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RZinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently con-
trols the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in
Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole an-
imal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term
potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6
weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs
as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of
various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and
NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selec-
tive increase in synaptic zinc content within the hippocampus.While we demonstrated a small regional increase
in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are
required to determine whether this effect is seen in other regions of the hippocampal formation that are more
closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on
the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate
thatmetal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing
and disease.

© 2014 Elsevier Inc. All rights reserved.
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Introduction

The underlying mechanisms of cognitive loss in aging and
Alzheimer's disease (AD) have largely remained uncertain. Recent evi-
dence implicates presynaptic Zn2+, releasedwith glutamate and loaded
into vesicles by Zinc Transporter-3 (ZnT3), in both the formation of the
hallmark β-amyloid accumulation of AD (Lee et al., 2002) and in normal
cognitive function (Adlard et al., 2010). ZnT3 allows Zn2+ to achieve
high micromolar concentrations during activity within the glutamater-
gic synapses governing memory and learning (Frederickson et al.,
2006). This Zn2+may influence the neurochemistry of cognition by act-
ing as a neuronal messenger and a modulator of synaptic transmission
and plasticity (Frederickson et al., 2005) through interactions with
targets including ZnR (GPR39) (Besser et al., 2009), TrkB (Huang et al.,
2008), glutamate receptors (Paoletti et al., 2009) and p75(NTR) (Lee
et al., 2008). Indeed, the targeted ablation of ZnT3 in wild-type mice
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results in an impairment in cognitive function that is paralleled by
deficits in key proteins involved in synaptic plasticity pathways
(Adlard et al., 2010). This led us to hypothesise that ZnT3 KO mice are
a phenocopy of the synaptic and memory deficits of AD and potentially
also of normal ageing. In this study, we have addressed the hypothesis
that the use of metal chaperones will restore metal ion homeostasis
within the hippocampus of ZnT3 KO mice to result in a concomitant
normalisation of key biochemical pathways involved in cognition and
subsequent amelioration of the cognitive loss that characterises this
model.

Materials and methods

Animal tissues

ZnT3 KO and WT animals were housed in the Animal Facility at the
Mental Health Research Institute. All animal experimentation was ap-
proved by the Howard Florey Animal Ethics Committee and conformed
to Code of Practice established by the National Health and Medical
Research Council of Australia for the Care and Use of Animals for
Scientific Purposes (7th Edition, 2004).
-mediated cognitive decline, Neurobiol. Dis. (2014), http://dx.doi.org/
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Animals (WT and KO; n = 12–18/group; equal mix of males and
females) were randomly assigned to receive either a sham diet (no
supplement), or a diet supplemented with clioquinol (Specialty Feeds,
Western Australia). The inclusion rate of drug in the food was
0.25 g/kg food, which equates to a daily dose rate of approximately
30 mg/kg animal weight, based upon on average food intake for ro-
dents, as reported in the ANZCCART Fact Sheet. Animals received
these modified diets for 6 weeks prior to culling. Animals were killed
at three and 6 months of age. Prior to culling, animals were tested for
spatial memory in the Morris water maze and Y-maze.

On completion of behavioural studies, animals were anaesthetised
(pentobarbital, IP injection) and transcardially perfused with ice-cold
PBS. Brains were removed and hemisected; right hemispheres were
further microdissected and frozen on dry ice while left hemispheres
were snap-frozen in ice-cold isopentane and prepared for synchrotron
analysis.

Separate cohorts of mice were utilised for electrophysiology
experiments.

Behavioural studies

We utilised the Morris water maze as previously reported (Adlard
et al., 2008), in addition to the Y-maze as previously reported (Lei
et al., 2012) to assess spatial learning and memory. There were no
significant differences in swim speeds between groups in the water
maze, and we have similarly previously reported that there are no
motor differences between the WT and the KO mice. Furthermore, we
have also previously reported that this class of compound does not
alter themotor activity of animals that do not have a grossmotor deficit.

Metal analyses

Lyophilised hippocampal homogenates (n = 12–18/group) were
analysed by inductively coupled plasma mass spectrometry (ICPMS),
as previously reported (Adlard et al., 2010). Briefly, samples were
digested in concentrated nitric acid (Aristar, BDH; overnight, room
temperature and then 90 °C for twenty minutes) and then diluted to
1% and measurements made using a Varian UltraMass inductively
coupled plasma mass spectrometer under conditions suitable for
routine multi-element analysis. The instrument was calibrated
using blank, 10, 50 and 100 ppb of a certified multi-element ICPMS
standard solution (ICP-MS-CAl2-1; AccuStandard) for Mn, Fe, Cu,
and Zn in 1% nitric acid. Results were normalised to tissue wet
weight before analysis.

For synchrotron analyses, multiple slices (40-μm-thick) were pre-
pared from each of the frozen mouse brains using a cryostat before
being mounted on silicon nitride windows (1-μm-thick; 4 × 4 mm2

window within a 10 × 10 mm2 silicon frame). Tissue sections were
mounted in order to frame the hippocampus, in particular the zinc
rich dentate gyrus and some of the surrounding structures including
the major lamellar regions. Sectioned brains were affixed onto the
silicon nitride windows by gentle drying under a stream of air. Trace
metal distributions in mouse brain sections were mapped using a
monochromatic 12.73 keV X-ray beam focused to a spot size of ~2 μm
in diameter using the Kirkpatrick–Baez mirror microprobe installed at
the XFM beamline at the Australian Synchrotron (AS). The sample was
raster scanned through the focus of the incident x-ray beam and
the resulting elemental fluorescence was recorded using the annular
384-channel monolithic silicon diode detector array (Maia). The detec-
tor was oriented in backscatter geometry and subtended an active solid
angle of ~1.3 sr and employs a low-latency continuous fly scanning ap-
proach, leading to zero readout overhead. The system achieves very
short effective dwell times for typically dilute biological specimens
(~10 ms), allowing elemental distributions to bemapped over anatom-
ically relevant structures without sacrificing resolution or sensitivity.
The pixel size of 1.25× 1.25 μm2 used in these studieswaswell matched
Please cite this article as: Adlard, P.A., et al., Metal chaperones prevent zinc
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to the beam spot size, and the resulting full-spectral images ranged up
to 1 Mpixel in size. The deconvolution of the Maia data was performed
using the DA method and GeoPIXE software suite that incorporates a
linear transformation matrix to perform spectral deconvolution to the
spectrum recorded at each pixel. Spectral deconvolution was calibrated
using a thin Pt foil, and correctionsweremade for self-absorption in the
sample, absorption in air, and the efficiency response of the detector,
including absorption in aMomask used to reject X-rays thatmay other-
wise produce charge sharing between detectors. The detected X-ray sig-
nals in each pixel are related to calculated model fluorescence X-ray
yields for an assumed specimen composition and thickness. Absorption
effects at the lowest atomic number element that can be accessed using
the Maia detector (potassium Ka radiation) are negligible for these
tissue sections, assuming typical tissue composition and an average
density of 1.04 g/cm3, typical of brain matter.

Electrophysiology

For long-term potentiation studies, we utilised WT and ZnT3 KO
mice at 3 and 6 months of age. Brain slices (n = 4–7 per group) were
cut at 400 μm thickness using a Vibratome slicer and slices equilibrated
at 28 °C for 2 hours prior to experimentation. For the LTP rescue studies,
we supplemented slices with either zinc (4 μm), Clioquinol (CQ, 4 μm)
or a combination of both for 30min prior to recording. For electrophys-
iological recordings, the stimulating electrode was placed on the
Schaffer collaterals and the recording electrode in the dendrites of the
CA1 pyramidal neurons. The postsynaptic activity of the neurons was
recorded by initially identifying the population spike, and then baseline
was recorded for 15minutes at 50% of maximum activity. Following te-
tanic stimulation (100 Hz, 1 s), extracellular evoked synaptic activity
was recorded for one hour and LTP quantitated. The change in field
excitatory postsynaptic potentials relative to baseline averaged from
data taken 55 to 60 min posttetanus is shown.

Biochemical analyses

Western blot was used for quantification of protein levels, as previ-
ously reported (Adlard et al., 2010). Briefly, hippocampal homogenates
(n = 8/group)were prepared and run on NuPageNovex 4–12% Bis-Tris
gels (Invitrogen; 130 V, 90 min), transferred to nitrocellulose using the
iBlot Gel Transfer Device (Invitrogen; program 3), and the resulting
membrane prepared for blotting (heating, blocking). Primary antibod-
ies were incubated on the membranes overnight (4 °C), followed by
rinsing and incubation in secondary antibody (1 hr, room temperature),
further rinsing and subsequent development with ECL reagent and
imaging (Fujifilm LAS-3000).

Statistical analysis

Data were analysed using JMP version 5.0.1a (SAS). For statistical
comparisons of water maze data, repeated measures ANOVA were con-
ducted, followed by independent one-way ANOVAs for each inter-day
comparison between groups (as was also done for other two sample
comparisons in this study).

Results

Clioquinol restores cognition in ZnT3 KO mice

We assessed the effect of clioquinol (CQ) (~30 mg/kg, incorporated
into regular rodent chow, Specialty Feeds, 6 weeks) in a cohort of
ZnT3 KO mice (n = 15), as compared to untreated ZnT3 KO mice
(n = 16). Previously we have demonstrated that 6-month-old ZnT3
KO mice exhibit a marked impairment in learning (overall ANOVA,
p b 0.0001) and memory (p b 0.0001) in the Morris water maze, as
compared to age-matched wild-type controls (Adlard et al., 2010). Six
-mediated cognitive decline, Neurobiol. Dis. (2014), http://dx.doi.org/
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weeks of CQ treatment fully restored cognitive function (both the learn-
ing and thememory components of theMorriswatermaze) in these an-
imals, to levels equivalent toWTmice (Figs. 1a, b). We further assessed
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Fig. 1. Clioquinol modulates learning and memory in ZnT3 KO mice. Metal chaperone (CQ) tre
(b) components of theMorris watermaze. Young ZnT3 KOmice perform identically to age-mat
with clioquinol treatment (d). There is an age-dependent loss in the induction of LTP in ZnT3 K
can again be partially overcome by the administration of zinc, or completely restoredwith the u
as compared to age-matchedWTs (blue), is shown in panel (g). The LTP trace for 6-month-old Z
matchedWT animals (blue). Panel (i) shows the LTP trace for 6-month-old ZnT3 KOmice treate
reference LTP values (from panel (h), calculating the average of the final 5 min of recordings a
denoted on the right side of the graph. Statistical comparisons shown are as follows: (a)WT and
KO to WT; in all cases, **p b 0.01, ***p b 0.001, ****p b 0.0001. KO= ZnT3 KO.
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three and 6-month-old ZnT3 KO mice in the Y-maze. Younger ZnT3 KO
animals performed identically to age-matchedWTs (Fig. 1c), consistent
with the Morris water maze data we have previously published. In
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WTWT

ZnT3 KOZnT3 KO

atment restores performance of aged ZnT3 KO animals in both the learning (a) and recall
chedWTmice in the Y-maze (c) but exhibit deficits as they age, which are again overcome
Omice (e; values normalised to the respectiveWT control of 100% for comparison), which
se of clioquinol + zinc (f). The LTP trace for unimpaired 3-month-old ZnT3 KOmice (red),
nT3 KOmice (red) is shown in panel (h) and reveal an impairment in LTP compared to age-
dwith either zinc (green), CQ alone (purple squares) or a combination of both (black). The
s compared to baseline) for bothWT (blue line, WT) and ZnT3 KO (red line, ZnT3 KO) are
ZnT3 KO+CQ to ZnT3 KO, (b) ZnT3 KO toWT, (d) ZnT3 KO to ZnT3 KO+CQ, (e–f) ZnT3
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contrast, aged ZnT3 KO animals exhibited deficits in this task (overall
ANOVA, p = 0.01; WT to ZnT3KO comparison, p = 0.04), again con-
sistent with our earlier work, that were overcomewith CQ treatment
(Fig. 1d) (ZnT3 KO to ZnT3 KO + CQ, p = 0.007). To further explore
the effect of the ablation of ZnT3 on cognition, we examined baseline
long-term potentiation (LTP) in young and aged mice to determine
whether gross behavioural abnormalities also translated to molecu-
lar surrogates of learning and memory such as LTP. Consistent with
the behavioural studies, young ZnT3 KO animals were indistinguish-
able from their wild-type counterparts (Figs. 1e, g), and the aged an-
imals showed a pronounced impairment in their induction of LTP
(Figs. 1e, h) (−56%, p b 0.0001). This deficit was partially prevented
by the addition of Zn (+26%, p b 0.01) and completely abrogated by
the addition of CQ:zinc (+50%. p b 0.0001) (Figs. 1f, i). There
remained a significant difference between WT and ZnT3 KO + zinc
(p b 0.01), but no difference between WT and ZnT3 KO + CQ:zinc.
There was also a significant difference between ZnT3 KO + zinc
and ZnT3 KO + CQ:zinc (p b 0.01). These data support the notion
that the loss of synaptic zinc results in a cognitive impairment
that can be restored through the use of metal chaperones. (See
Fig. 2.)
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Fig. 2. Clioquinol increases zinc levels in the hippocampal formation. Synchrotron analysis of hip
pared toWT animals. This deficit was partly overcomewith CQ treatment, as shown in the XRF
the bottom coloured panel, which are sample XRF images showing zinc (red), copper (green) a
show the quantitation of the XRF data, which has been plotted as (1) zinc levels across the wh
panels) and (3) the enrichment of zinc (PoDG vs the entire dentate gyrus). These data reveal a
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Clioquinol restores levels of key proteins in ZnT3 KO mice

We have previously reported that aged ZnT3 KO mice have deficits
in key proteins related to synaptic plasticity, as also shown in Table 1
(Adlard et al., 2010). We report here that 6 weeks of CQ treatment,
which lacks any nootropic effects in normal mice, fully restored cogni-
tive function in aged ZnT3 KO mice concomitant with a significant res-
toration of key neurochemical deficits (Table 1). Proteins that were
changed with CQ treatment include the following: presynaptic—SNAP-
25 (+45%, p b 0.001), synaptophysin (+68%, p b 0.05); postsynaptic—
spinophilin (+36%, p b 0.05), PSD-95 (+19%, p b 0.05); cell support—
pro-BDNF (+15%, p b 0.05), DCX (+32%, p b 0.001); glutamate
receptors—AMPAR (+26%, p b 0.01), NMDAR2a (+43%, p b 0.05)
and NMDAR2b (+94%, p b 0.001). With the exception of NMDAR2b,
in all cases where there were protein deficits in the aged ZnT3 KO
(compared to age-matchedWT), CQ treatment significantly elevated
these markers to be more closely aligned with that seen in age-
matched WTs. In the case of NMDAR2b, however, there was a signif-
icant elevation/“over-shoot” above baseline in hippocampal protein
levels, which is not inconsistent with the observed improvement in
cognition.
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pocampal slices revealed that ZnT3 KOmice had a significant reduction in zinc levels com-
heatmap for zinc concentration in themiddle coloured panel. This is also demonstrated in
nd iron (blue) distribution within the various treatment groups. The lower three box plots
ole scan area, (2) zinc levels within the region of interest (outlined in the XRF Zn coloured
significant increase in zinc within the dentate gyrus. *p b 0.05.
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t1:1 Table 1
t1:2 Clioquinol restores biochemical parameters of learning and memory in ZnT3 KO mice.
t1:3 Values shown are mean ± SEM Western blot densities normalised to 100% of age-
t1:4 matched WT means from hippocampal homogenates prepared from 6-month-old mice.

t1:5 ZnT3 KO ZnT3 KO + CQ

t1:6 Presynaptic
t1:7 SNAP-25 53.7 ± 3.3** 99 ± 8.8###

t1:8 Synaptotagmin I 123 ± 12.5 128 ± 12.9
t1:9 Synaptophysin 142.4 ± 18* 210 ± 14.5*** #

t1:10 Postsynaptic
t1:11 Spinophilin 114 ± 7.9 150 ± 14.1** #

t1:12 PSD-95 62.7 ± 5.7** 81 ± 3.8* #

t1:13 Cell support
t1:14 TrkB 78 ± 4.8** 87 ± 8.4
t1:15 pro-BDNF 70.8 ± 2.8* 85 ± 4#

t1:16 BDNF 86.7 ± 4.8 96 ± 6.7
t1:17 DCX 69 ± 4.5*** 101 ± 7.5###

t1:18 Glutamate receptors
t1:19 AMPAR 66 ± 6.5** 92 ± 6.9##

t1:20 NMDAR1 83.2 ± 13 98.8 ± 13
t1:21 NMDAR2a 36.3 ± 6*** 79 ± 14.7#

t1:22 NMDAR2b 50.9 ± 9.8* 144 ± 15.3###

t1:23 *Significantly different to age-matchedWT.
t1:24 #For CQ-treated animals, significantly different to age-matched ZnT3 KO.
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Clioquinol elevates hippocampal zinc levels in ZnT3 KO mice

Wehave recently provided evidence for our proposedmechanism of
action of metal chaperones, which involves the maintenance of metal
ion homeostasis and subsequent downstream effects on metal-
dependent proteins and signalling pathways (Adlard et al., 2008,
2014; Crouch et al., 2011). To assess the effect of CQ on metal levels in
this study, we examined hippocampal zinc levels using both ICPMS
and synchrotron X-Ray Fluorescence Microscopy. The age-related re-
duction in bulk hippocampal zinc levels in the ZnT3 KO mice (−33%)
was partially restored (+8%) by CQ treatment and was more conspicu-
ous when normalised against hippocampal copper levels (ZnT3KO,
2.55 ± 0.09; ZnT3 KO+ CQ, 3.04 ± 0.2, +19%, p = 0.03). Synchrotron
analysis was then performed in a sub-region of the hippocampus.With-
in the limited area of tissue able to be scanned for the study (the dentate
gyrus), we observed a small but significant enrichment of Zn in the CQ
treatment group (+11%, p b 0.05). While larger studies are required
to assess more global changes, it is apparent from both this and our
previous study (Adlard et al., 2014) that acute metal chaperone treat-
ment results in a redistribution of Zn within the metal-deficient
hippocampus.
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We discovered that ZnT3 KO mice recapitulate key synaptic and
memory deficits of aging and Alzheimer's disease. These findings sup-
port a critical role for zinc signalling in the maintenance of normal
cognition. In addition, it prompted the hypothesis that therapeutic
strategies that target zinc ion dyshomeostasis may be efficacious in
preventing age and disease-related deficits in cognition. To this end,
metal chaperones (that maintain metal ion homeostasis) such as CQ
and PBT2 (Prana Biotechnology) have been shown to result in the
rapid recovery of cognitive performance in both APP Tg mice (Adlard
et al., 2008) and normal aged wild-type mice (Adlard et al., 2014) and
may also have therapeutic benefit in AD (Faux et al., 2010; Lannfelt
et al., 2008; Ritchie et al., 2003). Thus, if the mechanism of action of
metal chaperones was to directly modulate key plasticity-related pro-
teins at the synapse, it would be anticipated that they would prevent
the synaptic and cognitive deficits that characterise the ZnT3 KO
model. Indeed, in this study, we have demonstrated that short-term
CQ treatment of ZnT3 KO mice restores cognition, elevates zinc levels
in the hippocampus and results in a concomitant restoration in levels
of key proteins involved in learning/ memory and synaptic plasticity.
Please cite this article as: Adlard, P.A., et al., Metal chaperones prevent zinc
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We have previously reported that ZnT3 KO mice develop an age-
dependent cognitive phenotype that is concomitant with the modula-
tion of a suite of pre- and postsynaptic proteins involved in learning
and memory (Adlard et al., 2010). In this study, we hypothesised
that correcting these deficits would require overcoming the zinc-
impermeability of the blood–brain barrier. We reasoned that CQ might
present zinc to postsynaptic targets, leading to events such as TrkB
activation and pro-BDNF conversion, since it is a metal chaperone that
enters the brain, restores cognition in amyloid protein precursor trans-
genic mice within days of treatment (Adlard et al., 2008) and modestly
raises brain zinc in that AD model (Adlard et al., 2008; Cherny et al.,
2001). Indeed, 6 weeks of CQ treatment fully restored cognitive
function (both learning and recall in the Morris water maze) in the
6-month-old ZnT3 KO mice to levels equivalent to WT animals. To
further profile the behavioural deficits in these mice, we conducted
a Y-maze. The performance of the young ZnT3 KO mice was indistin-
guishable from their WT counterparts, and CQ had no effect in these
animals, consistent with our observations in the water maze. In con-
trast, and also consistent with the water maze data, the aged ZnT3
KO mice had a significant deficit in the Y-maze that was completely
prevented by CQ treatment. These data argue that zinc deficits at
the glutamatergic synapse, which may occur as a function of age or
disease, are sufficient to cause cognitive impairment. Furthermore,
metal chaperones, that are proposed to restore metal ion homeosta-
sis, are an effective therapeutic to prevent the cognitive decline. To
address this further we examined an in vitro electrophysiological
surrogate of cognition in the intact animal, LTP in hippocampal slices.
These data demonstrate that the ZnT3 KO mice display an age-
dependent phenotype, such that young animals exhibit normal LTP
while aged mice have a significant impairment compared to WT con-
trols, consistent with the findings from the water maze and Y-maze. To
determinewhether passive zinc supplementationwas sufficient to over-
come these deficits, as compared to the use of metal chaperones, we in-
cubated hippocampal slices with either zinc or CQ + zinc. These data
demonstrate that zinc alone partially restored LTP, whereas CQ + zinc
fully restored LTP in the ZnT3 KO slices. The precisemechanismunderly-
ing the CQ-mediated restoration of LTP is continuing to be explored. In
whole animal studies, it has yet to be determined whether CQ is
metallated when it enters the brain, but clearly these metal chaperones
require the presence of zinc in order to have biological effect (Adlard
et al., 2011; Crouch et al., 2011). Similarly, we also recently demonstrat-
ed that CQ and zinc alone were insufficient to rescue the phenotype
present in a Zip4 intestinal KO model of acrodermatitis enteropathica,
but the combination was highly effective (Geiser et al., 2013).

In the present study, it is clear, therefore, that CQ has a positive long-
term effect on learning and memory in the ZnT3 KO model. Other re-
ports have suggested, however, that CQ can negatively impact upon
cognition. Superficially, this seems at odds with the current work, how-
ever it is consistent with the over-arching hypothesis that zinc homeo-
stasis is critical to normal cognition. Specifically, Takeda et al. (2010,
2011) utilised either CQ or CQ + Zn injections in young (6-week-old)
rats to demonstrate that the acute modulation of hippocampal zinc
(resulting in either a deficit or an excess of hippocampal Zn respectively
in their model) was sufficient to impair memory. These studies that
utilised normal unimpaired young animals clearly present a different
model to the one utilised in the present study. The biological benefits
of CQ are therefore presumed to only be evidenced under conditions
where there is an existing alteration in zinc homeostasis and will likely
bemodulated by a variety of factors such as treatment length and avail-
ability of endogenous Zn.

The cognitive improvements observed in ZnT3 KOmice treatedwith
CQ were concomitant with a significant restoration of key neurochemi-
cal deficits in these animals, including elevations in various pre- and
postsynaptic proteins and glutamate receptors. These alterations sug-
gest an improved brain milieu, perhaps resulting in improved neuronal
health (as evidenced by elevated neurotrophic support), and perhaps
-mediated cognitive decline, Neurobiol. Dis. (2014), http://dx.doi.org/
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also an increase in neuronal number (as evidenced by elevated
synaptophysin (surrogate marker for synapses), spinophilin (surrogate
marker for dendritic spines) and doublecortin (surrogatemarker for im-
mature neurons)). These changes could cumulatively contribute to the
increased performance on various behavioural tasks. However, one
standout neurochemical difference was a rebounding elevation in
NMDAR2b protein levels in the CQ-treated mice. This is a phenomenon
that was also observed in PBT2-treated aged wild-type mice (Adlard
et al., 2014), where similar improvements in learning and memory
were also observed. The genetic over-expression of NMDAR2b has
previously been shown to result in enhanced learning andmemory per-
formance in various rodent behavioural tasks (Tang et al., 1999), sug-
gesting that a primary mediator of the cognitive benefit derived from
metal chaperone treatmentmay be related to a direct effect on synaptic
glutamate receptors, particularly NMDAR2b. Given how closely these
data align to our recent publication with PBT2 (Adlard et al., 2014),
and also given the known metal chaperone effect of CQ (Adlard et al.,
2008), we examined brain zinc content as a potential upstreammedia-
tor of the neurochemical alterations that may underlie the improved
learning and memory. Consistent with our hypothesis that 8-hydroxy
quinolones such as CQ function to restore metal ion homeostasis, we
observed a small but significant increase in hippocampal zinc levels fol-
lowing CQ treatment.While these data are convincing, there are several
important caveats around their interpretation. First, the ICPMS analysis
is performed in bulk extracts of the hippocampus—so there is no region-
al specificity to the zinc increase observed using this methodology. In
contrast, with the synchrotron analysis where we were able to achieve
spatial localisation of zinc levels, we encountered technical difficulties
that meant we could only image the dentate (this region, particularly
the polymorph layer/hilus, is a zinc-rich area where a variety of cell
types are found, including glutamatergic mossy cells that have signifi-
cant dendritic arborisation; granule cell axons innervate and synapse
within this area as well, and mossy fiber axons also have a set of collat-
erals that innervate this part of the brain). Clearly, the LTP measure-
ments and also the behavioural outputs are more dependent upon
other areas of the hippocampus (such as CA1). As we cannot assume
that the increase in zinc levels in the dentate will translate to a parallel
increase in zinc in other regions of the hippocampus, then we cannot
definitively draw the conclusion that there was a CQ-induced increase
in zinc in an appropriate region of the brain thatmediated the biochem-
ical and behavioural effects we observed. Furthermore, it is not clear if
the elevated zinc reflects “free” ionic zinc that is able to bind and mod-
ulate receptor activity, or if it is instead sequestered by various trans-
porters (such as metallothioneins, which, for example, have a much
greater affinity for zinc than CQ). Thus, more detailed imaging studies
examining free ionic zinc, togetherwith the localisation of the increased
zinc would strengthen our conclusions. In this latter regard, it would be
instructive to knowwhether Zn is still beingpackaged into synaptic ves-
icles in the absence of ZnT3. Could CQbe acting as a surrogate zinc trans-
porter? One possibility is that other transporters such as vGlut1 may
compensate for the lack of ZnT3 to facilitate zinc-loading of the synaptic
vesicles.We recently postulated this as a potentialmechanism of synap-
tic zinc increase following metal chaperone treatment (Adlard et al.,
2014). These studies are an ongoing direction of our lab.

However, while it is important to acknowledge these caveats, these
data are consistent with our previous reports on the metal chaperone
activity of this class of compound, and also with the known role of
zinc in learning and memory, where among other things it functions
as a neuronal messenger and a modulator of synaptic transmission
(Paoletti et al., 2009; Smart et al., 2004). The weight of evidence, there-
fore, lies in favour of CQ mediating its apparent benefits via a modula-
tion of hippocampal zinc levels within this model. Given the apparent
small magnitude of this change, however, one intriguing avenue of in-
vestigation moving forward is to try and understand whether there is
a minimum “zinc threshold” that may predict the biochemical and
behavioural effects observed in this, and previous, studies.
Please cite this article as: Adlard, P.A., et al., Metal chaperones prevent zinc
10.1016/j.nbd.2014.12.012
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Taken together these data demonstrate that under conditions of
cellularmetal deficiencywithin thebrain, CQ facilitates a partial restora-
tion of zinc homeostasis and also restores key zinc-dependent proteins
and signalling pathways that cumulatively effect cognitive perfor-
mance. These data support the use of metal chaperones for the preven-
tion of metal-dependent cognitive decline, which may occur as a
function of both age and disease.
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