-variance Student t-test in Microsoft Excel will report a
significance of p=0.0637. If not careful, such a result will not be
even noticed, and discarded as “non-significant.” In contrast, Gene Yin
the same experiment might report the following values across the
studies samples: 2.2, 2.2, 2.2, 2.3, 2.3 for WT, and 2.4, 2.4, 2.3, 2.3,2.3
for the TG samples. A similar t-test analysis for Gene Y in Microsoft
Excel will yield a “significant” p=0.0203, yet Gene Y is certainly less
promising for follow up than Gene X. How did this happen? The
variance for Gene X was big and for Gene Y was small (possibly a
normalization artifact), and the t-test alone was quite inappropriate to
analyze the transcriptome changes.

Involving a knowledgeable biostatistician in your experimental
design and discussing the data mining strategies before performing
the experiment is always a good idea. Determining “true expression
changes” and subsequently identifying the “most promising expres-
sion changes” requires pulling resources from both biological and
statistical knowledge, requiring (an often painful) cross-field educa-
tion for both the molecular biologist and biostatistician.

“The authors did not apply a Bonferroni correction...”

... because they did not want to throw out the baby with the bath
water. False discovery assessment is very important in all transcrip-
tome profiling experiments, but in most cases Bonferroni correction is
ill-suited for this purpose. First, in a typical transcriptome profiling
experiment the number of genes tested is greater than the number of
samples by 3 orders of magnitude. Second, human brain samples
show a molecular diversity similar to the genetic and symptom
diversity of the disease, postulating that not all the affected brains will
have an identical gene expression signature, and this weakens

statistical significance measures. Third, in complex brain disorders
typical gene expression differences are relatively modest, often in
the range of 20-50%, and precise expression measurement can be
challenging. As a result, gene expression changes almost never reach
significance that that can withstand a whole-genome Bonferroni
p-value correction. Should we have applied a Bonferroni correction to
the schizophrenia microarray datasets over the last ten years, we
would have not obtained any novel leads—and the immune (Arion
et al., 2007), mitochondrial (Middleton et al., 2002), synaptic (Mirnics
et al,, 2000), oligodendroglial (Hakak et al., 2001) and GABAergic
(Hashimoto et al., 2008) changes could have not been identified and
consequently replicated.

So, how can we ensure that the gene expression changes we
uncovered are “real,” and not a result of experimental noise or cohort
bias? There are multiple alternatives to extremely stringent statistical
corrections that still ensure that true biological findings, and not
experimental artifacts, are uncovered. First, one can use less stringent
statistical corrections for multiple comparisons, such as the Benja-
mini-Hochberg procedure (Sibille et al., 2004). This method is very
effective, especially if the gene expression dataset is a priori trimmed
for non-expressed genes and genes with very low variance: proper
“trimming” procedures can reduce the number of performed
comparisons by up to 75%, thus reducing the stringency of statistical
correction that is required for false discovery assessment. Second,
assessment of false discovery by various kinds of permutation
analyses has gained great popularity over the years (Gao, 2006;
Sohn et al.,, 2009). At core of all these assessments is mixing the
experimental and control samples randomly into two balanced
groups, and performing the same analyses repeatedly—for both
pathways and individual genes. If the disease effect is bigger than
the random noise, the random assignment of microarrays into
variously permutated groups will report less differentially expressed
genes than the “pure” comparison of control and experimental
samples (Unger et al., 2005). In the past such analyses have been
challenging for laboratories without strong bioinformatics support,
however, recently developed public domain software packages make
these assessments (both at the individual gene and pathway level)
straightforward (Gentleman et al., 2004; Kuehn et al., 2008). Third, a
very elegant, biology-based assessment of false discovery includes
defining the differentially expressed transcripts in the initial cohort,
and then testing this pattern in a second, independent replication
cohort (Lazarov et al., 2005). Although false discovery assessments
should always be incorporated in the experimental design, the exact
choice of the false discovery analysis method should depend on
availability of samples, cohort size, experimental design and many
other factors.

“The authors should have employed the analysis strategy by
Doe et al, published in Nature”

There is no such a thing as a “universally good” microarray study
design. Each experimental design and analysis strategy should be
tailored to your own experiment. Applying an experimental design or
analysis strategy only because it was published in a high-impact
journal is a common mistake made most often by trainees who try to
emulate successful studies. Rather, considerations should include
sample size, type and diversity, employed technology, number of
replicates, and many other factors. Establishing clear and carefully
crafted experimental parameters before the start of the study goes a
long way toward obtaining meaningful experimental data—“patching
up” microarray experiments with changing inclusion-exclusion
criteria and adding additional samples at a later time usually results
in noisy (and often uninterpretable) experimental outcomes.

“In this transcriptome profiling study, genes X and Y and pathway
Z were not changed”
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This is true, but is potentially misleading: not finding gene
expression changed and not being changed are fundamentally
different statements. DNA microarrays studies notoriously carry a
high percentage of type Il errors—a true biological difference is often
not detected in these experiments. The explanation to this is a
technical limitation, and has three major sources. First, universal
hybridization conditions are never ideal for all of the hundreds of
thousands of probes on a single microarray. Second, some DNA
microarray probes perform less then ideally, and cross-hybridize to
other genes than their own target, and the specificity of the signal is
lost. Third, genes that are expressed in only a small subpopulation of
cells in the tissue, or are expressed at very low levels, are at the cusp of
detection limit even on the highest quality microarrays. Thus, failing
to find a gene expression change in a microarray experiment is not a
definitive proof that a gene expression is absent between the
compared samples (Hollingshead et al., 2005), and negative data
must be interpreted with great care.

“Finding hundreds of diverse gene expression changes is unin-
terpretable”

Not so. Unfortunately, the human brain appears to like simple
solutions, and we scientists are not immune to this. A list of several
hundred gene expression changes between two conditions is
overwhelming, and we would prefer to explain the main pathophys-
iological process by very few changes in mRNA level. More is less: a
big panel of changed genes somehow became less informative than
the alteration of only one mRNA. However, the vast majority of
complex brain disorders cannot be explained by individual gene
dysfunction and the transcriptome profiling results merely reflect this
complexity of the pathophysiological process. Unfortunately, many
microarray studies fall short of proper interpretation of data by simply
discussing the role of several, usually, “most changed” genes. The
ability to decipher and interpret the data, and subsequently build a
falsifiable model related to the studied pathophysiological process is
the trait that sets apart a great expression profiling manuscript from a
mediocre one.

So, how can we avoid writing a mediocre manuscript? First, we
must reduce the emphasis on single gene changes, and shift our
attention to analysis of co-regulated transcript networks (Korade and
Mirnics, 2011; Voineagu et al., 2011-this issue). This can be achieved by
using a number of freely available tools such as weighted gene co-
expression network analysis (WGCNA) (Langfelder and Horvath,
2008), WholePathwayScope (Yi et al., 2006), Database for Annotation,
Visualization and Integrated Discovery (DAVID) (Dennis et al., 2003),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Aoki and
Kanehisa, 2005; Arakawa et al., 2005), Gene Set Enrichment Analysis
(GSEA) (Kuehn et al, 2008). Second, we must start more actively
comparing our datasets to those generated by other investigators,
especially the ones that are deposited in the main microarray data
repositories (Barrett et al., 2005; Parkinson et al., 2005). Third, beyond
data verification, we should attempt to follow-up our findings with
additional experiments, obtaining supporting readouts about the
consequences of the observed gene expression changes (Horvath and
Mirnics, 2009; Huffaker et al., 2009).

“Transcriptome profiling studies are descriptive”

Actually, gene expression profiling studies are not any more
descriptive than anatomical, brain imaging, genetic association or any
other “omic” studies. None of these studies can prove causality
beyond doubt, yet they all offer critical information about the disease
state. On the other hand, transgenic animal models, tissue culture
experiments and certain electrophysiology studies test causal re-
lationships, yet they all have serious limitations of a different kind:
they will never be able to fully recapitulate complex brain disorders in

their model systems: they study biological processes in isolation, and
not the disease itself. Furthermore, “mechanistic” studies invariably
obtain their leads from “descriptive” scientific discoveries. Is a genetic
study reporting a higher proportion of CNVs in schizophrenia
(Stefansson et al., 2008) or autism (Sebat et al., 2007) descriptive or
causal? Neither of these two findings gave direct insight into the
mechanism by which the CNVs might produce a disease, so, they must
be considered “descriptive.” Yet, they discovered a critical process by
which these two devastating diseases might arise, and they suggest
causality, so they must be considered “mechanistic” at the same time.
Thus, separating studies into “descriptive” and “mechanistic” is highly
artificial—the information value of the study is critical, and not the
classification of the technology that was employed in the studies.

In summary, nowadays we are fully aware of the interpretational
challenges associated with high-throughput expression profiling. We
hope that we were able to convince you that a carefully designed,
executed, and thoughtfully interpreted expression profiling experi-
ment is a valuable source of scientific data, that our field has high
standards, and that we are able to generate valuable leads for brain
researchers. We expect that the “circumspect” attitude (Journal-of-
Neuroscience, 2005) toward our experiments will fade into the
sunset, and we deeply believe that transcriptome profiling studies will
continue to be essential for deciphering the pathophysiological
mechanisms leading to complex brain disorders.
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