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The dynamic properties of mitochondria (mitochondrial fission, fusion, transport biogenesis and degradation) are
critical for neuronal function and health, and dysregulation of mitochondrial dynamics has been increasingly linked
to the pathogenesis of Parkinson's disease (PD). Mitochondrial dynamics and bioenergetics are interconnected, and
this is of particular importance in neurons, which have a unique bioenergetic profile due to their energetic depen-
dence on mitochondria and specialized, compartmentalized energetic needs. In this review, we summarize the in-
terplay of mitochondrial dynamics and bioenergetics, and its particular relevance for neurodegeneration. Evidence
linking dysregulation of mitochondrial dynamics to PD is presented from both toxin and genetic models, including
newly emerging details of how PD-relevant genes PTEN-induced kinase 1 (PINK1) and Parkin regulate fission,
fusion,mitophagy and transport. Finally,we discuss howneuronal bioenergeticsmay impact PD-relevant regulation
of mitochondrial dynamics, and possible implications for understanding the role of mitochondrial dynamics in PD.
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Introduction

Parkinson's disease (PD) is the secondmost common neurodegener-
ative disorder, but the etiology is still unknown. Only a fraction of all
cases (~10%) are suspected to be associated with known heritable ge-
netic mutations, with most cases classified as idiopathic. Pathologically,
PD is classically characterized by degeneration of the pigmented dopa-
minergic neurons of the substantia nigra, the loss ofwhich is responsible
for the PD-associated movement disorders, in addition to degeneration
of other neuronal populations. Hallmarks of PD-affected neurons include
evidence of excessive oxidative stress, protein damage, and, most im-
portantly, mitochondrial dysfunction.

For over three decades, research into PD has recognized the key in-
volvement of dysfunctional mitochondria in disease pathophysiology
(for review, see Beal, 2007; Lin andBeal, 2006; Schapira, 2006). Evidence
that mitochondrial bioenergetic dysfunction is an important pathogenic
component in PD arises, for example, from studies linking dysfunction of
mitochondrial electron transport chain (ETC) complex I to PD (Blandini
et al., 1998; Haas et al., 1995; Krige et al., 1992; Parker et al., 1989;
Schapira et al., 1989), as well as from findings that many of the genes
whose mutations cause familial PD are involved in mitochondrial func-
tion and homeostasis (Greenamyre and Hastings, 2004; Martin et al.,
2011). More recently, growing evidence suggests that defects in regula-
tion of the dynamic properties of mitochondria — including fission,
fusion, transport, biogenesis, and degradation through autophagy
(mitophagy)—maybe involved in PDpathogenesis. Regulation ofmito-
chondrial dynamics is critical for maintaining properly functioning mi-
tochondria, protecting mitochondrial DNA (mtDNA), and distributing
mitochondria to synapses to allow proper synaptic function (Dickey
and Strack, 2011; Gegg et al., 2009; Li et al., 2004; Li et al., 2008;
MacAskill et al., 2009; Mironov, 2009; Nakada et al., 2001; Ono et al.,
2001; Parone et al., 2008; Stowers et al., 2002; Westermann, 2012),
and dysregulation of these properties has been associated with both
toxin and genetic models of PD.

As contemporary research elucidates the role of mitochondrial ho-
meostasis in neuron health and neurodegeneration, it is clear that
bioenergetic status is also intertwined with mitochondrial dynamics.
Interaction of bioenergetics with mitochondrial dynamics likely has
particular relevance to neurons, since neurons are unique in their bio-
energetic dependence on mitochondrial oxidative phosphorylation
(OxPhos) for ATP production, rather than glycolysis, and their exit
from the cell cycle. Thus, mitochondrial bioenergetic–dynamic inter-
actions are likely particularly important in understanding the selec-
tive neuropathogenesis in PD. In this review, we will discuss the
relevance and importance of mitochondrial dynamics to neuronal
health, and their interactions with bioenergetics. We will provide an
overview of what is known about mitochondrial dynamics with re-
gard to PD, focusing on a neuronal bioenergetics perspective, and
will assess some of the key questions remaining within this field.

A brief review of mitochondrial dynamics

As noted above, the dynamic properties maintaining mitochondri-
al homeostasis include mitochondrial fission, fusion, biogenesis, deg-
radation through mitophagy, and transport, henceforth collectively
referred to as “mitochondrial dynamics”. These mitochondrial pro-
cesses interact to maintain ETC function and electrical connectivity
of mitochondria; prevent build-up of damaged proteins; protect
mtDNA integrity; control mitochondrial turnover; and regulate cell
death mechanisms (Bereiter-Hahn and Jendrach, 2010). In addition,
in neurons, fission and fusion are critical for proper synapse forma-
tion and function (Li et al., 2004, 2008). While a large body of the
work on mitochondrial dynamics and the machinery involved was
originally carried out in yeast, many of the involved proteins have ho-
mologues in mammalian cells, and most, if not all, dynamic processes
are evolutionarily conserved (Okamoto and Shaw, 2005; Palmer et al.,
2011b). The machinery and specific mechanisms involved in
mitochondrial fission, fusion, transport, and mitophagy have been
reviewed fully elsewhere (Detmer and Chan, 2007; Palmer et al.,
2011b; Wang and Klionsky, 2011) and will be reviewed only briefly
here.

Fission of mitochondria, requiring coordinated division of the
inner and outer mitochondrial membranes, is in part mediated in
mammalian cells via the cytosolic GTPase Dynamin-related protein
1 (Drp1) (Palmer et al., 2011b). In yeast, the Drp1 homologue,
Dnm1, translocates to the outer mitochondrial membrane (OMM)
via recruitment by the outer membrane protein Fis1 (Mozdy et al.,
2000). However, the role of Fis1 in mammalian cells is still not fully
elucidated. While mammalian Fis1 has been shown to interact with
Drp1, some reports suggest that knockdown of Fis1 still allows for re-
cruitment of Drp1 and subsequent fission (Lee et al., 2004; Wasiak
et al., 2007; Yoon et al., 2003). Recently, other OMM proteins have
been identified as possible recruiters of Drp1, including mitochondri-
al fission factor (Mff) and mitochondrial dynamics proteins 49 and
51 kDa (MiD49, MiD51) (Otera et al., 2010; Palmer et al., 2011a).
Other recently described proteins have been suggested to mediate fis-
sion, including the inner mitochondrial membrane (IMM) protein
MTP18, whose ability to promote fission is dependent on Drp1 ex-
pression; and the OMM protein ganglioside-induced differentiation-
associated protein1 (GDAP1) (Niemann et al., 2005; Tondera et al.,
2005).

Mediating complete fusion of mitochondria requires coordination
between proteins on both the IMM and OMM. Outer membrane fusion
is mediated by the dynamin-like GTPasesmitofusin-1 and ‐2 (Mfn1 and
Mfn2) (Cerveny et al., 2007). Fusion of the innermembrane ismediated
by optic atrophy protein (Opa1) (Griffin et al., 2006). Fusion can occur
either as a complete event (with a prolonged length of time preceding
an associated fission event) or as a transient event (followed almost
instantaneously by fission), termed “kiss-and-run” (Liu et al., 2009).

Transport of mitochondria within a cell is also of particular impor-
tance in neurons, as it is necessary for synaptic formation and func-
tion, via proper distribution of mitochondria throughout neurites.
Anterograde axonal transport of mitochondria along microtubules is
mediated by association of mitochondria with kinesin family motor
proteins KIF1Bα and KIF5, while retrograde transport of mitochondria
ismediated by interactionwith cytosolic dynein (reviewed inHirokawa
et al., 2010; Hollenbeck and Saxton, 2005). Several facilitator proteins
have also been identified for anterograde transport, including the pro-
teins Miro andMilton/TRAK1|2/OIP196|98/GRIF-1 (henceforth referred
to as Milton) (Cai et al., 2011; Guo et al., 2005; Stowers et al., 2002).
These proteins form an adapter complex between KIF5 and the mito-
chondrion (Cai et al., 2011; Hirokawa et al., 2010). Via this complex,
Miro regulates mitochondrial transport in axons in both a calcium-
dependent manner and a Miro-abundance-dependent manner (Liu
et al., 2012; MacAskill et al., 2009; Wang and Schwarz, 2009; Wang
et al., 2011c).
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Damaged or dysfunctional mitochondria, specifically those unable
to undergo fusion or repair themselves, undergo macroautophagic
degradation, called mitophagy, in which they are engulfed by an
autophagosome and ultimately digested via the autophagy-lysosome
pathway (Twig and Shirihai, 2011; Twig et al., 2008a; Wang and
Klionsky, 2011). Mitophagy has been well characterized in yeast, with
the autophagy-related gene 32 protein, Atg32, serving as the mitochon-
drial receptor for autophagy, which then interacts with Atg8 and
Atg11 to recruit mitochondria to the autophagic vacuole. The mamma-
lian counterpart of Atg8 is the autophagic membrane protein LC3
(Wang and Klionsky, 2011). Though the mammalian homologue of
Atg32 has yet to be identified, recent studies show that the mitochon-
drial outer membrane protein Nix can interact with LC3 and mediate
mitophagy (Kanki, 2010).

In contrast to the above, however, the specific mechanisms responsi-
ble for the generation of new mitochondria, termed biogenesis, are not
well characterized. Markers of increased or ongoing biogenesis can be
examined, however, including generation of newmtDNA, increased mi-
tochondrial biomass, and expression of proteins involved in bioenergetic
regulation, such as components of the ETC (Amiri andHollenbeck, 2008;
Arnold et al., 2011; Oliveira, 2011). Biogenesis has also been inferred
from levels of the transcriptional co-activator PGC-1α, which regulates
expression of many genes involved in metabolism and mitochondrial
bioenergetics (Arany et al., 2005; Fan et al., 2004; Handschin et al.,
2003; Lin et al., 2005). Biogenesis has been less well studied directly in
neurons, but there is evidence of biogenesis occurring both in cell bodies
and in axons (Amiri and Hollenbeck, 2008).

The interplay of mitochondrial dynamics and bioenergetic status:
particular relevance to neurons

Thevariance in anddynamic nature ofmitochondrial size, shape, and
position has been observed for nearly 100 years (Lewis and Lewis,
1914). The different morphologies and ultrastructural profiles of mito-
chondria have longbeen known to correlate to thediffering bioenergetic
demands of the tissues they occupy, and neuronalmitochondria are dis-
tinct from those of other tissues in morphology, interconnectivity, and
location (reviewed in Benard and Rossignol, 2008; Kuznetsov et al.,
2009; Mironov, 2009). Thus, it would not be surprising that regulation
of fission, fusion, biogenesis and degradation would also differ among
tissues. Only recently have advances in organelle labeling and live-cell
imaging allowed for the detailed characterization of phenomena such
as fission, fusion, degradation, biogenesis, and interactions with other
cellular organelles, such as ER, among different cell types (Friedman
et al., 2011; Mitra and Lippincott-Schwartz, 2010).

Bioenergetics and mitochondrial dynamics are intertwined

Mitochondrial networks are constantly undergoing remodeling via
cycles of fission and fusion (Westermann, 2012). Bioenergetic state, in
part, dictates and even drives the fission–fusion balance ofmitochondri-
al dynamics (Twig et al., 2008b). This can be observed in immortalized
cell lines, where transition from a glycolytic to OxPhos-dependent
state elicits dramatic changes in mitochondrial network morphology
when compared to their glycolytic counterparts (Rossignol et al.,
2004). Conversely, multiple studies have demonstrated that defects in
mitochondrial respiration can result in fragmented mitochondria and
truncated networks (reviewed in Knott et al., 2008; Nakamura and
Lipton, 2010). In turn, alterations in mitochondrial dynamics can also
alter the bioenergetic state of both individual mitochondria and of the
cell. Genetic mutation and/or inhibition of fission and fusion machinery
result in dysfunctional mitochondrial networks, morphology, respira-
tion, and homeostasis (Alexander et al., 2000; Arnoult et al., 2005;
Barsoum et al., 2006; Griparic et al., 2004; Palau et al., 2009; Van
Bergen et al., 2011; Zuchner et al., 2004). Thus, the cell and itsmitochon-
dria depend on an intricate balance of bioenergetics and mitochondrial
dynamics. Below are some examples of how fission, fusion, and biogen-
esis can influence, and be influenced by, mitochondrial and cellular bio-
energetic status.

Fusion and mitochondrial bioenergetic status

Mitochondrial fusion has been shown to require an intact mito-
chondrial membrane potential (Legros et al., 2002; Mattenberger et
al., 2003). Inability to fuse following depolarization or damagemay re-
sult from damage-mediated regulation of fusion-mediating proteins.
OPA1 is cleaved, or otherwise reduced in abundance, following mito-
chondrial damage (Duvezin-Caubet et al., 2006; Ishihara et al., 2006;
Song et al., 2007), and both Mfn1 and 2 are targets for ubiquitination
and proteasomal degradation following mitochondrial depolarization
by proton ionophores (Gegg et al., 2010; Glauser et al., 2011; Rakovic
et al., 2011; Tanaka et al., 2010). It is also possible that ultrastructural
conformational changes within mitochondria, that alter interactions
of inner and outer membranes following depolarization (Benard and
Rossignol, 2008; Biermans et al., 1990; Knoll and Brdiczka, 1983)
affect the proper coordination of fusion machinery.

Fission and mitochondrial bioenergetic status

Fission, by comparison, appears to progress regardless of mitochon-
drial membrane potential, but is upregulated following mitochondrial
damage. Mitochondrial insults, including depolarization, oxidation or
nitrosylation, and ETC inhibition, have been shown to trigger rapid,
Drp1-dependent mitochondrial fragmentation (reviewed in Nakamura
and Lipton, 2011; Sauvanet et al., 2010). Unregulated fission contributes
to the population of depolarizedmitochondria (Twig et al., 2008a), with
mitochondrial fragmentation a proposed precursor to apoptosis and cell
death, particularly in neurodegeneration (Knott and Bossy-Wetzel,
2008; Knott et al., 2008). Somewhat unexpectedly, both inhibition and
enhancement of fission, through alterations in levels of fission proteins,
have been reported to reduce mitochondrial membrane potential
(Dickey and Strack, 2011; Parone et al., 2008). These types of bioener-
getic changes may have particular importance in compartmentalized
neurons, where mitochondrial membrane potential fluctuations were
shown to be the downstream effectors of fission/fusion-mediated regu-
lation of synaptogenesis and dendrite complexity (Dickey and Strack,
2011).

Fusion–fission and mitochondrial homeostasis

In addition, the fusion–fission cycle appears to be involved in reg-
ulating degradation and repair of bioenergetically-impaired mito-
chondria (Liu et al., 2009; Twig et al., 2008a). Fission events that
follow transient fusion events were reported to result in one polar-
ized and one relatively depolarized daughter mitochondrion (Twig
et al., 2008a). Often, the more-depolarized mitochondrion was des-
tined for one of two fates: either fusion with a polarized mitochondri-
on or mitophagic degradation (Twig et al., 2008a). Fusion can also
rescue mitochondria from accumulated mtDNA mutations and dam-
aged proteins, and can protect against accumulation of depolarized
mitochondria (Nakada et al., 2001; Ono et al., 2001; Twig and
Shirihai, 2011). Thus, the fusion–fission cycle serves to maintain a
healthymitochondrial population and preserve bioenergetic function,
where fusion can serve as a “rescue” pathway (Twig and Shirihai,
2011).

Biogenesis and degradation in bioenergetic homeostasis

Bioenergetic changes are also closely interconnected to mito-
chondrial biogenesis and degradation. Energy deprivation, resulting
in decreased ATP levels coupled with an increased AMP/ATP
ratio, activates the metabolic sensor AMP-activated protein kinase
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(AMPK). AMPK then phosphorylates downstream targets to activate
energy-conserving pathways (reviewed in Weisova et al., 2011).
Recently, it was reported that starvation-induced mitophagy was
dependent on activation of AMPK (Egan et al., 2011). On the other
hand, AMPK activation is also necessary for mitochondrial biogene-
sis to occur after energy deprivation (Bergeron et al., 2001; Hardie,
2004; Hardie and Sakamoto, 2006). Thus, bioenergetic changes may
link coordination between mitochondrial dynamic functions. Al-
though activation of AMPK is known to be protective in models of
neurotoxicity (Weisova et al., 2011), the role of this pathway in mi-
tochondrial dynamics in neurons has not been elucidated.

The bioenergetic profile of neurons and neuronal dependence on
mitochondrial dynamics: implications for neurodegeneration

The goal of maintaining a functional population of healthy mito-
chondria becomes more complicated in neurons, largely owing to
their cellular morphology and bioenergetic demands. In the cellular
world, neurons are unique, possessing a characteristic morphology
with extensive neuritic projections, existing in a post-mitotic state,
and depending on mitochondrial OxPhos respiration as their primary
source of energy production (reviewed in Attwell and Laughlin, 2001;
Mironov, 2009; Rolfe and Brown, 1997). 20% of the body's total oxida-
tive metabolism is carried out by the central nervous system, with
neurons generating as much as 95% of their ATP exclusively from
mitochondrial OxPhos (reviewed in Attwell and Laughlin, 2001;
Erecinska and Silver, 1994; Mironov, 2009; Rolfe and Brown, 1997).
Failure to maintain this bioenergetic status is suggested to play a pri-
mary role in neuronal death and disease (Beal, 2007; Lin and Beal,
2006).

Preserving health in this existence is dependent upon the proper
maintenance of a healthy population and distribution of functional
mitochondria. Neurons have both a highly interconnected network
located in the soma, and a series of separated, individual mitochon-
dria that travel up and down the narrow, extensive axons and
dendrites. This neuritic mitochondrial population is tasked with pro-
viding energy for synaptic development and function (reviewed in Ly
and Verstreken, 2006; Mironov, 2009; Zinsmaier et al., 2009), and for
cellular processes far removed from the cell body. Further, multiple
studies have demonstrated that dysregulation of transport, fission,
or fusion greatly alters synapse formation and function (Li et al.,
2004; Li et al., 2008; Verstreken et al., 2005). Thus, the neuron's
own morphology and function dictate an important role for mito-
chondrial distribution in maintaining bioenergetic status in all parts
of the cell, which requires a delicate balance of mitochondrial
dynamics.

Not surprisingly, then, dysfunction of mitochondrial dynamics has
been directly linked to neurodegeneration. Loss-of-function muta-
tions in Mfn2 are associated with Charcot–Marie–Tooth neuropathy
type 2A (CMT2a) (Zuchner et al., 2004), and OPA1 fusion protein mu-
tations that disable the GTPase domain cause autosomal dominant
optic atrophy (ADOA) (Alexander et al., 2000). Recent interest has ex-
panded beyond peripheral neuropathies to investigating the potential
role of mitochondrial dynamics dysfunction in neurodegenerative
diseases associated with aging (Chen and Chan, 2009; Han et al.,
2011; Knott and Bossy-Wetzel, 2008). The strongest evidence of a
role for dysregulation of mitochondrial dynamics is in Parkinson's
disease, where evidence for the key role of dysfunctional mitochon-
drial dynamics is rapidly growing (Van Laar and Berman, 2009).

Evidence of a role for mitochondrial dynamics in PD pathogenesis

As previously mentioned, mitochondrial dysfunction has long
been linked to the pathophysiology of PD, but it is more recently
that dysregulation of mitochondrial dynamics has been implicated
in the disease. Although the specific roles that alterations in
mitochondrial dynamics play in PD pathophysiology remain un-
known, both toxin models of PD and genetic links are providing
clues to the interplay of mitochondrial function, mitochondrial dy-
namics, and PD pathogenesis.

PD-relevant environmental toxins and mitochondrial dynamics

Mitochondrial ETC dysfunction, in particular, complex I inhibition,
has long been a focus of PD research, owing largely to the discovery of
systemic mitochondrial respiration complex dysfunction in PD patients
(Blandini et al., 1998; Haas et al., 1995; Krige et al., 1992; Parker et al.,
1989; Schapira et al., 1989). Environmentally-encountered toxins,
such as the meperidine analog MPTP (found as a contaminant in syn-
thetic heroin) and the pesticide rotenone, induce respiration inhibition
at complex I of the ETC, andmimic the pathology of PD in in vivo animal
models (Martinez and Greenamyre, 2012). These compounds have also
been found to alter mitochondrial dynamics in vitro.

In vitro exposure to the toxic metabolite of MPTP, MPP+, causes
DRP1-dependent mitochondrial fragmentation in neuronally-derived
SH-SY5Y cells and primary rat dopaminergic neurons (Wang et al.,
2011d). Mitophagy was also increased in primary neurons following
MPP+ (Zhu et al., 2007). In neuronally-differentiated dopaminergic
PC12 cells and isolated squid axoplasm, MPP+ exposure results in
altered neuritic mitochondrial velocities, with reduced anterograde
transport, while increasing retrograde transport (Cartelli et al., 2010;
Morfini et al., 2007). Thus, MPTP toxicity is relevant to, and influences
several aspects of, mitochondrial dynamics preceding cell death.

Both acute and chronic exposures to rotenone affect not only ETC
function, but also mitochondrial dynamics. When applied acutely to
both non-neuronal and primary cortical neurons in culture, high concen-
trations of rotenone induce mitochondrial fission (Barsoum et al., 2006;
Plecita-Hlavata et al., 2008). In primary neurons, acute rotenone-induced
cell death was ameliorated by increasing fusion or inhibiting fission via
exogenous overexpression of Mfn1 or dominant-negative Drp1, respec-
tively (Barsoum et al., 2006). Subacute rotenone was reported to alter
mitochondrial transport dynamics in neurites of differentiated SH-SY5Y
cells (Borland et al., 2008). In addition, rotenone can alter microtubules
(Choi et al., 2011; Ren et al., 2009; Srivastava and Panda, 2007), and
this could potentially affect not only transport, but also fission/fusion,
since mitochondrial fission proteins interact with tubulin (Estela et al.,
2011).

Chronic, lower-dose, nonlethal rotenone in vitro treatment models,
which more closely mimic the in vivo model treatment paradigm
(Betarbet et al., 2000), have also been established in cultured cell lines
and primary cells (Arnold et al., 2011; Sherer et al., 2001; Sherer et al.,
2002). Chronic rotenone was found to alter mitochondrial calcium sig-
naling dynamics and basal mitochondrial membrane potential of
undifferentiated SH-SY5Y cells (Sherer et al., 2001). We developed a
chronic low-dose rotenone in vitro model using primary rat cortical
neurons and the dopaminergic PC6-3 cell line (Arnold et al., 2011).
Using techniques to directly observe fission and fusion in living cells,
we found evidence of early, likely compensatory, increases inmitochon-
drial fusion, followed by later increases in fission in neurons (Arnold et
al., 2011).We also found that inhibitingmitochondrial fission protected
against the loss of neurites in differentiated PC6-3 cells (Arnold et al.,
2011). The collective results of these studies suggest that mitochondrial
dynamics of fission, fusion, transport, and mitophagy are altered in re-
sponse to PD-related toxins such as rotenone, and also implicate fission
in an early pathological role in toxin-induced cell death in PD models.

Genetic models of PD and mitochondrial homeostasis

Many of the genes associated with familial forms of PD, including
α-synuclein, DJ-1, leucine-rich repeat kinase 2 (LRRK2), Parkin, and
PTEN-induced putative kinase 1 (PINK1), have been found to influence
mitochondrial energetic function in various pathways (Greenamyre
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and Hastings, 2004;Martin et al., 2011). These same PD genes have also
been linked tomaintenance ofmitochondrial dynamics, suggesting that
dysregulation of mitochondrial function and homeostasis may be a
common pathogenic mechanism in PD. Here we will discuss their
known impacts specifically on mitochondrial dynamics.

α-Synuclein
Mutations in the α-synuclein gene locus SNCA result in an auto-

somal dominant inheritance of parkinsonism (Kruger et al., 1998;
Polymeropoulos et al., 1997; Singleton et al., 2003; Zarranz et al.,
2004). Largely a cytosolic and presynaptic protein, the specific function
ofα-synuclein is notwell understood. Studies have found it can interact
with the mitochondria (Li et al., 2007; Nakamura et al., 2011), and that
α-synuclein can be imported into the mitochondria, where it can inter-
act with and inhibit Complex 1, potentially affectingmitochondrial bio-
energetic function and oxidative stress (Devi et al., 2008). α-Synuclein
expression can also influence mitochondrial susceptibility to ETC inhib-
itors, includingMPP+ and rotenone (Orth et al., 2003;Wu et al., 2009),
and transgenicmousemodels have demonstrated variousmitochondri-
al abnormalities, including increased oxidative damage tomitochondri-
al proteins and DNA, decreased ETC complex function, and increased
susceptibility to mitochondrial inhibitors (Martin et al., 2006; Poon
et al., 2005; Song et al., 2004). With regard to mitochondrial dynamics,
overexpression of α-synuclein was reported to inhibit mitochondrial
fusion, leading to fragmented mitochondria, whereas α-synuclein
knockdown led to elongated mitochondria (Kamp et al., 2010). Evi-
dence suggests that the α-synuclein-induced fragmentation occurs
from direct interaction of the protein with mitochondrial membranes
and is not dependent on fission protein Drp1 (Nakamura et al., 2011).
Further, the fragmentationpreceded a loss ofmitochondrial OxPhos func-
tion, suggesting that α-synuclein–mitochondrial interaction influences
mitochondrial dynamics prior to functional alterations (Nakamura et al.,
2011). Most notably, α-synuclein‐induced fragmentation was rescued
by overexpression of the wildtype forms of PD-related proteins PINK1,
Parkin, or DJ-1 (Kamp et al., 2010), linkingmultiple PD genes to common
mechanistic effects onmitochondrial dynamics. Lastly, overexpression of
the PD-linked A53T α-synuclein mutation was reported to increase
mitophagy both in primary neurons and DA neurons in vivo (Chinta et
al., 2010; Choubey et al., 2011), suggesting a need for increased mito-
chondrial turnover in association with the PD-linked mutant protein.

DJ-1
Mutations in the DJ-1 gene are associated with autosomal-recessive

parkinsonism (Bonifati et al., 2003). DJ-1 has been shown to be a
multifunctional protein with antioxidant, transcriptional-regulation,
and possibly peroxiredoxin-like activities (Andres-Mateos et al., 2007;
Blackinton et al., 2009a; Ramsey and Giasson, 2008). Typically a
cytosolic protein, oxidation of a cysteine at position 106 regulates trans-
location of DJ-1 to mitochondria, and is crucial to its functions within
mitochondria (Blackinton et al., 2009b; Canet-Aviles et al., 2004). In fi-
broblasts, DJ-1 mutant or knockout decreased mitochondrial mem-
brane potential and increased fragmentation of mitochondria
(Krebiehl et al., 2010), similar to recent findings in human neuroblasto-
ma cells (Wang et al., 2012a). In primary astrocytes, loss of DJ-1 reduced
mitochondrial motility, as well as mitochondrial fusion in cell bodies,
but not processes (Larsen et al., 2011). Knockdown also enhanced the
mitochondrial depolarization response to rotenone in astrocytes
(Larsen et al., 2011), and reduced the protective effect astrocytes exert
over rotenone-exposed neurons in culture (Mullett and Hinkle, 2009).
Loss of DJ-1 in cortical neurons caused shortened mitochondrial mor-
phology along with reduced fusion (Irrcher et al., 2010; Krebiehl et al.,
2010), and increased mitophagy (Thomas et al., 2011). Notably,
changes inmitochondrialmorphology after loss of DJ-1were prevented
by PD-related proteins PINK1 and Parkin (Irrcher et al., 2010), again
suggesting a common functional pathway.
Leucine-rich repeat kinase 2 (LRRK2)
Mutations in the LRRK2 gene, which cause an autosomal-dominant

form of parkinsonism, account for the largest fraction of heritable
forms of PD, and have also been associated with sporadic cases of PD
(Paisan-Ruiz et al., 2004; Tsika and Moore, 2012; Zimprich et al.,
2004). LRRK2 is a large, multi-domain protein kinase whose normal bi-
ological function is as yet unknown (Tsika and Moore, 2012). In mam-
malian brain and primary rat neurons, LRRK2 is found throughout the
cytoplasm, localized to variousmembrane structures and organelles, in-
cluding lysosomes, endosomes, endoplasmic reticulum, Golgi complex,
and the outer mitochondrial membrane (Alegre-Abarrategui et al.,
2009; Biskup et al., 2006; Dodson et al., 2012). Not surprisingly,
LRRK2 has been shown to modulate various organelle functions
throughout the neuron, including neurite morphology, autophagy,
and mitochondrial homeostasis, which have been thoroughly reviewed
elsewhere (Martin et al., 2011; Tsika and Moore, 2012). Here, we will
focus on several known effects of LRRK2 on mitochondrial function
and dynamics.

Primary fibroblasts from LRRK2-mutant PD patients exhibitmultiple
markers of mitochondrial dysfunction, including reduced membrane
potential, lower ATP levels, and increased length and interconnectivity
(Mortiboys et al., 2010). Ramonet et al. (2011) found that, in addition
to dopaminergic degeneration, aged transgenic mutant LRRK2 mice
exhibited increased numbers of damaged and soma-aggregated mito-
chondria, and evidence of increasedmitophagy, in cerebral cortex tissue
(Ramonet et al., 2011). Recently, overexpression ofWT and PD-relevant
mutant LRRK2 in SHSY5Y cells and primary rat cortical neurons was
similarly shown to decrease mitochondrial membrane potential and
ATP levels, while increasing ROS levels (Wang et al., 2012b). This
study also suggests that LRRK2 may directly modulate mitochondrial
fission and fusion rates, since overexpression of WT and mutant
LRRK2 led to increased mitochondrial fragmentation in both SH-SY5Y
cells and primary rat cortical neurons (Wang et al., 2012b). LRRK2
was found to reduce the rate ofmitochondrial fusion, while also directly
interacting with and enhancing mitochondrial recruitment of the fis-
sion protein Drp1 (Wang et al., 2012b). Notably, the detrimental effects
of LRRK2 and its mutants could be rescued by overexpression of
dominant-negative Drp1 or WT-Mfn2, suggesting that LRRK2 effects
mitochondrial function via fission/fusion pathways (Wang et al.,
2012b). Interestingly, the observed increased fragmentation is in con-
trast to the elongation observed in patient fibroblasts (Mortiboys et
al., 2010; Wang et al., 2012b). Thus, further study will be required to
elucidate the specific role of LRRK2 in regulating fission and fusion
rates in varying cell types. Together, these studies suggest that LRRK2
influences multiple aspects of mitochondrial homeostasis, including
respiration, transport, mitophagy, and fission–fusion dynamics.

PTEN-induced putative kinase 1 (PINK1) and Parkin
The strongest evidence linking PD-related genes to regulation of mi-

tochondrial dynamics andhomeostasis comes from studies of PINK1and
Parkin. Mutations in PINK1 and Parkin both cause autosomal-recessive
forms of PD (Kitada et al., 1998; Valente et al., 2004). PINK1, in contrast
to the other PD-related proteins, is a mitochondrially-targeted protein
with kinase activity, whereas Parkin encodes a largely cytosolic E3
ubiquitin ligase (Valente et al., 2004; Zhang et al., 2000). Both PINK1
and Parkin have been shown to regulatemitochondrial function andmi-
tochondrial dynamics. Parkinwas originally shown to associatewith the
mitochondrial membrane, and, when overexpressed, was shown to im-
prove mitochondrial function and ameliorate dysfunction in models of
mitochondrial stress (Darios et al., 2003; Jiang et al., 2004; Mouatt-
Prigent et al., 2004). Similarly, loss of PINK1 protein or function in
models negatively affects mitochondrial membrane potential, ETC com-
plexes I and IV, ATP production, calcium dynamics, morphology, mtDNA
levels, andmitophagy (Abramov et al., 2011; Clark et al., 2006; Dagda et
al., 2009; Exner et al., 2007; Gegg et al., 2009; Grunewald et al., 2009;
Morais et al., 2009; Park et al., 2006; Wang et al., 2011b).
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Both PINK1 and Parkin have also been suggested to upregulate mi-
tochondrial biogenesis (Gegg et al., 2009; Kuroda et al., 2006). For
Parkin, a potential mechanism for this upregulation was recently de-
scribed. Parkin was found to downregulate an upstream repressor of
PGC-1α, the transcriptional coactivator involved in upregulation of mi-
tochondrial biogenesis (Shin et al., 2011). Conditional knockout of
parkin in adult mice led to repression of PGC-1α (Shin et al., 2011).
However, a recent study found that fibroblasts from Parkin-associated
familial PD patients, representing a life-long loss of functional Parkin,
exhibited PGC-1α overexpression, though the protein's downstream
function was blocked (Pacelli et al., 2011). Thus, the role of Parkin in
regulating PGC-1α over a lifetime has not yet been fully elucidated.

Though independently recognized and studied for their impacts
on mitochondrial function, morphology, and biogenesis, studies with-
in the last decade have demonstrated that PINK1 and Parkin partici-
pate in a pathway together regulating mitochondrial fission, fusion,
degradation, and transport, lending further evidence for a central
role of mitochondrial dynamic dysfunction in PD (summarized in
Fig. 1). Work in Drosophila models first demonstrated that individual
fly lines expressing mutants of the proteins exhibited remarkably
similar mitochondrial pathology (Clark et al., 2006; Greene et al.,
2003; Park et al., 2006; Pesah et al., 2004). Genetic interaction studies
in Drosophila and mammalian cells have ultimately revealed a shared
pathway, in which mitochondrial PINK1 operates upstream of Parkin
regulatingmitochondrial morphology and function (Clark et al., 2006;
Deng et al., 2008; Exner et al., 2007; Narendra et al., 2010b; Park et al.,
2006, 2008; Poole et al., 2008; Vives-Bauza et al., 2010; Yu et al.,
2011). Below we discuss the involvement of PINK1–Parkin pathway
in mediating these mitochondrial processes. We address what is
Fig. 1. Mitochondrial PINK1–Parkin pathway activation and action. Following a depolarizing
PINK1 on the outer mitochondrial membrane (OMM). This triggers translocation of cytosoli
line). Upon translocation, Parkin begins to ubiquitinate substrates on the OMM, including
degradation. Degradation of Miro also blocks the assembly of the Miro–Milton–Kinesin (KI
the depolarized mitochondrion for mitophagy. The above information is summarized from
known and what remains to be elucidated to determine the role of
these pathways in PD neurodegeneration, and we discuss the impact
of and implications for neuronal bioenergetics.
PINK1/Parkin and fission/fusion balance: fostering fission or fusion? The
early work in Drosophila that uncovered the link between PINK1 and
Parkin suggested that the PINK1/Parkin pathway under normal con-
ditions promoted mitochondrial fission and/or inhibited fusion.
Knockdown of either protein appeared to result in clumped, swollen
mitochondria in flight muscles and dopaminergic neurons (Clark et
al., 2006; Deng et al., 2008; Park et al., 2006, 2008; Poole et al.,
2008). The mitochondrial morphologies were suggestive of hyper-
fusion, or inhibited fission, and were ameliorated by overexpression
of the fission mediator Drp1 or knockdown of Mfn. In loss-of-
function models, overexpression of Parkin ameliorated the effects of
PINK1 loss, but overexpression of PINK1 in the presence of Parkin
loss did not, demonstrating that PINK1 was upstream of Parkin in reg-
ulating a pathway that appeared to promote fission and/or inhibit fu-
sion (Deng et al., 2008; Park et al., 2008; Poole et al., 2008). As work
moved into mammalian cells, however, opposite effects were some-
times found. Work in immortalized mammalian cell lines and primary
cultures demonstrated that transient knockdown of PINK1 or Parkin
resulted in Drp1-mediated fragmentation (Dagda et al., 2009; Exner et
al., 2007; Lutz et al., 2009), consistent with a pro-fusion effect of
PINK1 and Parkin. On the other hand, a recent study reported that in
primary hippocampal and dopaminergic rat neurons, overexpression
of either PINK1or Parkin exhibited increased fragmentedmitochondria,
whereas PINK1 knockdown resulted in elongation of mitochondria, an
insult, mitochondrial import is inhibited, allowing for the accumulation of full-length
c Parkin to the mitochondrial outer membrane through an unknown mechanism (blue
VDAC1, Miro, and mitofusins (Mfn), which are subsequently targeted for proteasomal
F5) complex for anterograde transport. These events are then followed by targeting of
references discussed in the text.
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effect reversed by overexpression of Parkin or Drp1 (Yu et al., 2011),
consistent with a pro-fission, or anti-fusion, effect.

It is possible that the differences observed between fly models and
mammalian cells may, in part, involve a temporal effect of PINK1 or
Parkin loss, as Lutz et al. (2009) found that mitochondrial morpholog-
ical deficits were compensated for after prolonged protein knock-
down. However, PD patient fibroblasts expressing PINK1 mutations
also exhibited increased fragmentation (Exner et al., 2007). Another
explanation may be a difference in regulation of mitochondrial dy-
namics by the PINK1/Parkin pathway based on cell-tissue type and/
or cellular bioenergetic status (Cai et al., 2012; Lutz et al., 2009;
Sterky et al., 2011; Van Laar et al., 2011).

Supporting a role for Parkin in inhibiting fusion, recent studies
have now shown that the fusion proteins Mfn1 and Mfn2, are targets
for ubiquitination by Parkin and subsequent proteolytic degradation,
providing a potential mechanism by which the PINK1/Parkin pathway
can, in fact, inhibit fusion (Karbowski and Youle, 2011). Both over-
expression of Parkin or translocation of Parkin to depolarized mito-
chondria leads to increased ubiquitination and decreased levels of
Mfn1 and 2, in both Drosophila and mammalian cells (Gegg and
Schapira, 2011; Gegg et al., 2010; Glauser et al., 2011; Poole et al.,
2010; Rakovic et al., 2011; Ziviani et al., 2010). Inhibition of fusion
in the setting of mitochondrial depolarization may serve as a mecha-
nism to foster both fission and subsequent mitophagic degradation of
severely damaged mitochondria, serving as an attempt at preserving
cellular bioenergetic integrity. Although one study found an opposite
regulatory effect, that Parkin can also ubiquitinate and degrade the
fission protein, Drp1, promoting, rather than inhibiting, fusion
(Wang et al., 2011a), other studies have not found Parkin regulation
of Drp1 levels (Poole et al., 2010; Tanaka et al., 2010). How these
ubiquitination pathways factor into Parkin-mediated regulation of
mitochondrial fission and fusion in neurons has not yet been fully
elucidated.

The role of the PINK1–Parkin pathway in mitophagy — a bioenergetic
connection in neurons. A study by Narendra et al. (2008) uncovered
perhaps themost critical function of the PINK1–Parkin shared pathway.
They found that in mammalian cells exposed to a mitochondria-
depolarizing protonophore, CCCP, Parkin was rapidly recruited to se-
verely depolarizedmitochondria and facilitated their targeting for auto-
phagic degradation via mitophagy (Narendra et al., 2008). Since that
study, they and others have shown that Parkin is recruited tomitochon-
dria following the outer-membrane surface stabilization of functional
PINK1, which is normally rapidly imported into the mitochondria
through TOMM20 and degraded via mitochondrial proteases, including
MMP, PARL, m-AAA, and ClpXP (Greene et al., 2012; Jin et al., 2010;
Meissner et al., 2011). Under conditions of depolarization, however,
PINK1 is no longer imported or cleaved. The signal(s) that ultimately re-
cruit Parkin to the PINK1-laden damaged mitochondria are not known,
but functional PINK1 is required for recruitment, and functional Parkin
is required for directing the mitochondria towards mitophagy (Geisler
et al., 2010; Narendra et al., 2010b; Vives-Bauza et al., 2010). Once rec-
ruited, Parkin directly ubiquitinates multiple substrates, including the
OMM proteins VDAC (an ion-specific voltage-dependent diffusion
pore that is also part of the permeability transition pore), transport reg-
ulator Miro (an OMMprotein and component of the Miro–Milton com-
plex), and Mfn1 and 2 (the OMM fusion proteins) (Gegg and Schapira,
2011; Gegg et al., 2010; Geisler et al., 2010; Glauser et al., 2011;
Narendra et al., 2010a; Poole et al., 2010; Rakovic et al., 2011; Tanaka
et al., 2010; Ziviani et al., 2010). Parkin also interacts with Ambra
and recruits p62, both autophagy-associated machinery, ahead of
mitophagy (Geisler et al., 2010; Van Humbeeck et al., 2011a; Van
Humbeeck et al., 2011b), though the exact role of these interactions in
initiating mitophagy, in particular p62 recruitment and VDAC
ubiquitination, are not clear (Narendra et al., 2010a). It is proposed
that dysfunction of this critical pathway could lead to an accumulation
of dysfunctional or severely damagedmitochondria, ultimately contrib-
uting to increased cellular stress and neuronal pathogenesis in PD.

Parkin-mediated mitophagy has been extensively characterized in
immortalized cell lines and fibroblasts since first being described by
Narendra et al. (2008). But only within the past couple of years
have studies begun to examine the pathway in neurons in detail. In
immortalized and other glycolytic cells, global instantaneous depolar-
ization, as with CCCP, or depolarization or damage frommitochondri-
al ETC inhibitors can induce rapid translocation of Parkin followed by
prolonged mitophagy, eventually leading to a complete clearance of
mitochondria in some cells (reviewed in Narendra and Youle, 2011).
Immortalized cybrid cell lines carrying lethal mtDNA deletions,
which exhibit dysfunctional ETC assembly and decreased membrane
potential, also demonstrated mitochondrial Parkin recruitment
ahead of mitophagy (Gilkerson et al., 2012). However, the bioener-
getic profiles of these cells are not readily comparable to the
OxPhos-dependent neurons. We sought to test if the PINK1–Parkin
mitophagy pathway would operate similarly in mitochondria-
dependent neurons. Interestingly, CCCP exposure of up to 6 h does
not initiate Parkin translocation or mitophagy in neurons (Van Laar
et al., 2011). The restriction of Parkin translocation to mitochondria
appears, in part, to be regulated by bioenergetics, as normally
glycolytic cells, both yeast and mammalian, forced into OxPhos de-
pendence, also demonstrate a lack of Parkin translocation and
mitophagy (Kanki and Klionsky, 2008; Van Laar et al., 2011). Further,
we found that protecting against CCCP-induced ATP loss in neurons
allowed for partial, but not complete, Parkin-mitochondria transloca-
tion in neurons, suggesting that ATP loss plays a partial role in the
bioenergetic regulation of Parkin translocation in neurons. Recently,
Cai et al. (2012) confirmed that in mouse cortical neurons, CCCP ex-
posure of up to 6 h did not trigger Parkin translocation, but that
only after prolonged exposure (24 h) to CCCP did Parkin translocate
to mitochondria and evidence of mitophagy appear. These results
suggest that the neuronal mitophagic response to an acute, excessive
mitochondrial stressor is a slow and regulated process. On the other
hand, an in vivo model of reporter mice, exhibiting mitochondrial res-
piration dysfunction in DA neurons via mtDNA deletion, showed only
Parkin-independent accumulation and elimination of mitochondria
specifically in affected DA neurons (Sterky et al., 2011). Thus, Parkin
may not always be involved in neuronal mitophagy under conditions
of slowly accumulating mitochondrial damage, which may be impor-
tant to consider in progressive neurodegenerative disease.

The type of stressor may also dictate the neuronal mitophagy re-
sponse. The mitochondrial complex III inhibitor, antimycin A, was re-
cently purported to trigger Parkin localization to axonal mitochondria
in primary rat hippocampal neurons (Wang et al., 2011c). Parkin-
mitochondria translocation was also shown to occur after exposure
to the depolarizing agent valinomycin, a pore-generating ionophore,
in DA neurons derived from iPS cells (Seibler et al., 2011), though
the bioenergetics of cultured differentiated iPS cells as compared to
primary neurons has not been evaluated. Adding further complexity,
evidence suggests that neuron cell bodies, dendrites, and axons may
have distinct responses to mitochondrial damage. For example, it
has been suggested that Parkin-associated mitophagy occurs in cell
bodies and dendrites, but perhaps not in axons (Cai et al., 2012).

Together, these data suggest that neuronal bioenergetics likely in-
fluence the regulation of mitochondrial degradation. The rapid loss of
ATP after a global mitochondrial insult in neurons compared to other
cells may prevent full-scale Parkin-associated mitophagy from occur-
ring. However, selective damage to a small pool of mitochondria may
allow selective mitophagy. Surprisingly, a sizable population of neu-
ronal mitochondria show evidence of relative recovery of membrane
potential after prolonged, 24 h CCCP exposure (Cai et al., 2012),
suggesting the possibility that bioenergetic compensatory changes
in neurons after prolonged exposure to a mitochondrial depolarizing
agent may be occurring to allow mitophagy to occur. The significance



Fig. 2. Effects of dysfunction ofmitochondrial dynamics in neurons. The top panel diagrams a normally functioning neuron, outlining specific compartmentalized aspects ofmitochondrial
dynamics in the cell body, dendritic regions, and axons/synapses. The bottompanel shows potential neuropathologic consequences of localized dysregulation ofmitochondrial dynamics.
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of this for neurodegeneration is as yet unknown. Alternatively, the
signaling mechanisms for recruiting Parkin to mitochondria in neu-
rons after depolarization may be regulated differently, though this is
as yet unexplored. Evidence suggests that mitochondrial turnover in
neurons is quite slow compared to other cells, on the order of
weeks (Menzies and Gold, 1971; Wang et al., 1997), and thus, greater
regulation of mitophagy in neurons likely occurs. This would seem to
be beneficial in cells with long, isolated axonal environments, depen-
dent on mitochondrial function.

PINK1–Parkin and transport
The most recently identified role for the PINK1–Parkin pathway is

in regulating the axonal transport of neuronal mitochondria. The mi-
tochondrial GTPase Miro is an OMM protein that interacts with the
adapter protein Milton, forming a complex for interaction with the
kinesin motor protein KIF5 (Hirokawa et al., 2010). Miro is also
calcium-responsive, either releasing KIF5 or disconnecting KIF5
from the microtubule in the presence of high calcium, allowing for
the recruitment to and ultimate halting of mitochondria at calcium-
rich regions in the neuron (Hollenbeck and Saxton, 2005; MacAskill
et al., 2009; Wang and Schwarz, 2009). Initially, PINK1 was found to
form a complex with Miro and Milton (Weihofen et al., 2009).
More, recently, two studies have shown that Miro abundance, and
consequently trafficking of mitochondria, are regulated in a PINK1–
Parkin dependent manner (Liu et al., 2012; Wang et al., 2011c). Over-
expression of PINK1 or Parkin in Drosophila motor neurons and pri-
mary rodent hippocampal neurons resulted in decreased overall
motility of axonal mitochondria, associated with a loss of Miro.
Upon PINK1 or Parkin overexpression, or Parkin-induced recruitment
to mitochondria, Miro was ubiquitinated by Parkin and targeted for
proteasomal degradation, forcing disassembly of the Miro–Milton–
Kinesin complex and altering axonal transport of mitochondria (Liu
et al., 2012; Wang et al., 2011c). Additional mechanisms for PINK1
and Parkin to regulate mitochondrial transport may occur through
potential interactions of Parkin with microtubules, regulating micro-
tubule stability (Yang et al., 2005).

Regulation of transport by the PINK1–Parkin pathway also carries
implications for neuronal bioenergetics. It is possible that halting ax-
onal movement of depolarized mitochondria would prevent a poten-
tially harmful accumulation of non-functional mitochondria at high-
energy-demand regions of the neurites (Liu et al., 2012; Wang et al.,
2011c). Liu et al. (2012) also show that loss of Miro facilitates
Parkin-mediated mitophagic degradation of depolarized mitochon-
dria, suggesting that the PINK1–Parkin pathways of regulating trans-
port and mitophagy may converge to regulate overall mitochondrial
homeostasis. It is likely that regulation of mitochondrial fission/fu-
sion, transport, and degradation is interrelated, which may be the
reason that PD-related genes and toxins influence many different as-
pects of mitochondrial dynamics.

Bioenergetic specialization within compartments of neurons: does
this affect PD-relevant regulation of mitochondrial dynamics?

Aside from the general bioenergetic status of neurons compared to
other, more-glycolytic cells, the unique morphology of neurons may
also be a factor in regulating mitochondrial dynamics in neurons, partic-
ularly those aspects regulated by the PINK1–Parkin pathway. Neurons
are highly morphologically polarized, and as such, are divided into
three primary constituent compartments — the dendrites, the soma,
and the axon. Though once thought to be solely dependent on the
soma for molecular supplies, it is now known that biological and bioen-
ergetic functions throughout the axons and dendrites are highly com-
partmentalized and specialized to their unique needs, including
localized synthesis and degradation of proteins (Piper and Holt, 2004;
Steward and Schuman, 2003), axon- and dendrite-specific transport
(Hirokawa et al., 2010; Namba et al., 2011), calcium regulation and ER
functions, and localized ATP requirements (Hollenbeck and Saxton,
2005; MacAskill et al., 2009; Mironov, 2009; Wang and Schwarz, 2009).

This specialized compartmentalization in neurons would likely
make the regulation of mitochondrial homeostasis more complex
than other cells, and evidence is emerging that suggests this is indeed
the case. Mitochondrial transport is clearly specialized regionally
within neurons to provide appropriately targeted distribution and is
regulated by metabolic factors, including localized concentrations of
calcium and ADP (Cai et al., 2011; Hirokawa et al., 2010; Mironov,
2009). Mitochondrial fission and fusion in axons and distal dendrites
occur less frequently than that observed in other cell types or cell
bodies (Berman et al., 2009). In addition, the endoplasmic reticulum
(ER) was recently found to play a role in mitochondrial fission
(Friedman et al., 2011), and ER morphology and function may differ
in the somatodendritic compartment compared to distal axons
(Ramirez and Couve, 2011). More recently, Cai et al. (2012) found
that Parkin-associated mitophagy occurred in somatodendritic com-
partments of neurons, but not in axons. Related to this, Parkin-
mediated mitophagy after mitochondrial depolarization was only ob-
servable in neurites when mitochondrial transport was halted (Cai et
al., 2012). Parkin, after translocation to mitochondria, ubiquitinates
Miro, targeting it for degradation, which inhibits anterograde mito-
chondrial axonal flux, resulting in net retrograde mitochondrial
movement (Liu et al., 2012; Wang et al., 2011c). One could hypothe-
size that the specificity of this in axons may serve to keep damaged
mitochondria out of highly energy-dependent axonal terminals. In
PD, which has been hypothesized to begin in axon terminals (e.g.,
see Braak et al., 2004), these differences may have important implica-
tions for neuropathogenesis. How compartmentalized dysfunction in
mitochondrial dynamics might factor into neurodegeneration is sum-
marized in Fig. 2.
Conclusions: mitochondrial dynamics, neuronal bioenergetics, PD,
and the potential impact on therapies

As discussed above, mitochondrial dynamics have been proposed
to serve as a control mechanism for mitochondrial integrity and, ulti-
mately bioenergetic status maintenance (Twig et al., 2008b; Twig and
Shirihai, 2011; Van Laar and Berman, 2009; Westermann, 2012). In
addition, basal bioenergetics within specific cells can also dictate the
response of mitochondrial dynamics when faced with a stressor
(Kanki and Klionsky, 2008; Van Laar et al., 2011), and that response
can be affected differentially by the type of stressor (Narendra and
Youle, 2011). With regard to PD, a significant body of evidence sup-
ports a role for dysregulation of mitochondrial dynamics in disease
pathophysiolgy. Yet, neurons may uniquely regulate mitochondrial
dynamic pathways in response to mitochondrial stressors, which
may ultimately be important in PD-relevant pathways (Arnold et al.,
2011; Cai et al., 2012; Sterky et al., 2011; Van Laar et al., 2011).

Given that neurons have specific and unique bioenergetics, it is likely
that understanding these interactions in neurons will lead to a better
understanding of how dysregulation of mitochondrial dynamics could
lead to neurodegeneration in PD and could have implications for poten-
tial neuroprotective therapies. For example, exercise-induced fluctua-
tions in energy demands lead to altered fission and fusion protein
expression in skeletal muscle coinciding with alterations in oxidative
phosphorylation efficiency (Ding et al., 2010). Interestingly, exercise
has proven to be neuroprotective in PD animal models of neu-
rodegeneration (Ahlskog, 2011), though evidence of neuroprotection
in patients has yet to be shown. It is possible that changes in regulation
of mitochondrial dynamics in neurons might have real implications
early in PD pathogenesis. Continued elucidation and better understand-
ing of bioenergetics and mitochondrial dynamics within PD pathogene-
sis, then, may lead to better therapies that target earlier stages of the
disease.
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