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A B S T R A C T

Central nervous system (CNS) insulin resistance is associated with Alzheimer's disease (AD). In addition, the
apolipoprotein E4 (apoE4) isoform is a risk factor for AD. The connection between these two factors in relation to
AD is being actively explored. We summarize this literature with a focus on the transport of insulin and apoE
across the blood-brain barrier (BBB) and into the CNS, the impact of apoE and insulin on the BBB, and the
interactions between apoE, insulin, and the insulin receptor once present in the CNS. We highlight how CNS
insulin resistance is apparent in AD and potential ways to overcome this resistance by repurposing currently
approved drugs, with apoE genotype taken into consideration as the treatment response following most inter-
ventions is apoE isoform-dependent. This review is part of a special issue focusing on apoE in AD and neuro-
degeneration.

1. Introduction

Insulin has a dual role, being both a metabolic hormone and a mi-
togen. This multi-faceted fate of insulin is defined by the tissue in which
it acts, in addition to the receptor activated. In the central nervous
system (CNS), insulin contributes to the control of nutrient homeostasis,
reproduction, olfaction, learning, and memory (Blazquez et al., 2014).
Insulin in the CNS is primarily derived from blood insulin, which has
been transported across the blood-brain barrier (BBB) (Banks et al.,
1997a; Margolis and Altszuler, 1967; Woods and Porte, 1977). In the
euglycemic state, insulin levels are approximately 14 fold less in the
cerebrospinal fluid (CSF) levels than in the plasma (Mahley et al., 2009;
Pitas et al., 1987).

Apolipoprotein E (apoE) plays an important role in the metabolism
and redistribution of lipoproteins and cholesterol. In the brain, apoE is
primarily produced by astrocytes (Kim et al., 2009), but also by neurons
under stress (Xu et al., 1999) and is responsible for neuronal main-
tenance and repair (Holtzman et al., 2012). It was also recently re-
ported that another major source of CNS apoE originates from the
choroid plexus by glymphatic fluid transport (Achariyar et al., 2016).
The peripheral pool of apoE is primarily produced by hepatocytes, and
also by macrophages and adipocytes, each requiring tissue specific
machinery for expression (Kockx et al., 2018). ApoE levels in the CSF
are approximately 10-fold less than in the plasma (Chernick et al.,

2019) but the correlation between apoE levels in these two pools is
weak (Cruchaga et al., 2012). Regardless, apoE is important for BBB
repair after injury (Bell et al., 2012; Donahue and Johanson, 2008;
Fullerton et al., 2001).

Here, we review the literature supporting the link between CNS
insulin and apoE. We first introduce how insulin enters and travels
throughout the CNS and highlight some of the CNS-related roles. In this
context, we touch on how CNS insulin resistance (IR) can lead to AD.
We also present information regarding the role of apoE on the BBB and
cerebrovascular blood flow and how insulin can modulate these inter-
actions. Lastly, some recent clinical data is presented in ways to over-
come CNS IR and challenges based on apoE genotype.

2. CNS access to insulin

Endogenous insulin is secreted by the pancreas and into the
bloodstream where it can enter the brain via the BBB and blood-CSF
barrier. Insulin is actively transported in a saturable manner across the
BBB at levels below those needed to induce hypoglycemia (Banks et al.,
1997a; Baura et al., 1993). It has been traditionally thought that a
molecule the size of insulin would require a transcytotic transport
mechanism to enter the brain. This can occur independent of the en-
dothelial insulin receptor (Hersom et al., 2018; Rhea et al., 2018). Once
insulin is transported across the BBB, efflux does not occur, even with
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cerebrospinal fluid (CSF) reabsorption, and is sequestered by the CNS
(Cashion et al., 1996). Therefore, the transport protein present at the
BBB responsible for allowing insulin to enter the CNS is unidirectional,
moving insulin from the luminal side of the brain endothelial cell to the
abluminal side. The average rate of insulin transport across the mouse
BBB is approximately 0.55 μL/g-m (Banks et al., 2012). For reference,
amyloid β (1–42) is transported across the BBB at a slower rate of
0.39 μL/g-min (Banks et al., 1991).

Exogenous insulin can be administered by multiple different routes
to increase CNS insulin as recently reviewed by us (Rhea et al., 2019b).
Administrations that increase serum insulin are always dangerous for
the risk of hypoglycemia. Therefore, getting insulin directly to the CNS
is optimal for therapeutic purposes. Distribution of insulin throughout
the brain varies based on the delivery route. For example, following
intravenous delivery (which likely reflects endogenous transport), the
olfactory bulb and pons/medulla contain the greatest content, while
following intranasal delivery, the olfactory bulb, striatum, hypotha-
lamus, and midbrain contain the most (Rhea et al., 2017; Rhea et al.,
2018). Following intracerebroventricular injection, the hypothalamus
and hippocampus contain the greatest amount (Rhea et al., 2019b).

Insulin transport across the mouse BBB is fastest into the olfactory
bulb and pons/medulla (Rhea et al., 2019b). It is unknown whether
humans have the same regional rates of insulin transport into the brain.
As human insulin has the same saturable effect on murine insulin and
vice versa in mice (Banks et al., 1997a), it is likely the two transport
systems are similar. Human insulin can also lower endogenous circu-
lating murine insulin (Banks et al., 1997b). However, the primary
evolutionary role for the olfactory bulb in the rodent is different than
the primary role for it in humans. The mouse olfactory bulb also has the
highest rate of insulin degradation (Banks et al., 1999). How seques-
tration and degradation compares to the human is difficult to de-
termine.

Insulin at the BBB is not just present as an effector for regulating
substrate entry, but its own transport can also be influenced by other
conditions. As an effector, insulin can regulate not only a variety of
substrate entry across the BBB but also neurotransmitter signaling. For
example, insulin can regulate leptin (Kastin and Akerstrom, 2001) and
insulin-like growth factor 1 (IGF-1) (Yu et al., 2006) transport into the
brain. In contrast, there is no role of insulin in electrolyte (Thurston
et al., 1976), GLP-1 (Kastin et al., 2002), or estrogen (May et al., 2016)
transport into brain. Insulin can also regulate amino acid transport
across the BBB. Tryptophan BBB transport is regulated by insulin
(Cangiano et al., 1983), which can lead to multiple changes in CNS
signaling pathways, especially in the serotonin pathway. In addition,
dopamine and insulin signaling systems have a cross-regulatory inter-
action (Nash, 2017) in which insulin can regulate neuronal dopamine
uptake and dopamine can regulate pancreatic insulin secretion.
Therefore, insulin action just at the BBB can lead to a multitude of
changes within the CNS. There are also different physiological states,
including diabetes, obesity, and aging, that can impact the transport of
insulin into the brain (Banks et al., 2012; Rhea and Banks, 2019).

As the above illustrates, insulin in the CNS has many roles and these
differ from its metabolic role in the periphery. In addition, the receptors
for insulin in the brain have a different structure and size compared to
those expressed peripherally, consistent with a different evolutionary
pathway that preserved more of ancestral insulin's effects on growth
(Banks et al., 2012; Chan et al., 1992). Insulin in the brain does not
primarily affect glucose uptake as in the periphery since GLUT1 is the
primary glucose BBB transporter and is non-responsive to insulin
(Hasselbalch et al., 1999). However, there are some regions such as the
hippocampus and hypothalamus that express GLUT4, an insulin-sensi-
tive glucose transporter, localized to neurons (Alquier et al., 2006;
Grillo et al., 2009; McEwen and Reagan, 2004). Here, GLUT4 translo-
cates to the neuronal membrane downstream of insulin and plays an
important role in hippocampal memory processes and brain insulin
resistance (Duarte et al., 2012; McNay and Pearson-Leary, 2020).

Peripheral insulin levels can regulate cerebellar GLUT4 expression
(Vannucci et al., 1998). In addition, it has recently been shown that
intranasal insulin can increase cerebral glucose uptake, as measured by
[18F]-FDG uptake following traumatic brain injury in rats, although the
mechanism for increased uptake was not examined (Duarte et al.,
2012).

CNS insulin can have a direct, localized effect in addition to an
indirect effect that elicits a change in the periphery (i.e. change in
peripheral metabolism). CNS insulin can play a major role in reward,
memory, and feeding behavior by impacting signal transduction path-
ways involved in neuronal survival, synaptic maintenance, dendritic
arbor development, cognition, neuronal circuitry formation, and BBB
transporter expression/localization (Banks, 2004; Banks et al., 2012;
Schulingkamp et al., 2000; Stranahan et al., 2008). Areas within the
brain that have high levels of insulin receptors, such as the hippo-
campus and hypothalamus, play important roles in cognition and reg-
ulation of peripheral metabolism, respectively (Ghasemi et al., 2013;
Porte Jr. et al., 1998). This is consistent with evidence showing that
insulin can influence cognition (Infante-Garcia et al., 2015). It was re-
cently shown that insulin in the hippocampus could affect other sig-
naling pathways besides the typical insulin receptor pathway (Frazier
et al., 2019b; Rhea et al., 2019a). As an indirect mechanism, CNS in-
sulin can act as a neuroregulatory peptide, regulating food intake and
peripheral energy stores (Filippi et al., 2013; Gray et al., 2014). The
impact of CNS insulin on food intake data should be interpreted with
caution, however, as supraphysiological levels of insulin are often in-
jected into the CNS. In such studies, the IGF-1 receptor and perhaps
other receptors as well could be activated (Rechler and Nissley, 1986).
CNS insulin infusion decreases serum insulin levels, which appears to
be independent of a change in food intake (Foster et al., 1991).

Less studied is the role of insulin receptor signaling in other cell
types of the neurovascular unit (astrocytes, pericytes, brain endothelial
cells) and how this signaling might affect the BBB (Rhea and Banks,
2019). Many of the functions of CNS insulin have been well described,
as discussed above. However, once insulin is transported across the
BBB, it is unclear how this signaling peptide navigates the extracellular
space and accesses its target. Whether insulin is released into the in-
terstitium, packaged into exosomes, or transported directly to sur-
rounding cells of the neurovascular unit, including pericytes, astrocytes,
and neurons is not known. Brain extracellular diffusion patterns of si-
milarly sized molecules including epidermal growth factor and nerve
growth factor have been investigated (Stroh et al., 2003; Thorne et al.,
2004), but research on insulin diffusion is limited. Importantly, diffu-
sion parameters are known to change with age (Sykova, 2004). It is
likely that these parameters also change with disease. It is also not clear
whether insulin is sequestered by these cells and released as needed or
if the CNS requirement for insulin is regulated by BBB transport, se-
questration, and degradation. These concepts warrant further in-
vestigation to better understand the etiology of CNS IR.

Intranasal insulin is one way to therapeutically increase CNS insulin
concentrations to overcome CNS IR. Clinical studies have shown a dose
dependent benefit of intranasal insulin on cognition that is modulated
by apoE genotype (Reger et al., 2006; Reger et al., 2008). Cere-
brovascular function is critical for cognitive performance (Ozturk and
Tan, 2018). Intranasal insulin can increase cerebral blood flow in young
adults (Kullmann et al., 2017), older adults (Akintola et al., 2017), and
cognitively impaired rats (Rajasekar et al., 2017). This therapeutic
delivery of insulin will be brought up again later. The relation between
cerebrovascular function, the BBB, and apoE isoforms will be discussed
below.

3. ApoE and the BBB

The importance of cerebrovascular function for cognitive perfor-
mance is already evident in the developing brain (Bakker et al., 2014).
The BBB is also critical for cognitive performance. Brain capillary
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damage and BBB breakdown in the hippocampus are early biomarkers
for cognitive dysfunction independent of amyloid β or tau (Nation
et al., 2019) and reductions in microvascular length and decreased
brain capillary density have been reported in several animal models of
AD (Lee et al., 2005; Paris et al., 2004). BBB dysfunction can lead to
microvascular impairments (Zlokovic, 2013) and is associated with
cognitive decline in nondemented elders (Bowman et al., 2018). The
importance of the BBB for cognitive performance is also evident in the
developing brain, for example in the context of obstructive sleep apnea
(Khalyfa et al., 2018). With the need to diagnose early and start long-
term prevention interventions in neurodegenerative diseases such as
AD (Yassine, 2017), cerebrovascular function and the BBB are attractive
early biomarkers. As described below, apoE isoforms have differential
effects on cerebrovascular function and the BBB. Therefore, it is im-
portant to understand these apoE isoform-dependent impacts in health
and disease and in the developing and aging brain.

Transport of apoE across the BBB or blood-CSF barrier has not been
reported to occur, as evident by independent studies (Liu et al., 2012;
Zlokovic et al., 1994). However, apoE can affect the BBB directly in
addition to altering transport of substrates, including amyloid β. Spe-
cifically, apoE4 disrupts amyloid β BBB efflux the most (Deane et al.,
2008) and primarily impacts BBB integrity by contributing to BBB
anomalies (Alata et al., 2015). Lastly, the diffusion of apoE throughout
the CNS is isoform-dependent with diffusion being ranked as follows:
apoE2 > apoE3 > apoeE4 (Achariyar et al., 2016).

In the developing brain, E4 carriers exhibit greater changes in re-
gional activation than non-carriers in distinct regions of the temporal
gyrus during a nonverbal memory task (Scarmeas et al., 2005). These
effects and alterations in cerebral blood flow are not transient and are
also seen in people during middle-age (Bookheimer et al., 2000).
Consistent with these human data, vascular alterations are seen in mice
at two weeks of age expressing E4 or mice deficient in murine apoE
(KO) (Bell et al., 2012). The fact that this phenotype is also seen in apoE
KO mice suggests that it is due to lack of trophic effects rather than a
dominant negative effect of E4 as is seen for some other phenotypes
(Raber, 2004; Raber et al., 2004), which in turn has implications for
developing and testing therapeutic strategies. It also suggests that the
interaction of this phenotype with age might be what contributes to
increased risk of E4 carriers to develop age-related cognitive decline
(Berteau-Pavy et al., 2007) and AD (Farrer et al., 1997). The BBB might
play a critical role here (Zlokovic, 2011). Using a guinea-pig brain
perfusion model, an anti-amyloidogenic role for the BBB involving
transport of apoE and apolipoprotein J (apoJ) in AD and impairments in
cerebrovascular function being an initiating event leading to neurode-
generation was proposed 23 years ago (Zlokovic, 1996). Environmental
risk factors like a Western diet might also interact with this phenotype
to further increase this risk. Importantly, both IR and E4 have been
linked to vascular impairments. Insulin has many important actions in
the brain as described above, and brain IR has been proposed to con-
tribute to the progression of AD (de la Monte, 2012).

In the aging brain, cerebrovascular flow is lower in E4 carriers than
non-carriers (Filippini et al., 2011). The aging brain of cognitively
healthy E4 individuals show accelerated declines in regional cere-
brovascular flow over time (Thambisetty et al., 2010). The relation
between cognitive function and age-related changes in cerebrovascular
flow is also modulated by apoE isoform (Wierenga et al., 2013). There
are differences in blood oxygen level dependent (BOLD) functional
magnetic resonance imaging (fMRI) signals, measures of functional
brain activation, in middle-aged and aged E4 carriers (Scarmeas and
Stern, 2006). E4 carriers, including cognitively healthy elderly and
those at younger ages, show glucose hypometabolism (Altmann et al.,
2015; Reiman et al., 2001; Reiman et al., 1996; Reiman et al., 2004;
Small et al., 2000). This early onset of cerebrovascular and BBB phe-
notypes in E4 carriers is important as these phenotypes have been
proposed as initiating events ultimately causing neurodegeneration
associated with vascular disease (Snyder et al., 2015). APOE genotype

itself has clear effects on several risk factors for dementia noted above,
such as obesity (Arbones-Mainar et al., 2008; Arbones-Mainar et al.,
2016; Elosua et al., 2003; Huebbe et al., 2015; Tejedor et al., 2014),
hypercholesterolemia (Bennet et al., 2007; Wilson et al., 1996), and
increasing in vivo and in vitro evidence also points to multiple cere-
brovascular effects of APOE in the brain (Alata et al., 2015; Bell et al.,
2012; Lin et al., 2017; Nishitsuji et al., 2011; Schilling et al., 2013;
Wiesmann et al., 2016).

In general, this pattern is consistent with the proposed develop-
mental origin of health and disease later in life (Heindel and
Vandeberg, 2016; Roseboom et al., 2001). E4 isoform is associated with
hyperactivity and hyperconnectivity (Koelewijn et al., 2019), increased
BBB permeability, reductions in cerebral vascularization, thinner vessel
walls, and reduced cerebrovascular blood flow (Alata et al., 2015; Bell
et al., 2012). However, it is likely more complex since age of the E4
carriers results in lower (Filippini et al., 2011; Scarmeas et al., 2005;
Thambisetty et al., 2010) and higher (Wierenga et al., 2013; Zlatar
et al., 2014) cerebral blood flow. Since cerebral blood flow is decreased
in people with age-related cognitive decline and AD (Celsis et al., 1997;
Roher et al., 2012), it is conceivable that the complexity is partly due to
the fact that cerebral hypoperfusion could be a result of diminished
energy demands of the aging or AD brain or contributes more directly
to neurodegeneration. So in E4 carriers with unaltered or higher cere-
bral blood flow, this might be part of a compensatory change and hy-
poperfusion might precede and even actively contribute to the risk to
develop AD (Tai et al., 2016).

Consistent with the human data, aged E4 mice have a lower cere-
brovascular flow than wild-type mice (Lin et al., 2017; Wiesmann et al.,
2016). These changes are not necessarily associated with alterations in
vessel morphology. While the cerebral blood volume was lower in in E4
than E3 mice, in one study this was observed in the absence of changes
in vessel morphology (Johnson et al., 2019) while in another study they
were associated with reductions in microvascular length (Bell et al.,
2012).

Remarkably, one environmental factor that is front and center for
the developmental origin of health and disease is nutrition and insulin
sensitivity/resistance. In this context, it is extraordinary that type II
diabetes, IR, and E4 carrier status are associated with a reduced ability
to preserve a stable and sufficient cerebral blood flow (Jansen et al.,
2016; Novak et al., 2014). This link between IR and cerebral blood flow
is not surprising, as the microvasculature is sensitive to insulin and this
sensitivity is impaired by IR (Belcik et al., 2015). Consistent with the
human data, both E4 and a Western diet induce IR and reduce cerebral
blood volume and glucose uptake, in an additive fashion, in apoE tar-
geted replacement (TR) mice Johnson et al., 2019. However, the cog-
nitive, metabolic, and cerebrovascular responses to an acute glucose
challenge revealed apoE isoform-dependent effects. E4, but not E3,
mice benefitted from an acute increase in blood glucose levels Johnson
et al., 2019. Consistent with these mouse data, cognitively healthy
people and cognitively impaired people carrying E4 have higher
memory scores following a meal with a high glycemic index and high in
saturated fat, while lower scores are seen in cognitively healthy people
who do not carry E4, as compared to genotype-matched controls
(Hanson et al., 2015). IR also affects cognitive performance (de la
Monte, 2012) and might also contribute to the progression of AD. Ad-
ministration of intranasal insulin enhances cognition and affects re-
gional vasoreactivity in patients with IR as part of type II diabetes
(Novak et al., 2014). Recently, nicotine addiction in rats was associated
with a risk for type II diabetes by activation of a nicotinic acetylcholine
receptor present in the habenula (Duncan et al., 2019). Nicotine con-
sumption led to increased circulating glucagon and insulin levels and
dysregulated glucose homeostasis via a direct connection from the ha-
benula to the pancreas. An apoE isoform-dependent effect remains to be
elucidated.

In E4 carriers, in addition to the central effects described above,
there might also be indirect effects on cognitive function and brain
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metabolism (Pendse et al., 2009). E4 is associated with peripheral
vascular disease (Johnson et al., 2011; Johnson et al., 2013; Minihane
et al., 2007) and the peripheral response to acute or chronic glucose or
a dietary challenge in E4 carriers might affect cognitive function
(Hanson et al., 2016; Hanson et al., 2013; Hanson et al., 2015).

In studies involving special diets, it is important to consider po-
tential effects of the diet on plasma and brain apoE levels. For example,
a Western diet administered for 5 weeks starting at 2–3 months of age
was shown to significantly reduce apoE levels in the hippocampus of E3
but not E4 TR mice (Lane-Donovan and Herz, 2016). Conversely,
plasma levels of apoE were significantly increased in E4, but not E3, TR
mice on a Western diet (Lane-Donovan and Herz, 2016). A ketogenic
diet revealed an apoE-isoform dependent effect in plasma but did not
affect hippocampal apoE levels. Like what was seen with a Western
diet, a ketogenic diet caused elevated plasma apoE levels in E4 but not
E3 TR mice (Lane-Donovan and Herz, 2016). Perhaps related to in-
creased apoE levels, a ketogenic diet restored systemic insulin sensi-
tivity and metabolic flexibility in a diabetic E4 carrying patient
(Stoykovich and Gibas, 2019).

4. Interaction of insulin/insulin receptor with apoE

The differential effects of apoE isoforms in insulin receptor function
could be due to differential binding to the receptor. In AD brain sam-
ples, more insulin receptor is precipitated by extracts from E3 brains
than extracts from E4 brains (Chan et al., 2018). Consistent with these
human data, E3 binds stronger than E4 to insulin receptor in brain
extracts of 26- and 78-week old apoE TR mice crossed with APP J20
mice carrying a mutant human APP gene containing the Swedish
(K670 N/M671 L) and Indiana (V717F) mutations (Chan et al., 2015).
Interestingly, using hippocampal neuronal cultures prepared from
postnatal day 0, E3 and E4 pups, there was no difference in insulin
sensitivity except in the presence of 500 nM of amyloid β (1–42). Here,
the insulin response was impaired only in hippocampal neuronal cul-
tures from E4 pups (Chan et al., 2015). Amyloid β peptides can reduce
insulin binding to the insulin receptor which decreases insulin signaling
(Xie et al., 2002). E4 also has a stronger binding affinity to amyloid β
than E3 (Chan et al., 2015; Saunders et al., 1993). More on the inter-
action of amyloid β and apoE is covered in another review in this
special issue by Dr. Thomas Wisniewski.

The altered interaction of insulin with the insulin receptor might
also related to the trapping of insulin receptor in the presence of E4 in
endosomes contributing to impaired insulin signaling and impaired
mitochondrial respiration and glycolysis by insulin (Zhao et al., 2017).
Age might be able to replace the amyloid β challenge. In cortex and
hippocampus of 22-month old E3 and E4 mice, insulin signaling was
impaired in E4 mice compared to E3 mice (Zhao et al., 2017). This was
not seen in the cortex at 3 or 12 months of age. Therefore, in aging
brains, aggregation of E4 and endosomal dysfunction might drive this
effect. A Western diet might be able to replace both amyloid β and
aging. When E3 and E4 TR mice were put on a Western diet for
4 months starting at 8 months of age, insulin signaling was impaired in
E4 mice, while the Western diet did not affect insulin signaling in the E3
mice (Zhao et al., 2017). Remarkably and consistent with the data
described above, when neuronal-enriched extracellular vesicles were
isolated from plasma of patients with amnestic mild cognitive impair-
ment or probable AD receiving intranasal insulin, positive correlations
in the relationship between insulin signaling mediators and measures of
cognitive performance were only seen in non-E4 carriers (Mustapic
et al., 2019). These data suggest a clear overlap and interaction be-
tween amyloid β, the insulin receptor, apoE, and insulin.

5. CNS insulin resistance in Alzheimer's Disease

AD has been associated with a deficiency in insulin action within the
CNS. Deficient action could be caused by either a decreased level of

insulin in the brain or to a resistance to insulin actions at the level of its
receptor. One of the earliest pieces of supporting evidence for defective
insulin action was that there is decreased glucose utilization by the AD
brain. However, neither glucose transport across the BBB nor glucose
uptake by the vast majority of brain cells, with the exception of GLUT4-
expressing neurons, is insulin-dependent. Four independent lines of
evidence for a deficient insulin action in the AD brain are i) a decreased
CSF/serum ratio, ii) insulin resistant diseases (obesity and diabetes) are
risk factors for AD, iii) AD brains have impaired insulin signaling, and
iv) insulin delivery to the CNS improves memory. These four lines of
evidence are considered below.

5.1. Decreased CSF/serum ratio

A decreased CSF/serum ratio for insulin has been reported in aged
and AD subjects (Craft et al., 1998; Sartorius et al., 2015). The rea-
soning that this is powerful presumptive evidence for a defect in insulin
transport across the BBB relies on an understanding of the nonlinear
pharmacokinetics of insulin transport across the BBB. As insulin
transport across the BBB is saturable, the relation between CSF insulin
and serum insulin is hyperbolic (Fig. 1). That is, it is linear only at
“physiologic” levels of insulin. As blood levels of insulin rise, CSF levels
also rise, although to an ever lesser degree. In other words, the nu-
merator (CSF insulin levels) rises less robustly than the denominator
(blood insulin levels) and so the ratio (CSF/serum insulin ratios) de-
clines as the serum insulin level rises.

This decrease in CSF/serum ratios could occur in two basic ways
that have fundamentally different implications for the relation between
central and peripheral IR, as well as the role of the BBB. First, serum
levels of insulin could increase, as for example happens with peripheral
IR. In this case, CSF insulin levels would be paradoxically elevated
while CSF/serum insulin ratios would be decreased. Thus, a decrease in
CNS insulin action would only result if there were an accompanying
CNS IR; and the resistance would need to be greater than could be
overcome by the increased CNS level of insulin. In this case, IR at both
the CNS and peripheral levels could occur simultaneously while the
insulin transporter at the BBB is functioning normally. A shifting to the
right of the curve relating CSF and serum insulin levels is a second way
that a decreased CSF/serum insulin ratio could occur. In this case, the
amount of insulin transported across the BBB is lower than normal for
any given level of insulin in the blood. As the insulin transporter is
modulated by various factors (Banks et al., 2008; Urayama and Banks,
2008), such a shift is possible. CSF insulin levels are not necessarily
increased and could even be decreased. In this case, CSF insulin levels
could be lower than normal, CNS IR can occur independently of per-
ipheral IR, and the BBB insulin transporter is impaired (Fig. 2). Which
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of these dominate is unclear as CSF insulin levels in AD have been re-
ported to be increased, decreased, and unchanged (Craft et al., 1998; de
la Monte et al., 2019; Fugisawa et al., 1991; Gil-Bea et al., 2010; Molina
et al., 2002).

Other explanations for a decrease in the CSF level or CSF/serum
ratio of insulin are increased enzymatic activity in the CNS or increased
efflux from the CNS.

5.2. Insulin resistant diseases (obesity and diabetes) are risk factors for AD

This line of evidence involves several strengths and weaknesses in
its support. First, diabetes mellitus and obesity can increase the in-
cidence of cognitive deficits through a number of mechanisms that don't
depend on CNS insulin actions. Stroke and ischemia, multi-infarct de-
mentia, inflammation, hypertension, dyslipidemia, and episodes of ia-
trogenic hypoglycemia all place the diabetic at risk of cognitive im-
pairment (Elias et al., 2003; Manschot et al., 2006; Ott et al., 1999;
Perlmuter et al., 1988; Rogers et al., 1989). Diabetes itself is associated
with its own form of cognitive impairment, characterized by a decline
in executive function (Elias et al., 2003; Manschot et al., 2006). On the
one hand, these associations show how diabetes/obesity can be related
to cognitive impairment without invoking CNS IR. On the other hand,
peripheral IR is associated with factors that can affect CNS insulin ac-
tions. Hypertriglyceridemia is the signature dyslipidemia of peripheral
IR, diabetes mellitus, and the metabolic syndrome. Triglycerides can
cross the BBB to induce resistance at the CNS insulin receptor (Banks
et al., 2018). A single high-fat meal can immediately induce cognitive
impairment in subjects who are apoE2/3 positive and, paradoxically,
cognitive improvement in those who carry apoE4 (Hanson et al., 2015).

Another early line of argument relied on the then untested as-
sumption that IR is global; that is, if IR occurs in peripheral tissues, then
it is also occurring in CNS tissues. However, for other receptor re-
sistance syndromes such as resistance to thyroid hormone, resistance
can occur in one tissue, such as the pituitary, but not in others (Refetoff,

1982). Furthermore, as the thyroid hormone transporter at the BBB is
not the same as the thyroid hormone receptor, defects in transport of
thyroid hormone across the BBB occur independently of thyroid re-
ceptor resistance (Bernal et al., 2015). An analogous situation is
emerging for IR. The classic study of Talbot et al. found that CNS IR can
occur in AD patients that have no evidence of peripheral IR (Talbot
et al., 2012). As the insulin transporter at the BBB is not the same
protein as the insulin receptor (Rhea et al., 2018), it is probable that
defects in CNS insulin receptor function do not necessarily imply de-
fects in transport as well.

5.3. Direct evidence that AD brains have impaired insulin signaling

Several studies involving post mortem tissue have revealed that the
levels of protein or message for the insulin receptor and components of
the insulin signaling pathway are decreased in AD brains (Chan et al.,
2018; Liu et al., 2011; Rickle et al., 2004; Rivera et al., 2005; Steen
et al., 2005). Talbot et al. confirmed these changes and further showed
that signaling as induced by insulin was impaired in post mortem brain
tissue from individuals without diabetes (Talbot et al., 2012). In addi-
tion, alterations in insulin signaling do not appear to occur simulta-
neously in different brain areas. Instead, recent data suggest a pro-
gression from the hippocampus to the frontal cortex (Barone et al.,
2019).

How IR could arise in the CNS in AD is not clear. That peripheral
and central IRs interact is strongly suggested by the finding that the
deficiency in insulin signaling in brain is more severe in patients who
also have insulin resistant diabetes (Liu et al., 2011). Various studies
have implicated amyloid β, tau, iron, and other factors (Bloom et al.,
2018; Wan et al., 2019). In recent years, the role of the protein bili-
verdin reductase-A, a unique kinase involved in the regulation of in-
sulin signaling (Lerner-Marmarosh et al., 2005), has been proposed to
be involved in CNS insulin sensitivity (Barone et al., 2016; Barone et al.,
2011; Sharma et al., 2019; Triani et al., 2018). Other conditions

Fig. 2. Levels of insulin resistance. Glucose uptake is stimulated by tissues containing GLUT-4 (primarily muscle, liver, and adipose tissue), but not by those
containing GLUT-1, 3, or 5 (such as brain endothelial cells, astrocytes, neurons, and microglia). Points of Insulin Resistance: 1) Insulin resistance at GLUT-4
dependent peripheral tissues results in hyperglycemia, unless countered by an elevation in insulin levels. 2) Brain endothelial cells respond to insulin in ways other
than glucose uptake. 3) The insulin transporter at the BBB has a rate that can be modified; a decreased transport rate can result in less insulin action in the brain. 4)
Insulin receptor resistance can occur on CNS cells.
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associated with CNS IR could offer clues. As mentioned above, hyper-
triglyceridemia, which is the classic dyslipidemia of diabetes mellitus
and the metabolic syndrome, can induce CNS IR (Banks et al., 2018).
Other conditions can affect CNS IR. Pregnancy is associated with re-
sistance to the sympathoexcitatory effects of CNS insulin (Shi et al.,
2019b), exercise can reverse the CNS IR associated with a high fat diet
(Park et al., 2019), and antipsychotic drugs affect insulin signaling at
various levels (Kowalchuk et al., 2019).

Another interesting question is whether CNS insulin levels are part
of a negative feedback loop. In the periphery, blood insulin levels are
locked into a negative feedback loop that tightly controls both of their
levels: high blood glucose induces increased blood levels of insulin and
high blood levels of insulin lower blood glucose. Hence, when IR occurs
in the periphery, that is, when blood insulin is less potent in its ability
to decrease blood glucose levels, the body responds by simply allowing
serum insulin levels to rise until glucose levels return to normal. A
question then is whether CNS insulin is part of a negative feedback
loop, that is, can CNS insulin levels rise to overcome CNS IR? It is un-
likely that any such feedback loop would involve an increase in per-
ipheral insulin levels as this would risk hypoglycemia. Other control
points would be at the BBB (this time shifting the CNS-serum relation to
the left so that more insulin crossed into the brain at any given blood
level), enzymatic degradation, and CNS-to-blood efflux rates of insulin.
These control points could also keep CNS insulin levels from rising in
the face of increased blood levels of insulin caused from peripheral
resistance. Finally, although few cells in the CNS have been shown to be
capable of secreting insulin, the question arises as to whether such se-
cretion might be more widely inducible in brain.

5.4. Insulin delivery to CNS improves cognition

Several studies have shown that insulin improves some aspects of
cognition. An early study revealed an effect when the insulin was ad-
ministered systemically (Craft et al., 1996). However, giving insulin by
this route can induce hypoglycemia. Subsequently, a series of studies
involved the intranasal route to deliver insulin to the brain as briefly
touched on above. Substances delivered through the nares above the
turbinates to the level of the cribriform plate show absorption by var-
ious routes into the brain (Lochhead and Thorne, 2012). Insulin given
by this route shows a distribution pattern that differs from that of in-
travenous or intracerebroventricular injections (Rhea et al., 2019b).
Cognitive improvement has been found after intranasal insulin in pa-
tients with mild cognitive impairment and AD as well as young healthy
volunteers (Benedict et al., 2004; Craft et al., 1999a; Craft et al., 1999b;
Craft et al., 2012; Reger et al., 2006; Reger et al., 2008; Schmid et al.,
2018). Animal studies have found improvements with intranasal insulin
in cognitively impaired rats (Sukhov et al., 2013) and mice (Marks
et al., 2009; Salameh et al., 2015) by altering neuronal after-hyperpo-
larization (Maimaiti et al., 2016), cerebral blood flow (Anderson et al.,
2017), amyloid β production (Mao et al., 2016), and tau hyperpho-
sphorylation (Zhang et al., 2016). Most recently, results of animal
studies investigating the molecular mechanism of intranasal insulin
suggest that the beneficial effects may be independent of changes in
insulin signaling and rather due to changes in inflammation and cell
migration (Frazier et al., 2019b; Rhea et al., 2019a). This topic of al-
ternative sources of insulin dysregulation has recently been reviewed by
Frazier et al. (Frazier et al., 2019a).

If high levels of insulin are therapeutic, why doesn't the hyper-
insulinemia of insulin resistant diabetes protect persons from AD?
Interestingly, an early study investigating the relation between diabetes
mellitus and AD concluded that these two conditions could not co-exist
(Bucht et al., 1983). However, subsequently, diabetes mellitus has been
established as a risk factor for AD. One reason the high blood insulin
levels are not protective may have to do with the saturable nature of
insulin transport across the BBB. As discussed above, diabetes mellitus
is associated with many factors that can impact brain health, including

association with other risk factors (e.g., peripheral IR, hyperglycemia,
hypertension) and life styles (high-fat diets leading to hypothalamic
inflammation (Thaler et al., 2013), for example). It may be that the risk
factors associated with diabetes mellitus outweigh any therapeutic
benefit of increased brain insulin levels.

6. Repurposing diabetes drugs for memory improvement

For the development of therapeutic strategies to improve cognitive
performance, it is important to realize that there are apoE isoform
differences in metabolic markers at baseline and in response to treat-
ment. The relationship of these biomarkers with IR is also apoE isoform-
dependent. When a dietary fatty acid (FA) intervention was used in
patients with metabolic syndrome as part of a 12-week randomized
trial, E4 carriers had higher plasma concentrations of total cholesterol
(TC), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B
(apo B) than E2 carriers and higher TC, LDL-C and apo B than E3
homozygotic carriers (Fallaize et al., 2017). In addition, while elevated
plasma n-3 polyunsaturated FA (PUFA) levels were associated with a
beneficially lower concentration of apo CIII in E2 carriers, a high pro-
portion of plasma C16:0 was associated with IR in E4 carriers. Fol-
lowing the FA intervention, an increase in the proportion of plasma
long chain (LC) n-3 PUFA was associated with an increase in tria-
cylglycerol-rich lipoprotein (TRL)-C concentrations in E2 carriers, while
a reduction in TRL-C was observed in the E3 homozygotic carriers. In
E2 carriers, apo CII concentrations were reduced in E2 carriers fol-
lowing a reduction in plasma LC n-3 PUFA and increased when plasma
LC n-3 PUFA was raised. In E4 carriers, the apo CII concentration was
more increased in response to a reduction in the proportion of plasma
LC n-3 PUFA than what was seen in E2 carriers. ApoE levels were also
differentially affected by the intervention. Following an increase in
plasma LC n-3 PUFA, E2 carriers showed increased apoE levels while
E3/E3 and E4 carriers showed a decrease (Fallaize et al., 2017). Con-
sidering that the apoE levels in humans (Rezeli et al., 2015) and mice
(Johnson et al., 2015), especially those expressing the human low-
density lipoprotein receptor (LDL) receptor (Johnson et al., 2014) differ
depending on apoE genotype and in apoE heterozygotic carriers the
levels of the two apoE isoforms are not comparable either highlights the
complex relationship between apoE isoform, apoE levels, and bio-
markers of brain metabolism.

There is an increased interest in repurposing drugs (Pushpakom
et al., 2018), including diabetes drugs, to improve cognitive function.
Especially as there is an increased focus towards individualized medi-
cine to improve medical treatments and strategies (Toplol, 2014), it is
important to consider apoE genotypes in developing individual treat-
ment strategies. Preclinical research underlines the importance of this
consideration. When 13-month-old apoE TR mice were administered
metformin (300 mg/kg/day) for 5 months, spatial memory of E3, but
not E4, mice was improved and this was associated with enhanced in-
sulin signaling in E3, but not, E4 mice (Zhang et al., 2019). Interest-
ingly, tau phosphorylation was seen following metformin treatment in
both E3 and E4 mice (Zhang et al., 2019), and recently apoE was shown
to be critical in mediating tau pathology (Shi et al., 2019a). Interest-
ingly, as described earlier, we found that E4 mice were benefitting from
effects of an acute glucose administration on spatial memory Johnson
et al., 2019. Similarly, in a different apoE mouse model in which E3 or
E4 was expressed at comparable levels in brains of mice deficient in
murine apoE, E4 female mice benefitted from effects of testosterone and
dihydrotestosterone on memory while E3 female mice did not (Raber
et al., 2002). In addition, male E4 mice were more susceptible to effects
of androgen receptor blockade than E3 mice and untreated E4 mice had
lower cytosolic androgen receptor binding in cortex than E4 mice
(Raber et al., 2002). We recognize that in all these studies a single dose
was used for the treatments and it cannot be excluded yet that E3 and
E4 carriers might need to receive a different dose based on apoE iso-
form-dependent dose-response curves. This is unlikely though as the
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protective effects of a healthy lifestyle on reducing dementia risk seems
also apoE isoform-dependent and evident in non-E4 carriers only
(Licher et al., 2019).

7. Conclusions

The purpose of this review was to present the evidence between the
connection of apoE and cerebral insulin, implicated in the develop-
mental origin of IR and AD (Fig. 3). The majority of this evidence has
been generated within the last decade, highlighting that this research
area is growing and its importance. We know a lot more about the
transport of insulin into the CNS than we do about the transport of
apoE. Yet we do know quite a bit about how apoE might alter cere-
brovascular blood flow and BBB function. We hope to uncover more
about how these two might regulate BBB transport of one another. In-
creased understanding of how apoE and cerebral insulin might work
together to impact CNS IR will facilitate the development of therapeutic
strategies to overcome this deficit.
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