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Abstract 

Increasing evidence suggests that alpha-synuclein (α-syn) oligomers are obligate intermediates in 

the pathway involved in α-syn fibrillization and Lewy body (LB) formation, and may also 

accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the 

development of tools and methods to detect and quantify α-syn oligomers has become 

increasingly crucial for mechanistic studies to understand the role of these oligomers in PD, and 

to develop new diagnostic methods and therapies for PD and other synucleinopathies. The 
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majority of these tools and methods rely primarily on the use of aggregation state-specific or 

conformation-specific antibodies. Given the impact of the data and knowledge generated using 

these antibodies on shaping the foundation and directions of α-syn and PD research, it is crucial 

that these antibodies are thoroughly characterized, and their specificity or ability to capture 

diverse α-syn species is tested and validated. Herein, we describe an antibody characterization 

and validation pipeline that allows a systematic investigation of the specificity of α-syn 

antibodies using well-defined and well-characterized preparations of various α-syn species, 

including monomers, fibrils, and different oligomer preparations that are characterized by 

distinct morphological, chemical and secondary structure properties. This pipeline was used to 

characterize 18 α-syn antibodies, 16 of which have been reported as conformation- or oligomer-

specific antibodies, using an array of techniques, including immunoblot analysis (slot blot and 

Western blot), a digital ELISA assay using single molecule array technology and surface 

plasmon resonance. Our results show that i) none of the antibodies tested are specific for one 

particular type of α-syn species, including monomers, oligomers or fibrils; ii) all antibodies that 

were reported to be oligomer-specific also recognized fibrillar α-syn; and iii) a few antibodies 

showed high specificity for oligomers and fibrils but did not bind to monomers. These findings 

suggest that the great majority of α-syn aggregate-specific antibodies do not differentiate 

between oligomers and fibrils, thus highlighting the importance of exercising caution when 

interpreting results obtained using these antibodies. Our results also underscore the critical 

importance of the characterization and validation of antibodies before their use in mechanistic 

studies and as diagnostic and therapeutic agents. This will not only improve the quality and 

reproducibility of research and reduce costs but will also reduce the number of therapeutic 

antibody failures in the clinic. 
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Introduction 

Several neurodegenerative disorders are characterized by the presence of cytoplasmic 

proteinaceous inclusions termed Lewy bodies (LBs), which are enriched in misfolded and 

aggregated forms of the presynaptic protein alpha-synuclein (α-syn) (Goedert et al. 2017). These 

diseases include Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple 

system atrophy (MSA), which are collectively referred to as synucleinopathies. Early studies of 

the ultrastructural properties and compositions of LBs revealed that they are highly enriched in 

filamentous structures (Duffy & Tennyson 1965; Lashuel 2020), which were later shown to be 

composed of α-syn (Spillantini et al. 1997; Spillantini et al. 1998). These findings, combined 

with the discovery that mutations in the gene that encodes α-syn causes early-onset forms of PD 

(Polymeropoulos et al. 1997), led to the hypothesis that the process of α-syn fibrillisation and LB 

formation plays a central role in the pathogenesis of PD and other synucleinopathies. However, 

the failure of this hypothesis to explain several neuropathological and experimental observations 

prompted the possibility that intermediates generated on the pathway to α-syn fibrillization and 

LB formation, rather than the fibrils or LBs themselves, are the primary toxicity-inducing and 

disease-causing species. These observations include 1) the lack of a strong correlation between 

Lewy pathology burden, neurodegeneration and disease severity (Colosimo et al. 2003; 

Parkkinen et al. 2008); 2) the presence of LBs in the brains of individuals who do not show any 

symptoms of PD or other synucleinopathies at the time of death (Parkkinen et al. 2005; Frigerio 

et al. 2011); and 3) the identification of patients who exhibit Parkinsonian symptoms in the 

absence of LBs e.g. PD patients harboring parkin and LRRK2 G2019S mutations (Kay et al. 

2005; Gaig et al. 2006; Cookson et al. 2008; Johansen et al. 2018). These observations are 

similar to those demonstrating the lack of a correlation between amyloid-plaque burden and 

cognitive decline in Alzheimer’s disease (AD) (Nelson et al. 2012; Jung et al. 2016; Arboleda-

Velasquez et al. 2019), which have supported the toxic oligomer hypothesis of AD. 

 

Several lines of evidence support the α-syn oligomer hypothesis. Both on- and off-pathway 

soluble and nonfibrillar α-syn oligomers of different sizes and morphologies were consistently 

observed during the in vitro aggregation of α-syn under different conditions (Conway et al. 2000; 

Lashuel et al. 2002; Cappai et al. 2005). Subsequent studies over the past decade have also 

provided evidence for the presence of α-syn oligomers in biological fluids such as saliva, blood 
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plasma, basal tears, and cerebrospinal fluid (CSF) from patients suffering from PD and other 

synucleinopathies (El-Agnaf et al. 2006; Tokuda et al. 2010; Hirohata et al. 2011; Wang et al. 

2011; Majbour et al. 2016; Vivacqua et al. 2016; Hamm-Alvarez et al. 2019). Several of these 

studies suggested that the level of oligomers is correlated with the diagnosis of PD and/or disease 

progression (Sharon et al. 2003; El-Agnaf et al. 2006; Paleologou et al. 2009). One major caveat 

of these studies is that they were potentially carried out using tools and immunoassays that do 

not distinguish between oligomers and other higher-order aggregated forms of α-syn (fibrils or 

amorphous aggregates). Nonetheless, they paved the way for further studies demonstrating that 

α-syn oligomers/aggregates are secreted by neurons (Sharon et al. 2003; Tofaris et al. 2003; Jang 

et al. 2010; Tokuda et al. 2010; Majbour et al. 2016) in the brain, and could mediate the 

propagation of α-syn pathology and cause neurodegeneration. Indeed, several studies have 

reported that α-syn oligomers are released by neurons via exocytosis (Jang et al. 2010) and are 

then taken up by other cells via different mechanisms, including endocytosis (Desplats et al. 

2009), trans-synaptic propagation (Danzer et al. 2012) or receptor-mediated uptake (Lee et al. 

2008). Furthermore, α-syn oligomers have been shown to directly or indirectly contribute to α-

syn-induced toxicity and neurodegeneration via different mechanisms, including but not limited 

to i) the disruption of cell membrane integrity by the formation of pores in the membrane (Volles 

et al. 2001; Danzer et al. 2007); ii) synaptic toxicity or neuronal signaling dysfunction (Diógenes 

et al. 2012; Rockenstein et al. 2014; Kaufmann et al. 2016; van Diggelen et al. 2019); iii) the 

failure of protein degradation pathways (Cuervo et al. 2004; Klucken et al. 2012; Tekirdag & 

Cuervo 2018); iv) endoplasmic reticulum dysfunction (Colla et al. 2012); v) mitochondrial 

dysfunction (Parihar et al. 2009; Di Maio et al. 2016); and vi) the enhancement of inflammatory 

responses (Wilms et al. 2009). These observations, combined with the overwhelming evidence 

that oligomer-induced toxicity is a key contributor or driving force leading to neurodegeneration 

in Alzheimer's disease (AD), fueled greater interest in the development of tools, therapies and 

diagnostics that specifically target α-syn oligomers. This includes the development of various 

protocols for the preparation of oligomers, the generation of oligomer-specific antibodies, and 

immunoassays for quantifying oligomers. 

 

Oligomers can be broadly defined as all the soluble multimeric species that exist before the 

formation of α-syn fibrils, including a) dimers, trimers and low molecular weight assemblies, 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



which are not easily discernable by electron microscopy (EM) and atomic force microscopy 

(AFM)), and b) higher molecular weight oligomers with different morphologies that are 

composed of >10 monomers, which are easily detectable by EM, AFM and other imaging 

techniques (Lashuel et al. 2002; Lashuel & Lansbury 2006; Stöckl et al. 2013; Cremades et al. 

2017; Ruggeri et al. 2018; Kumar et al. 2020a). Our current knowledge of the biophysical 

properties of α-syn oligomers has been shaped primarily by results obtained by investigating α-

syn aggregation and fibril formation in vitro. The propensity of α-syn to form oligomers is highly 

dependent on several factors, such as the protein concentration and sequence (including the 

presence of disease-associated mutations and post-translational modifications) (Lashuel et al. 

2002; Paslawski et al. 2014a; Paslawski et al. 2014b), interactions with metals, other proteins 

and small molecules, and chemical modification by specific molecules (e.g. dopamine, 4‐oxo‐2‐

nonenal, 4‐hydroxy‐2‐nonenal (HNE), and epigallocatechin gallate) (Danzer et al. 2007; Qin et 

al. 2007; Ehrnhoefer et al. 2008; Näsström et al. 2011b). Depending on the conditions used, 

different types of α-syn oligomers have been consistently observed in vitro, including globular, 

spherical, amorphous, curvilinear and pore-like oligomers (Figure 1) (Lashuel et al. 2002; 

Kumar et al. 2020a). It remains unknown to what extent these oligomers resemble the oligomers 

that form in different cell types in the brains of patients. Several studies have reported the 

detection of oligomers in cell cultures, in the brains of animal models of synucleinopathies, and 

during the analysis of cerebrospinal fluids (CSF) and postmortem examinations of brains of PD, 

DLB and MSA patients (Sharon et al. 2003; Tofaris et al. 2003; Jang et al. 2010; Tokuda et al. 

2010; Majbour et al. 2016). However, the evidence to support the presence of specific oligomers 

in these studies has been based for the most part on the detection of SDS-resistant oligomeric 

bands by Western blotting (Baba et al. 1998; Sharon et al. 2003; Tsigelny et al. 2008), the use of 

proximity ligation assays (Roberts et al. 2015), or the reliance on “oligomer-specific” antibodies 

or immunoassays. Thus, much of the knowledge and many of the hypotheses in the field today 

are based on conclusions drawn from studies relying on antibodies. 

 

One major untested assumption related to the use of oligomer-specific antibodies and 

immunoassays is that the antibodies used are capable of capturing the structural and 

morphological diversity of α-syn oligomers in vivo. Notably, all these antibodies were generated 

using specific recombinant α-syn aggregates, fibrils or oligomers generated under in vitro 
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conditions. Some of the limitations of existing antibody validation approaches include the 

following: 1) the lack of detailed characterization of in vitro oligomer preparations with respect 

to their purity, homogeneity and structural properties; 2) the use of oligomer preparations that 

may not reflect the conformational, biochemical and morphological diversity that exists in the 

brain; and 3) the lack of research that establishes whether the specificity of antibodies is driven 

by their high affinity for oligomers, or by the avidity binding characteristics of the antibodies.  

 

Given the impact of the use of antibodies on shaping our knowledge of α-syn and its role in 

health and disease, and on developing diagnostics and therapies for PD and synucleinopathies, 

we developed a protocol that enables systematic assessment of the specificity of α-syn antibodies 

using well-defined and well-characterized preparations of α-syn fibrils, oligomers, and 

monomers. This approach was then used to evaluate a library of 18 α-syn antibodies, 16 of which 

were reported to be aggregate-specific (Table 2). These antibodies can be broadly classified 

depending on the immunogens used for their generation: oligomers based on the use of i) a 

modified version of full-length α-synuclein (antibody clones 24H6, 12C6, 26F1, and 26B10); ii) 

in vitro generated α-syn fibrils (antibody clones 7015, 9029, SYNO2, SYNO3, and SYNO4); iii) 

recombinant α-syn aggregates (antibody clones A17183A, A171183B, A17183E, and 

A17183G); iv) synthetic α-syn peptides encompassing amino acids 44 to 57 (5G4) or filaments 

derived from recombinant “exact sequence is not disclosed by the vendor” (MJFR-14) or amino 

acids 115-125 (ASyO5) ; vi) recombinant full-length α-syn monomers (SYN211); and vi) a 

recombinant truncated α-syn variant consisting of residues 15-123 (SYN-1) (Table 2). To verify 

the specificity of these antibodies, we first screened them all against well-characterized 

preparations of α-syn species (monomers, oligomers, and fibrils) using immunoblot analysis (slot 

blotting and Western blotting) and a digital enzyme-linked immunosorbent assay (ELISA) using 

single molecule array (SIMOA) technology (Figure 1). To further scrutinize the conformational 

specificity of the antibodies, we tested them against different types of oligomer that exhibit 

distinct morphological, chemical and secondary structure properties. Finally, the binding affinity 

of selected antibodies was determined using surface plasmon resonance (SPR). This approach 

enabled us to define the specificity of the antibodies to a high degree and show that although 

some antibodies were specific for aggregated forms of α-syn and did not recognize monomers, 

all antibodies that were reported to be oligomer-specific also recognized fibrillar α-syn. 
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Furthermore, some of the antibodies that were reported to be oligomer- or fibril-specific also 

recognized α-syn monomers. We also identified an antibody that showed a preference for -

sheet-enriched fibrils and oligomers, but not for disordered oligomers or monomers. Our studies 

reveal that none of the antibodies tested (Table 2) showed any unique preferential specificity for 

one particular form of α-syn species, including monomers, oligomers or fibrils, and that it is 

possible to develop antibodies that recognize diverse α-syn oligomers and fibrils. Our work 

underscores the importance of using well-characterized tools (in vitro-produced calibrants) and 

multiple methods to define the specificity of antibodies. This will not only help us to advance PD 

research, but will also improve the selection of promising antibody candidates and reduce the 

number of failures in advanced clinical trials of PD therapeutics. 

 

 

Results 

Preparation and characterization of α-syn monomers, oligomers and fibrils 

To investigate the specificity of the antibodies listed in Table 2, we first assessed their specificity 

towards α-syn monomers, oligomers, and fibrils. To accomplish this goal, we generated well-

characterized preparations of human α-syn 1) fibrils, 2) oligomers and 3) monomers that were 

“free” of cross-species contamination. The purity of each preparation was verified using our 

recently described centrifugation-filtration protocol (Kumar et al. 2020a) (Figure 2A). Given that 

α-syn oligomers and fibrils are always in equilibrium with monomers, it is difficult to eliminate 

the presence of monomers completely. To eliminate or minimize the amount of monomers 

(<5%), all fibril and oligomeric samples were subjected to centrifugation-filtration protocol 

immediately prior to their use in our studies, as previously described (Kumar et al. 2020a). 

Similarly, to ensure that the α-syn monomeric preparations were free of any preformed 

aggregates, the monomeric samples were filtered through a 100 kDa filter, and the flow-through 

(aggregate-free monomers) was collected and kept on ice and used immediately. 

 

Several procedures have been developed with the aim of generating homogenous preparations of 

oligomers in vitro, but all were shown to result in preparations that contain mixtures of oligomers 

that are structurally and morphologically diverse. However, it is possible to generate preparations 

that are enriched in specific oligomeric species by subfractionating these preparations using size 
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exclusion chromatography or other separation methods (Lashuel et al. 2002; Lashuel & 

Lansbury 2006). The protocols involve the generation of oligomers either by incubating 

recombinant α-syn monomers at high concentrations in buffers with or without additional 

components such as dopamine (Conway et al. 2001; Cappai et al. 2005; Norris et al. 2005; 

Leong et al. 2009; Rekas et al. 2010; Choi et al. 2013; Planchard et al. 2014), lipids (Broersen et 

al. 2006; Trostchansky et al. 2006; Qin et al. 2007; Nasstrom et al. 2009; Näsström et al. 2011a; 

Näsström et al. 2011b; De Franceschi et al. 2011; Diógenes et al. 2012; Xiang et al. 2013), 

metals (Lowe et al. 2004; Cole et al. 2005; Danzer et al. 2007; Danzer et al. 2009; Wright et al. 

2009; Schmidt et al. 2012), alcohols (Danzer et al. 2007; Ehrnhoefer et al. 2008; Danzer et al. 

2009; Illes-Toth et al. 2015) , or by using methods that are based on the use of chemical cross-

linking agents (Ruesink et al. 2019). In the absence of additional components, oligomers are 

found to exhibit heterogeneous morphologies, such as globular, spherical, annular pore-shaped, 

rectangular and tubular-shaped, and are usually but not always enriched in -sheet structures 

(Lashuel et al. 2002). In the presence of additional components such as dopamine, lipids or 

alcohols, oligomers are found to have spherical, globular, rod-shaped or curvilinear 

morphologies, which are structurally different from primarily disordered, -helical or β-sheeted 

structures, suggesting that the formation of oligomers is strongly influenced by the environment 

in which they form (Conway et al. 2001; Lowe et al. 2004; Norris et al. 2005; Broersen et al. 

2006; Danzer et al. 2007; Nasstrom et al. 2009; Rekas et al. 2010; De Franceschi et al. 2011; 

Näsström et al. 2011a; Diógenes et al. 2012; Bae et al. 2013; Choi et al. 2013; Fecchio et al. 

2013; Planchard et al. 2014). 

 

Recombinant α-syn was used for the preparation of oligomers and fibrils. For the preparation of 

oligomers (Lashuel et al. 2002; Paslawski et al. 2016), 12 mg/mL α-syn monomer was dissolved 

in PBS and incubated at 37°C and 900 rpm for 5 h. After incubation, the sample was centrifuged, 

and the supernatant was applied to a size exclusion chromatography (SEC) column (Hiload 

26/600 Superdex 200 pg) to separate the monomers from the oligomers (Figure 2B). Analysis of 

these fractions by SDS-PAGE under denaturing conditions showed the expected profile of 

monomeric and high molecular weight (HMW) bands, suggesting that the oligomer preparations 

contained a mixture of SDS-resistant and SDS-sensitive oligomers. An alternative explanation 

could be that the observed monomers were released from the ends/surfaces of the oligomers in 
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the presence of SDS. The HMW species (with a molecular weight distribution of up to 1 MDa) 

could be visualized at the top of the resolving portion of the gel (Figure 2C). As expected, the 

monomers that were separated using SEC, it appeard in the gel around 15 kDa (Figure 2D), 

which was consistent with the expected MW of α-syn of 14461 Da (Figure 2E). The samples 

were analyzed by CD spectroscopy to ensure that each of the preparations exhibited the expected 

secondary structure signatures of oligomers and monomers. Oligomers exhibited a CD spectrum 

with a broad minimum peak centered at 219 nm, indicating the presence of mixed secondary 

structure contents dominated by β-sheet structures (Figure 2F). Monomers possessed a 

peak with the minimum at 198 nm consistent with their predominantly disordered structures 

(Figure 2F). 

 

Next, we performed EM studies on monomer and oligomer preparations. Because of their small 

size (~14 kDa), the monomers are not visible by electron microscopy (Figure 2G). In contrast, 

the EM of the oligomer preparations showed heterogeneous morphologies consisting of annular 

pore-like structures and spherical and rectangular tubular-like shaped particles (Figure 2H) 

(Lashuel et al. 2002) with a mean width of approximately 10 nm (Figure 2I). To prepare the 

fibrils, we followed the protocol described in Kumar et al., 2020. In brief, the lyophilized α-syn 

were dissolved in PBS to a final concentration of ~300 M and incubated with shaking at 37 C 

for five days at 1000 rpm. Next, we used our filtration protocol (Kumar et al. 2020a) to remove 

any remaining monomers and oligomers from the fibril preparations. The fibrils are enriched in 

β-sheet structures, as evidenced by the minimum peak at 221 nm in the CD spectrum shown in 

Figure 2J and the characteristic streaking pattern in the SDS-PAGE analysis, which confirmed 

the presence of SDS-resistant high molecular weight species of α-syn (Figure 2K). 

Ultrastructural analysis by EM revealed that these fibrils were polymorphic with fibril 

morphologies, including straight, twisted, or stacked fibrillar structures (Figure 2L), with a mean 

width of approximately 13 nm (Figure 2M). 

 

 

Stability of α-syn preparations 

Since these preparations were to be characterized in different labs, we investigated their stability 

to ensure that they would not change their properties due to the shipping and storage conditions. 
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Therefore, we subjected the oligomers to several cycles of freezing and thawing by snap-freezing 

them 3-4 times followed by room temperature thawing and incubation at temperatures of 4°C 

and 37°C for 2 days (Figure 2N). Interestingly, we found that the morphological distribution of 

the oligomers was not significantly altered when the oligomers were subjected to up to 3-4 

freeze-thaw cycles or incubated at 4°C for 2 days (Figure 2O and 2I). However, the oligomeric 

mean width was slightly reduced by approximately 6% after incubation at 37°C (Figure 2O), 

which could be due to the release of α-syn monomers from the oligomeric structures. 

 

We also tested the stability of the oligomer preparations using the digital ELISA assay based on 

the differences in the level of detection of oligomers at known concentrations under different 

solution conditions. Oligomers at 20 and 200 pg/mL were incubated at three different 

temperatures (2-8°C, +20-25°C or 36- 38°C) for different durations (2, 4 and 24 h). In parallel, 

the effect of freezing and thawing (F/T) the samples 1x, 3x, and 5x was also tested. These 

samples were analyzed by the SIMOA sandwich assay using the A17183B antibody, which was 

captured on beads. The oligomer preparations are stable at 4°C for up to 24 hours and at 22°C for 

up to 4 hours. At temperature (37°C) for long incubation time (24 h), there was a significant 

decrease in the signal. When subjected to freeze/thaw cycles, a decrease in the signal was 

observed at lower (20 pg/mL) but not at higher concentrations (100 pg/mL) of oligomers. This 

evaluation did not include any optimization regarding the formulation of the oligomeric α-

synuclein to ensure optimal stability in the follow-up experiments shown in Figure 4. However, 

these data, as well as the results of the EM analysis did not indicate any significant changes in 

the stability of the oligomers that could influence the interpretation of the results from the 

experiments performed in this study.  

 

 

Profiling the immunoreactivity of antibodies to different α-syn species by immunoblotting 

Prior to our immunoblot experiments, we ensured equal amount of protein loading on the 

nitrocellulose membranes using a combination of Ponceau S staining (for slot blot analysis), 

Coommassie staining and silver nitrate staining (for Western blot analysis) (Supplementary 

figure 1). To assess the specificity of the antibodies, we first performed slot blot analysis of all 

the antibodies listed in Table 2 using pure preparations of α-syn monomers, oligomers, and 
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fibrils under non-denaturing conditions (Figure 3A). Among the 18 antibodies tested (Figure 

3B), 16 were reported in the literature to be conformation- or aggregation-state (oligomers or 

fibrils) specific; see Table 2 (Kovacs et al. 2012; Vaikath et al. 2015; Covell et al. 2017; van 

Diggelen et al. 2019). The remaining two antibodies, Syn 211 (which recognizes an epitope in 

the C-terminus region spanning residues 121-125) (Giasson et al. 2000) and SYN-1 (which 

recognizes an epitope in the NAC region spanning residues 91-99 of α-syn) (Perrin et al. 2003), 

are sequence-specific and recognized all three species. Surprisingly, we found that none of the 

antibodies tested (Table 2) had specific immunoreactivity towards only one particular species of 

α-syn (either the monomer, oligomers or fibrils). All 16 reported conformation-specific 

antibodies detected both oligomers and fibrils. Interestingly, among these, 1) the antibody clone 

5G4 showed exceptional immunoreactivity towards oligomers and fibrils in a concentration-

dependent manner (increased dose dependency) and almost no immunoreactivity towards 

monomers at both concentrations tested; 2) the antibodies SYNO3 and A17183E showed 

stronger immunoreactivity towards oligomers and fibrils but very weak (only at high 

concentrations) or no immunoreactivity towards monomers. Except for these three antibodies, 

the rest of the antibodies fell into one of the following three categories: i) antibodies that 

recognized oligomers and fibrils (even at low concentrations) with higher specificity than 

monomers (clones 26F1, SYNO2, and A17183B; ii) antibodies that recognized oligomers and 

fibrils in a concentration-dependent manner (high concentration  stronger detection) but also 

showed weak immunoreactivity towards monomers at high concentrations (clones 24H6, 

A17183A, SYNO4, 7015, 26B10, and A17183G); and 3) antibodies that were non-specific and 

recognized all three forms of α-syn (clones 9029, 12C6, ASyO5, and MJFR-14) (Figure 3A; 

summarized in Table 5). 

 

Given that many of these antibodies are also commonly used to assess the presence or formation 

of α-syn aggregates in cellular and animal models of synucleinopathies or in postmortem brain 

tissues using Western blot analysis, we assessed their immunoreactivity toward α-syn monomers, 

oligomers, and fibrils using this technique (Figure 3C). Although the samples are mixed and 

boiled in Laemmeli buffer which contains SDS prior to loading into the SDS-PAGE gels, it is 

not clear whether this treatment is sufficient to denature all the α-syn aggregates, i.e. the 

conformational state of the various α-syn species detected by Western blot remains undefined.  
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As expected, the sequence-specific antibodies SYN211 and SYN-1 showed stronger 

immunoreactivity towards monomers, oligomers and the high molecular weight bands in the 

fibrillar samples (Giasson et al. 2000; Perrin et al. 2003). This is consistent with the fact that the 

epitopes of these antibodies are outside of the domains that form the cores of oligomers and 

fibrils. Interestingly, antibodies such as 5G4, A17183E, 24H6, 26F1, A17183A, A17183G, 

SYNO2 and SYNO4 showed no or very weak immunoreactivity towards any of the three α-syn 

species when 36 ng the samples was used, suggesting that these antibodies recognize a native 

conformation that is lost upon treatment with SDS. Specifically, 5G4 and A17183A did not 

detect any of the α-syn bands. The 24H6 antibody reacted weakly only with the oligomeric band 

(at the top of the resolving gel). A17183E and 26F1 weakly detected monomers along with the 

detection of HMW bands. In contrast, several antibodies, including SYNO3, A17183B, 26B10, 

9029, 12C6, AsyO5, MJFR-14 and 7015, which were reported to be oligomer/aggregate-specific, 

showed cross-reactivity and detected SDS-denatured monomers, SDS-resistant oligomers and 

HMW bands in the fibrillar samples without any preference for one form of α-syn.  

 

Given that some antibodies (5G4, A17183E, 24H6, 26F1, A17183A, A17183G, SYNO2 and 

SYNO4) had weak or no reactivity against α-syn at 36 ng, we repeated the Western blot analysis 

using a high concentration (180 ng) of α-syn. Interestingly, we observed similar results for 5G4 

and A17183E (Figure 3D and Table 6), whereas 26F1 and 24H6 showed concentration-

dependent reactivity to α-syn species (high concentration  stronger detection). However, the 

antibodies A17183A, A17183G, SYNO2 and SYNO4 which showed minimal detection at 36 ng 

(Figure 3C) displayed strong reactivity to α-syn bands at 180 ng (Figure 3D). Taken together, 

these results suggest that all the antibodies tested here do not preferentially detect one particular 

α-syn species (consistent with the slot blot analysis). Furthermore, Western blot analysis showed 

that many of the reported conformational- and aggregate-specific antibodies detected SDS-

resistent HMW α-syn species and monomeric in SDS-PAGE gels (summarized in Table 6). 

These findings highlight the limitation of using selected antibodies to profile α-syn species by 

Western blot and underscore the critical importance of using multiple antibodies to capture the 

diversity of α-syn species.  
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Next, we assessed the antibody specificity towards α-syn monomers, oligomers and fibrils using 

a sandwich ELISA assay. We employed this assay for the detection of antibody specificity 

against low picogram concentrations of α-syn species under soluble conditions. The assay format 

utilizes the covalent capture of conformation-specific antibodies by a microsphere (Figure 4A). 

The three α-syn species described above were used as analytes at two concentrations (100 and 

1000 pg/mL). A pan-synuclein antibody was included as a pairing antibody with the oligomer-

specific antibody. 

 

When monomeric α-syn was used as the analyte, 12 of the 15 antibodies yielded lower than 

signal-to-noise S/N = 2, which is used as a threshold (Figure 4B). Three antibodies (clones 12C6, 

7015 and 9029) showed S/N values higher than 2. In terms of immunoreactivity against 

oligomeric α-syn, 14 antibodies yielded S/N values higher than 2, although four antibodies 

(A17183E, 26F1, 24H6, and 26B10) possessed S/N values close to 2 in the presence of low 

concentrations of oligomers (100 pg/mL), but the immunoreactivity was enhanced at high 

concentrations (1000 pg/mL). The antibody 5G4 yielded the lowest S/N value of 1 at both 

concentrations (Figure 4C). When using fibrillar α-syn as an analyte, 14 antibodies resulted in 

S/N values higher than 2, while 26F1 showed immunoreactivity in the presence of high 

concentrations (1000 pg/mL) but had lower than borderline immunoreactivity toward 100 pg/mL 

of fibrils (Figure 4D). These experiments revealed that several antibodies reacted with 

monomeric α-syn, including 12C6 and 9029, whereas 7015 was borderline reactive. Those 

antibodies with strong immunoreactivity toward oligomers (10 antibodies: A17183A, A17183B, 

A17183G, SYNO2, SYNO3, SYNO4, 12C6, 7015, 9029 and MJFR14) also had strong 

immunoreactivity toward fibrils. The antibody 26F1 showed concentration-dependent 

immunoreactivity toward oligomers and fibrils (high concentration  stronger 

immunoreactivity), while the antibodies A17183E, 24H6, 26B10 and 5G4 showed greater fibril 

specificity. No antibodies could be identified that were solely oligomer-specific with no 

immunoreactivity toward α-synuclein monomers or fibrils, as observed by the slot blot analysis ( 

Figure 3B) (summarized in Table 5). 

 

 

Characterization of the specificity of the antibodies toward morphologically and 

structurally different forms of oligomeric α-syn 
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Since our knowledge of the morphological and conformational properties of native oligomers in 

the brain is unknown, we sought to further assess the specificity of the antibodies toward 

different preparations of oligomers that exhibited distinct structurally, chemical and 

morphologically properties. The use of these different oligomer preparations allowed us to test 

whether differences in the morphologies/structures of α-syn oligomers could influence the 

immunoreactivity or binding specificities of the antibodies. We employed dopamine (DA) 

(Figure 5A) and 4-hydroxy-2-nonenal (HNE) (Figure 5B) to prepare cross-linked human WT α-

syn oligomers. Several studies have shown that the interaction of DA with α-syn promotes the 

formation of α-syn oligomers and influences α-syn aggregation propensity and neurotoxicity 

(Conway et al. 2001; Mor et al. 2017), raising the possibility of the presence of DA-modified α-

syn oligomeric species in PD patient brains. Similarly, HNE, a physiological byproduct of lipid 

peroxidation, has been shown to play roles in oxidative stress responses and to alter the 

aggregation of α-syn in PD (Qin et al. 2007; Ingelsson 2016). 

 

The DA- and HNE-induced oligomers (Figure 5 C and D) were prepared by the incubation of 

DA or HNE with α-syn, followed by the isolation of the oligomers using SEC as described 

above. Mass spectrometry analysis of the monomeric fractions from the SEC purifications (in 

both DA- and HNE-induced oligomer preparations; Figure 5C and 5D) showed masses that are 

higher than the expected mass of monomeric α-syn (14460 Da). In the samples where α-syn was 

co-incubated with dopamine, we observed an increase in mass by 65 Da (14525 Da; 

Supplementary figure 2A), which may correspond to the oxidation of the four methionine present 

in α-syn (4*16=64 Da). For the α-syn monomers isolated by SEC from the HNE-α-syn sample 

mixtures, we observed several peaks reflecting the addition of single or multiple modification of 

156 Da each (14615 Da, 14771 Da, 14928 Da and 15084 Da; Supplementary figure 2B), 

corresponding to the formation of HNE-α-syn adducts. The DA-induced oligomers exhibited CD 

spectra with a minimum at 198 nm, revealing the presence of species with predominantly 

disordered conformations and little structure (Figure 5 E, Table 4). However, the HNE-induced 

oligomers showed a broad CD spectrum centered at 219 nm that is more similar to the CD 

spectrum of the oligomers (Figure 2F), indicating these oligomers are rich in -sheet structure 

(Figure 5J, Table 4). Analysis of these fractions by SDS-PAGE analysis under denaturing 

conditions (Figure 5F: DA oligomers, Figure 4K: HNE-induced oligomers) showed a very 
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similar gel profile for both types of oligomers, with the presence of HMW bands at the top of the 

resolving part of the gel and a light band of monomers at 15 kDa that may have been released 

from the oligomers in the presence of SDS. 

 

EM ultrastructural analysis of the DA-induced oligomers showed the presence of oligomers with 

near-spherical morphologies of different shapes and sizes (Figure 5G), as previously shown 

(Conway et al. 2001; Cappai et al. 2005; Mahul-Mellier et al. 2015). These oligomers exhibited 

a mean width of approximately 13 nm (Figure 4I). However, the HNE-induced oligomers 

appeared to be more homogenous and displayed a curvilinear (chain-like) morphologies with a 

mean width of approximately 8 nm (Figure 5L and 5-N). 

 

Next, we tested the stability of these oligomers by monitoring changes in their sizes and 

oligomeric morphologies as described above for the oligomers shown in Figure 2. Neither 

repeated cycles of freeze-thaw conditions or longer incubations at 4 C seem to influence the 

morphologies of the DA oligomers. The number/density of the oligomeric particles on the EM 

grids was significantly reduced for the DA oligomeric sample incubated at 37 C (Figure 5H), 

and a decrease in the mean width to approximately 10 nm was also observed (Figure 5I). Under 

identical conditions, the HNE oligomers did not show major changes in their morphologies or 

mean width (Figure 5M and 5N).  

 

To investigate whether the antibodies in Table 2 show differential immunoreactivity to 

morphologically, chemically and conformationally distinct oligomer preparations under native 

conditions, we performed slot blot analysis using DA- and HNE-induced oligomers and 

monomers as a control (Figure 6A). The majority of the antibodies we tested detected DA- and 

HNE-induced oligomers and monomers irrespective of their morphological or structural 

differences (Figure 6B). Strikingly, among all the antibodies tested, 26F1 showed no 

immunoreactivity toward DA-induced oligomers, weak immunoreactivity toward monomers but 

very strong immunoreactivity toward HNE-induced oligomers, which is consistent with the data 

shown in Figure 3B. 26F1 was generated against oligomerized HNE-modified α-syn. The 5G4 

antibody, which does not recognize α-syn monomers, also showed strong immunoreactivity 

toward HNE-induced oligomers but exhibited weak immunoreactivity toward DA-induced 
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oligomers, which could be due to the presence of small population of structured DA oligomers 

(Table 4) or due to the weak affinity of 5G4 to the ensemble of DA-induced oligomers. As 

expected, the sequence-specific antibodies SYN211 and SYN-1 detected both DA- and HNE-

induced oligomers and monomers. 

 

The antibodies that showed stronger immunoreactivity toward HNE-induced oligomers can be 

categorized further depending on their immunoreactivity toward DA-induced oligomers and 

monomers as follows: i) A17183E showed enhanced detection of DA- and HNE-induced 

oligomers compared to monomers; ii) 24H6, 9029, ASyO5, A17183A, 26B10, MJFR-14 and 

A17183G showed stronger immunoreactivity to HNE-induced oligomers (even at a low 

concentration of protein of 36 ng per spot) and concentration-dependent detection of DA-induced 

oligomers and monomers; iii) SYNO2, SYNO3, SYNO4, A17183B, 7015 showed enhanced 

detection of HNE- and DA-induced oligomers and concentration-dependent immunoreactivity 

toward monomers (weak binding at a low concentration of monomers, 36 ng of protein per spot). 

In contrast, 12C6 showed very strong nonspecific detection of DA- and HNE-induced oligomers 

as well as monomers irrespective of the concentration of proteins loaded in each spot in the slot 

blot analysis, consistent with the ELIA results. 

 

Next, we investigated whether the concentration of antibodies may influence their 

immunoreactivities towards different α-syn species. To do this, we selected few antibodies that 

were shown to be aggregate specific (26F1, 5G4) and others that are nonspecific and recognize 

different α-syn forms (Syn211, SYN-1, 9029, SynO4, MJFR-14 and ASyO4). We reassessed 

their specificity over antibody concentrations ranging from 2 to 200 ng/mL) and observed similar 

results (Supplementary figure 3) as reported in (Figure 3B, Figure 6B) at all the antibody 

concentrations tested.  

 

In summary, our immunoblotting studies (Figure 3, Figure 6 and Supplementary figure 3) 

demonstrate that none of the antibodies showed any preferential specificity toward one particular 

α-syn species, including monomers, oligomers and fibrils. However, we observed some 

exceptions: i) the antibody clone 26F1 did not show any immunoreactivity toward the largely 

unstructured DA-induced oligomers but was highly specific for -sheet-enriched oligomers, 
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HNE-induced oligomers and fibrils; ii) the antibody 5G4 showed weak immunoreactivity toward 

the largely unstructured DA-induced oligomers but stronger immunoreactivity towards -sheet-

enriched oligomers, HNE-induced oligomers and fibrils (summarized in Table 5). These 

differences in immunoreactivity emphasize the importance of using many antibodies in parallel 

rather than a single antibody for the identification of pathological oligomers in the brain given 

the heterogeneous nature and structural properties of such oligomers. 

 

 

Kinetics of the binding of α-syn monomers and oligomers to immobilized antibodies 

To further characterize and validate the specificity of the antibodies, we assessed their binding 

affinity and kinetics to monomeric and oligomeric α-syn species using SPR (Figure 7A). The 

antibodies were immobilized on the SPR chip surface at low densities. Figure 7 and 

supplementary figure 4 show the SPR sensorgrams of selected antibodies (seven in total; six 

conformational and one sequence-specific) as a function of time as obtained by the successive 

injection of monomers or oligomers at concentrations ranging from 30 to 2000 nM. Sensorgram 

plots were fitted to extract the kinetic parameters, such as the binding affinity (KD) and 

association (ka) and dissociation (kd) rate constants of the binding between antibodies and 

monomer or oligomer complexes. The fitting of the plots was based on either a 1:1 binding 

model or by a global heterogeneous ligand binding model, which provides kinetic parameters for 

two binding sites. Collectively, all of the tested antibodies showed binding responses to both α-

syn monomers and oligomers with varying binding affinities. Interestingly, many of the 

antibodies that were found to be highly specific for oligomers/fibrils (Figure 3B) also showed 

some binding to monomers. However, the binding affinities (KD) of the antibodies A17183A, 

SYNO4, and 26F1 reflected M affinities toward monomers, which was consistent with the slot 

blot data (Figure 3B). The kinetic parameters obtained from the sensorgrams are summarized in 

Table 3. 

 

The shape of the dissociation portion of the SPR sensorgrams (after 120 seconds) provides clues 

about the binding affinity of the antibodies toward monomers or oligomers; a stronger affinity is 

reflected by a flatter slope of the dissociation curve (slower off-rate), but a weaker affinity is 

reflected by a steeper curve (faster off-rate). Figure 7 and supplementary figure 4 show the SPR 
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sensorgrams of the antibodies upon titration of monomers and oligomers. Fitting with a 1:1 

binding model was possible for the binding of a few antibodies to α-syn monomers. These 

antibodies showed weak binding affinities to monomers with KD values of of 3.61 M 

(A17183A), 5.67 M (SYNO4) and 76 M (26F1). However, the same antibodies exhibited 

stronger binding affinities towards oligomers as evident by the fitting of the raw data which was 

possible only by heterogeneous binding model, suggesting two possible oligomer binding sites: 

A17183A (KD1: 3.67 M, KD2: 45 nM), SYNO4 (KD1: 249 nM, KD2: 2.14 pM) and 26F1 

(KD1: 2.12 M, KD2: 279 pM) (Figure 7B and SI Figure 1A, Table 3). A stronger binding 

affinity for oligomers by antibodies A17183A, SYNO4 and 26F1, is in agreement with our slot 

blot analyses (Figure 3B), confirming that these antibodies bind with greater specificity to 

oligomers than monomers. 12C6 and 9029 showed stronger binding toward oligomers (Figure 

7C and Supplementary figure 4, Table 3), but also exhibited good binding to monomers. This is 

consisitent with the fact that these antibodies showed binding to monomers by slot blots and 

ELISA (Figure 4B) and detected α-syn under denaturing conditions. However, it was not 

possible to fit the data and calculate the kinetic rate constants and binding affinities for 9029. 

Both antibodies showed a slow dissociation of monomers as evidenced by the fact that the 

dissociation portion of the sensorgrams (after 120 seconds) returns slowly to the baseline 

response units (RU, y-axis) but not as rapidly as seen with A17183A, 26F1 and SynO4. These 

observations suggest that the antibodies 9029 and 12C6 possessed a stronger affinity to 

monomers, in comparison to A17183A, 26F1 and SynO4, which exhibit weak binding affinity to 

monomers.  

 

The MJFR-14 antibody also showed preference for binding oligomers, but still showed binding 

to monomers. The SPR sensograms suggested two distinct kinetics events on the dissociation 

portion with a rapid drop (after 120 seconds) indicating a major fraction of monomers 

dissociating fastly because of the weak affinity to MJFR-14 (KD1: 3.29 M). However, the RU 

values did not return to baseline, suggesting that MJFR-14 might have a second binding to 

another conformation of monomers (KD2: 0.25 nM) or binds strongly to a small population of α-

syn aggregates which might have formed from the monomers during the SPR experimental 

timeframe. MJFR-14 also showed two binding kinetics against oligomers, but, both exhibited 

very stronger affinitiy (KD1: 0.76 nM and KD2: 2.8 pM). As expected, SYN211, which 
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recognizes all three forms of α-syn, showed a stronger affinity for monomers (Figure 7D). The 

fitting of SYN211 binding to oligomers was not possible but indicated stronger binding to 

oligomers, as reflected by the shape of the curves.  

 

 

Discussion 

Increasing evidence supports the hypothesis that different forms of α-syn aggregates (e.g. fibrils 

and oligomers) play an important role in the pathogenesis of PD. Testing this hypothesis requires 

the development of therapeutic drugs or antibodies that target the different species and assays 

that enable the accurate assessment of changes in their levels during disease progression and in 

response to therapies. Although there are several biochemical, structural and imaging-based 

approaches for the direct and indirect visualization and characterization of α-syn fibrils 

(Shahmoradian et al. 2019; Lashuel 2020), detection of nonfibrillar oligomeric α-syn species in 

cells or postmortem brain tissues remains challenging. The existing methods and techniques, 

such as Western blotting and proximity ligation assays, provide indications of the presence of 

oligomers but not information about their size, conformation and/or morphology. The instability 

and low abundances of native oligomers make the isolation and characterization of their 

structural properties using NMR and Cryo-EM very challenging. Due to these challenges, 

researchers in the field have resorted to the development of conformation- or aggregate-specific 

antibodies. 

 

One of the major untested assumptions about conformation-specific antibodies is that they are 

capable of capturing the structural and morphological diversity of α-syn aggregates in vivo or to 

target specific α-syn aggregates. However, these assumptions are rarely experimentally tested. 

Therefore, there is a need to develop protocols and pipelines that enable systematic 

characterization of antibodies using a well-characterized and validated set of α-syn reagents 

representing, to the extent possible, the diversity of α-syn in vivo. Towards this goal, we 

developed such a validation pipeline and used it to evaluate the binding specificity of 18 α-syn 

antibodies, 16 of which were reported to be conformation- or aggregation state-specific (Table 

2). First, the antibodies were screened against disordered monomers and preparations of β-sheet 

rich α-syn oligomers and fibrils. This enabled us to test the specificity of the antibodies to 
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monomers, oligomers and fibrils. To further assess whether antibody binding was indeed driven 

by conformational specificity or avidity, the antibodies were screened against three preparations 

of α-syn oligomers with distinct biochemical, conformational and morphological properties 

(disordered oligomers and oligomers with different β-sheet and secondary structure contents) 

(Table 4). In parallel, we also tested the specificity and binding affinities of various α-syn 

antibodies by SIMOA assays and SPR, respectively.  

 

 

None of the antibodies specifically detect either monomers, oligomers or fibrillar α-syn 

species 

Surprisingly, we found that none of the antibodies tested in our study had unique specific 

immunoreactivity toward one particular α-syn species (monomers, oligomers or fibrils). All 16 

reported conformational-specific antibodies detected both unmodified β-sheet rich oligomers and 

fibrils, demonstrating that they could not differentiate between oligomers and fibrils and are not 

specific for a particular conformation or α-syn aggregation state. 

 

In an attempt to assess the specificity of the antibodies against a diverse set of oligomers, we also 

produced oligomeric preparations (DA and HNE oligomers) possessing structurally, chemically 

and morphologically distinct properties (Figure 5). The dopamine-induced oligomers were 

predominantly disordered, whereas the HNE-induced oligomers were rich in β-sheet structure. 

The immunoreactivity toward these oligomers was compared to that toward the unmodified 

oligomers, which are enriched in β-sheet structures (Figure 3 and Figure 6). Despite the 

similarity of the CD signatures of HNE-induced and unmodified α-syn oligomers, the two types 

of oligomers exhibited distinct morphological features (Figure 2 and Figure 5). The structural 

and morphological diversity of the different oligomer preparations provided a unique opportunity 

to assess the specificity of the conformational-specific antibodies. 

 

As expected, the Syn 211 and SYN-1 antibodies detected all three forms of α-syn species 

(monomers, oligomers and fibrils) as well as the DA- and HNE oligomers in both slot blots and 

Western blots (Figure 3) (Giasson et al. 2000; Perrin et al. 2003). This could be attributed to the 

fact that their epitopes are located in regions that do not constitute the core of α-syn oligomers or 
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fibrils (Paslawski et al. 2014b; Li et al. 2018; Guerrero-Ferreira et al. 2019) and are thus likely to 

be exposed in both aggregation states. Our results are consistent with previous studies in which 

Syn 211 was shown to detect monomers and HNE-induced oligomers (van Diggelen et al. 2019) 

and the detection of monomers and fibrils by SYN-1 (Vaikath et al. 2015; Weihofen et al. 2019). 

Interestingly, the antibody clone 5G4 showed increased immunoreactivity with high 

conformational specificity for all forms of α-syn aggregates but showed very weak 

immunoreactivity toward monomers. We can not rule out the possibility that the binding to the 

DA oligomers could arise from the presence of partial -sheet structure or small population of 

oligomers with -sheet structure in these preparations, as suggested by the analysis of the CD 

data (Table 4). Previous studies reported that 5G4 detects widespread and distinct α-syn-induced 

pathology in the cortical and brain stem brain regions in postmortem synucleinopathic brain 

tissues (Kovacs et al. 2012) but only weakly detects monomeric bands in brain homogenate 

samples from Lewy body dementia patients. Furthermore, van Diggelen et al. found that 5G4 

antibody detected HNE-induced oligomers and showed no immunoreactivity toward monomers 

(van Diggelen et al. 2019). 

 

However, several of our observations with a number of antibodies were not consistent with 

previously published reports or data provided by the manufacturers of the antibodies. Previous 

reports indicated that the antibody MJFR-14 is a conformational-specific antibody that detects 

filamentous α-syn aggregates (Sampson et al. 2016; Elfarrash et al. 2019; Kawahata et al. 2019), 

but not monomeric form of the protein. Martinez et al. reported that MJFR-14 is a conformation-

specific with enhanced immunoreactivity towards filaments but not to the denatured filaments or 

monomers by dot blot analysis (Martinez T. N. 2016; abcamCat.No.ab209538). Until the 

publication of a preprint version of this report in bioRxiv (Kumar et al. 2020b), the antibody was 

sold by (abcamCat.No.ab209538) as “Anti-Alpha-synuclein filament antibody [MJFR-14-6-4-2] 

- Conformation-Specific”. Furthermore, data obtained using Luminex assay demonstrated an 

increased specificity of MJFR-14 antibody towards α-syn oligomers compared to monomers and 

filaments (Martinez T. N. 2016) at low ng concentrations). Interestingly, it was previously shown 

that MJFR-14 exhibits weaker binding to monomers, which could be eliminated by preabsorbing 

the antibodies with recombinant α-syn (Martinez T. N. 2016). MJFR-14 has also been described 

as an oligomer-specific antibody. For example, Lassen et al. reported that MJFR-14 is highly 
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specific for oligomers but not to monomers (Lassen et al. 2018). Direct comparison to fibrils was 

not performed in this study. In line with these evidence, our ELISA Simoa assay showed that 

MJFR-14 does not bind to monomers at low picogram concentrations (Figure 4B) and although it 

binds to both to fibrils and oligomers, it exhibits preferential binding to fibrils compared to 

oligomers (Figure 4C and D). In addition, our slot blot analysis (Figure 3B and Figure 6B) 

showed stronger and similar immunoreactivity towards oligomers and fibrils but a weaker 

immunoreactivity to monomers at 36 ng concentrations. Collectively, our studies show that 

MJFR-14 shows high immunoreactivity toward all aggregated forms of α-syn, including 

unmodified oligomers, DA- and HNE-induced oligomers and fibrils, suggesting that this 

antibody is neither fibril- or oligomer-specific. Furthermore, MFJR-14 binds to both -sheet rich 

and disordered α-syn oligomers. Altogether, our findings confirm previous reports suggesting 

preferential binding of MFJR-14 to aggregate forms of α-syn, but also show that it still binds to 

monomers in a concentration-dependent manner (Figure 3, Figure 4, Figure 6, Figure 7C and 

Supplementary figure 3) and recognizes α-syn monomeric bands in SDS-PAGE gels (Figure 3C). 

These observations combined with MFJR-14 strong immunoreactivity towards disordered 

oligomers (DA oligomers) suggest that its preferential binding to oligomers and fibrils could be 

driven by avidity rather than by its conformational specificity. 

 

Similarly, Vaikath et al. reported that SYNO2, SYNO3, and SYNO4 can bind to α-syn oligomers 

and fibrils but not monomers (Vaikath et al. 2015). However, in our study, SYNO2 and SYNO3 

recognized strongly oligomers and fibrils and detected α-syn monomers in a concentration-

dependent manner (higher concentration of monomer  better immunoreactivity) (Figure 3 and 

Figure 6). Again, all three antibodies recognized equally -sheet rich (oligomers and HNE 

oligomers and disordered oligomers (DA oligomers), suggesting that their specificity to α-syn 

aggregates could be driven by avidity rather than conformational specificity. Interestingly, all 

three antibodies SYNO2, SYNO3, and SYNO4 recognized monomeric α-syn bands in SDS-

PAGE gels (Figure 3C and D). 

 

ASyO5 is another commercial antibody (Agrisera: AS13 2718) that has been reported to 

exclusively detect oligomers, but not monomers or fibrils (using dot blot, 

(AgriseraCat.No.AS132718). However, in our hand and using the α-syn samples described 
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above, we found that ASyO5 antibody binds non-specifically to α-syn monomers, different types 

of oligomers and fibrils (Figure 3B, Figure 6B and Supplementary figure 3).  

 

Among the 18 antibodies in Table 2, the binding affinity and kinetics of only three antibodies 

(SYNO2, SYNO3, and SYNO4) against α-syn fibrils but not monomers or oligomers have been 

described in the literature or in the material provided by the manufacturer (Vaikath et al. 2015). 

Most importantly, we could not find any comparative SPR or binding studies using well-

characterized preparations of α-syn monomers or different types of oligomers.  

The comparison of the kinetics data and binding affinities of various antibodies for monomers 

and oligomers showed a significant degree of variation in the values of ka, kd, and KD (Table 3). 

Antibody clones A17183A, 26F1, and SYNO4 showed high binding affinities for oligomers and 

weak binding affinities for monomers (Figure 7, Supplementary Figure 4 and Table 3). This 

suggests that these antibodies are highly conformationally specific, which is in agreement with 

the slot blot and Western blot data (Figure 3B and C). Interestingly, the A17183A antibody 

showed stronger immunoreactivity to unstructured DA oligomers (Figure 6), which may hint that 

the binding is, perhaps, driven by avidity rather than affinity. However, the 26F1 antibody 

showed specificity for -sheet-enriched oligomers but not for unstructured DA oligomers, 

suggesting that it could be truly conformationally specific. The very weak affinity of 26F1 with a 

KD of 76 M for monomers is also in line with all our analyses, including the ELISA analysis, 

suggesting that 26F1 is highly conformationally specific for -sheet-enriched α-syn aggregates. 

 

Other antibodies, such as 7015, 12C6, 9029 showed strong binding and immunoreactivities for 

monomers, oligomers and fibrils, although 7015 showed higher binding and immunoreactivity to 

oligomers and fibrils. By ELISA, the antibodies 12C6, 7015, and 9029 exhibited high 

immunoreactivity towards monomers at low pg concentrations (Figure 4B; 100 and 1000 pg/mL 

concentration of monomers used). This is consistent with both the slot blot and Western blot 

analyses, where these antibodies showed high immunoreactivity to monomers (Figure 3B) and 

detection of monomeric α-syn bands in denaturing gels (Figure 3C).  

 

Limitations of our study: 
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One major limitation of our work is that while we used diverse and well-characterized α-syn 

preparations of monomers, oligomers (different types), and fibrils to screen the antibodies, it 

remains unclear to what extent these species occur in the brain. That being said, we hypothesized 

that screening using a diverse set of species instead of using one specific type of α-syn oligomer 

is the best that we can do to approximate the complexity of α-syn species in vivo. The second 

limitation is that α-syn is subjected to different modifications in vivo, while all our protein 

standards were generated from unmodified recombinant α-syn. However, it is important to note 

that while we know a great deal about the different types of PTMs that occur in LBs and LNs 

and α-syn aggregates, very little is known about the PTM patterns of α-syn oligomers in vivo. 

Further studies are needed to address this knowledge gap. Finally, our studies focused on 

exploring the structural diversity of oligomers but not that of fibrils. We recognize this limitation 

and plan to address it in future studies. 

 

 

 

 

Conclusions 

Herein, we used multiple techniques to assess the α-syn species specificity of several commonly 

used conformational-specific and aggregation state α-syn antibodies. This was achieved using 

well-characterized preparation of α-syn monomers, fibrils and different preparation of oligomers 

of distinct structural and biochemical properties. Our results demonstrated that i) no antibodies 

could be identified that were solely monomer-specific, oligomer-specific or fibril specific; ii) all 

the antibodies that recognized α-syn oligomers also recognized α-syn fibrils and some 

recognized all three species (oligomers, fibrils and monomers); iii) the antibody clone 26F1 is 

the only antibody that was shown to be highly specific for -sheet-enriched oligomers, it detects 

oligomers and HNE-induced oligomers and fibrils but not for unstructured DA-induced 

oligomers and structurally disordered monomers; All other antibodies recognized both structured 

(-sheet enriched) and disordered oligomers, suggesting that their specificity could be driven by 

avidity rather than conformational specificity iv) the antibody clone 5G4 showed increased 

immunoreactivity toward -sheet-enriched oligomers, HNE-induced oligomers and fibrils, and 

unstructured DA-induced oligomers and almost no immunoreactivity toward monomers; iv) 
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antibodies clones A17183A, A17183E, SYNO4 preferentially detected all three types of 

oligomers and fibrils but reacted very weakly toward monomers; v) the majority of the other 

antibodies (such as 9029, 12C6, ASyO5, SYN-1, and SYN211) exhibited immunoreactivity 

towards all α-syn species under the conditions tested here. MJFR-14 shows more specificity to 

aggregated forms of α-syn by ELISA, but showed higher immunoreactivity to monomers by slot 

blot and Western blotanalyses. Although we failed to identify antibodies that target a single 

specific form of α-syn, i.e. monomers, oligomers or fibrils, our results show that it is possible to 

develop antibodies that target -sheet rich α-syn oligomers and fibrils or oligomers and fibrils of 

diverse conformational properties. Such antibodies could represent more reliable tools for 

measuring the total levels of aggregated α-syn. Finally, our findings show that it is unlikely that 

any of the existing oligomer-specific immunoassays are capable of providing an accurate 

assessment of the levels of α-syn oligomers or capturing the diversity of α-syn by Western blots 

and possible in tissues. Therefore, we propose that these oligomer assays should be reassessed 

for their ability to distinguish between α-syn oligomers and fibrils and that interpretation of 

previous and future studies should take into account the specificity and limitation of the 

antibodies used. Future studies aimed at deciphering the role of different α-syn species in the 

pathogenesis of PD should be carried out using multiple antibodies that have been characterized 

using α-syn multiple calibrants that capture, to the extent possible, the diversity of α-syn species 

in the brain. A similar approach can be applied to facilitate the development of accurate assays to 

assess target engagement of therapeutic antibodies.  
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Materials and methods 

Recombinant overexpression and purification of human WT α-syn  

Recombinant overexpression and purification of human WT α-syn was performed as described 

previously (Fauvet et al. 2012) with slight modifications. pT7-7 plasmids encoding human WT 

α-syn were used for transformation in BL21 (DE3) E-Coli cells on an ampicillin agar plate. A 

single colony was transferred to 400 mL of Luria broth (LB) medium containing 100 µg/mL 

ampicillin (AppliChem, A0839) (small-scale culture) and incubated overnight at 37 C and 180 

rpm. On the next day, the pre-culture was used to inoculate 3-6 liters of LB medium having 100 
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µg/mL ampicillin (large-scale culture). Upon A600 approaching 0.4 to 0.6, α-syn protein 

expression was induced by the addition of 1 mM 1-thio-β-d-galactopyranoside (AppliChem, 

A1008) and the cells were further incubated at 37 C and 180 rpm for four hours. This 

incubation step was followed by harvesting cells by centrifugation at 4000 rpm using JLA 

8.1000 rotor (Beckman Coulter, Bear, CA) for 30 minutes at 5 C. The harvested pellets were 

stored at -20 
o
C until the next step. The cell lysis was performed by dissolving the bacterial pellet 

in buffer A (20 mM Tris–HCl, pH 7.5) containing protease inhibitors (1 mM EDTA (Sigma-

Aldrich, 11873580001) and 1 mM PMSF (Applichem, A0999) followed by ultrasonication 

(VibraCell VCX130, Sonics, Newtown, CT) time: 5 min; cycle: 30 sec ON, 30 sec OFF; 

amplitude 70%. After lysis, centrifugation at 12000rpm and 4
o
C for 30minutes was performed to 

collect the supernatant. This supernatant was collected in 50 mL Falcon tube and placed in 

boiling water (100 
o
C) for about 15 minutes. This solution was subjected to another round of 

centrifugation at 12000 rpm and 4 
o
C for 30 minutes. The supernatant obtained at this step was 

filtered through 0.45 µm filters and injected into a sample loop connected to HiPrep Q FF 16/10 

(GE healthcare, 28936543). The supernatant was injected at 2 mL/min and eluted using buffer B 

(20mM Tris-HCl, 1M NaCl, pH 7.5) from gradient 0 to 70% at 3 mL/min. All fractions were 

analyzed by SDS-PAGE, and the fractions containing pure α-syn were pooled and concentrated 

using a 30 kDa molecular weight cut-off (MWCO) filters (MERCK, UFC903008) at 4 
o
C. The 

retentate was collected and dialyzed using 12-14 kDa MWCO Spectrapor dialysis membrane 

(Spectrum Labs, 9.206 67) against deionized water at 4 
o
C overnight to remove salts. Dialyzed 

solution was collected, snap-frozen, and lyophilized.  

 

Preparation of WT α-syn oligomers 

To generate monomer and fibril free α-syn oligomeric preparations, 60 mg of lyophilized 

recombinant α-syn protein was dissolved in 5 mL PBS (10 mM disodium hydrogen phosphate, 2 

mM potassium dihydrogen phosphate, 137 mM NaCl and 2.7 mM potassium chloride, pH 7.4) 

(final concentration: 12mg/mL) containing 5 µL Benzonase (final concentration: 1 µL 

benzonase/mL (MERCK, 71205-3). After dissolving, the solution is filtered through 0.22 µm 

filters (MERCK, SLGP033RS) and transferred to five low-protein binding 1.5 mL tubes, each 

containing 1 mL solution. These tubes were incubated in a shaking incubator at 37 
o
C and 900 

rpm for five hours. The samples were centrifuged at 12000g for 10 min at 4 
o
C to remove any 
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insoluble α-syn aggregates. 5 mL of supernatant was loaded into a sample loop of the 

chromatography setup. This sample was run through Hiload 26/600 Superdex 200pg (GE 

Healthcare, 28-9893-36) column equilibrated with PBS and eluted as 2.5 mL fractions at a flow 

rate of 1 mL/min. The elution of protein was monitored by UV absorbance at 280nm. Different 

fractions were visualized by SDS-PAGE analysis, and fractions of interest (oligomer) 

corresponding to the void volume peak were aliquoted (500 µL), snap-frozen, and stored at -20 

o
C. 

 

Preparation of DA-induced oligomers 

DA-induced oligomers were prepared as described previously (Mahul-Mellier et al. 2015). 

Briefly, the recombinant α-syn protein was dissolved in 20mM Tris and 100mM NaCl to have a 

final concentration of 140 µM (pH 7.4). After dissolving, the protein solution was filtered 

through a 100 kDa filter (MERCK, MRCFOR100). The filtrate was transferred to a low-protein 

binding tube and 20 equivalents of dopamine (final concentration: 2.8 mM) (Sigma-Aldrich, 

H8502) was added. This tube was covered with aluminum foil and incubated in a shaking 

incubator at 37 
o
C and 200 rpm for five days. The sample was centrifuged at 12000g for 10 min 

at 4 
o
C to remove any insoluble α-syn aggregates. The supernatant was loaded into a sample loop 

of the chromatography setup. This sample was then run through Superdex 200 Increase 10/300 

GL (GE healthcare, 28990944) column equilibrated with PBS and eluted as 0.5 mL fractions at a 

flow rate of 0.4 mL/min. The elution of protein was monitored by UV absorbance at 280 nm. 

The SEC fractions were analyzed by SDS-PAGE analysis, and fractions of interest (oligomer) 

were collected and stored at 4 
o
C. 

 

Preparation of HNE-induced oligomers 

HNE-induced oligomers were prepared as described previously (Näsström et al. 2011a). Briefly, 

the recombinant α-syn protein was dissolved in 20 mM Tris and 100 mM NaCl to have a final 

concentration of 140 µM (pH 7.4). After dissolving, the protein solution was filtered through 100 

kDa filter (MERCK, MRCFOR100). The filtrate was transferred to a low-protein binding tube 

and 30 equivalents of HNE (Cayman Chem, 32100) (final concentration: 4.2mM) was added. 

This tube was incubated in an incubator at 37
o
C under quiescent conditions for 18 hours. 

Following incubation, the sample was centrifuged at 12000g for 10 min at 4 
o
C to remove any 
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insoluble α-syn aggregates. The supernatant was loaded into a sample loop of the 

chromatography setup. This sample was run through Superdex 200 Increase 10/300 GL (GE 

healthcare, 28990944) column equilibrated with PBS and eluted as 0.5 mL fractions at a flow 

rate of 0.4 ml/min. The elution of protein was monitored by UV absorbance at 280nm. The SEC 

fractions were analyzed by SDS-PAGE analysis, and fractions of interest (oligomer) were 

collected and stored at 4 
o
C. 

 

Protein concentration estimation  

The concentration of α-syn samples such as monomers, oligomers, and fibrils were estimated 

using BCA assay and amino acid analysis. For BCA assay, microplate measurements were 

carried out using BCA protein assay reagents (Pierce, catalog number: 23227). Briefly, 

triplicates of known concentrations (from 10 µg/mL-1000 µg/mL) of bovine serum albumin 

(concentration standard) and an equal volume of α-syn samples were pipetted into microplate 

wells. To which, 200 µL of BCA working reagent was added and incubated at 37 C for 30 

minutes. Absorbance at 562 nm was measured using a Tecan plate reader. Using BCA assay 

based concentration estimation as standards, known concentrations (2-3 µg) of α-syn samples 

were pipetted into a conical insert, flash-frozen, and lyophilized. The dried form of α-syn 

samples was shipped to Functional Genomic Center Zurich for subjecting for amino acid 

analysis (AAA) for absolute quantification of α-syn samples concentrations.  

 

Preparation of WT α-syn fibrils 

WT α-syn fibrils were prepared as described in (Mahul-Mellier et al. 2020). Briefly, 4 mg of 

lyophilized recombinant α-syn was dissolved in 50 mM Tris, and 150 mM NaCl and pH was 

adjusted to 7.5. The solution is filtered through 0.2 µm filters (MERCK, SLGP033RS), and the 

filtrate is transferred to black screw cap tubes. This tube was incubated in a shaking incubator at 

37 
o
C and 1000 rpm for five days. After five days, the formation of fibrils was assessed by TEM 

and SDS-PAGE, followed by Coomassie staining as described in (Mahul-Mellier et al. 2018). 

 

Characterization of oligomers 

SDS-PAGE analysis 
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Human WT α-syn monomers, unmodified WT, DA-induced, and HNE-induced oligomers were 

run on 15% polyacrylamide gels, and Coomassie blue staining was performed as described 

previously (Kumar et al. 2020a). Before carrying out Western blot analysis, equal loading on the 

gel was also confirmed using Coomassie staining or silver staining (Invitrogen, LC6100) as per 

manufacturers protocol.  

 

TEM analysis 

TEM analysis of protein samples were performed as described previously (Kumar et al. 2020a). 

Briefly, 5 µL protein samples were placed on glow discharged Formvar and carbon-coated 200 

mesh-containing copper EM grids. After about a minute, the samples were carefully blotted 

using filter paper and air-dried for 30 s. These grids were washed three times with water and 

followed by staining with 0.7% (w/v) uranyl formate solution. TEM images were acquired by 

Tecnai Spirit BioTWIN electron microscope, and image analysis was performed by ImageJ 

software as described previously (Kumar et al. 2020a). 

 

Far-UV circular dichroism (CD) spectroscopy 

Approximately 150 µL of protein samples were loaded onto 1 mm path length quartz cuvette, 

and CD spectra were obtained on Chirascan spectropolarimeter (Applied Photophysics) with the 

following parameters as described in (Kumar et al. 2020a). Temperature: 20 
o
C; wavelength 

range: 198 to 250 nm; data pitch: 0.2 nm; bandwidth: 1 nm; scanning speed: 50 nm/min; digital 

integration time: 2 s. The final CD spectra was a binomial approximation on an average of 10 

repeat measurements. The secondary structural content of the oligomers was estimated using the 

online CD analysis tool known as CAPITO (Wiedemann et al. 2013). 

 

Mass spectrometry analysis  

Mass spectrometry (MS) analysis of proteins were performed by liquid chromatography-mass 

spectrometry (LC-MS) on the LTQ system (Thermo Scientific, San Jose, CA). Before analysis, 

proteins were desalted online by reversed-phase chromatography on a Poroshell 300SB C3 

column (1.0x75mm, 5um, Agilent Technologies, Santa Clara, CA, on the LTQ system). 10 uL 

protein samples were injected on the column at a flow rate of 300 uL/min and were eluted from 5 

% to 95 % of solvent B against solvent A, linear gradient. The solvent composition was, Solvent 
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A: 0.1% formic acid in ultra-pure water; solvent B: 0.1% formic acid in acetonitrile. MagTran 

software (Amgen Inc., Thousand Oaks, CA) was used for charge state deconvolution and MS 

analysis.  

 

Temperature stability analysis of oligomers  

Human WT α-syn unmodified WT, DA-induced and HNE-induced oligomers were tested for 

their stability at different temperature conditions. Morphological characteristics were assessed by 

TEM under conditions such as freeze-thaw cycles, storage at 4
o
C or 37

o
C for 5 days. 

 

Binding characterization of α-syn species to different antibodies 

Slot blot analysis 

Nitrocellulose membranes (Amersham, 10600001) were spotted with 5 µL and 1 µL samples 

volumes corresponding to 180 ng and 36 ng of α-syn proteins in duplicates (monomers, 

oligomers, DA-induced oligomers, HNE-induced oligomers and fibrils) per sample spot. The 

membranes were blocked for 1 hour with Odyssey blocking buffer (LiCoR, 927-40000), and 

then incubated overnight with different primary antibodies (Table 2) diluted in PBST at 2 µg/mL 

concentration for all the antibodies except SYN-1 antibody at 1 µg/mL concentration (Figure 3 

and 6). Varying concentrations of primary antibodies (200, 20 and 2 ng/mL) were used in the 

Supplementary figure 3. The membranes were washed three times, with 0.1% PBS-Tween 

(3x10minutes) and incubated with IRdye conjugated secondary antibodies (1:7500) (Table 1) for 

1 hour at RT. Thereafter, the membranes were washed three times, with 0.1% PBS-Tween 

(3x10minutes). The visualization was performed by fluorescence using Odyssey CLx from 

LiCor. Equal loading of protein samples on the membrane was confirmed using Ponceau S 

(MERCK, P3504) staining (2% Ponceau S (w/v) in 5% acetic acid).  

 

Western blot analysis 

Approximately 36 ng and 180 ng of proteins (monomers or oligomers or fibrils) were loaded 

onto 15 % SDS-PAGE gels (prior to loading samples were boiled at 95°C for 10 minutes) and 

run at 180 V for 1 hour in running buffer (25 mM Tris, 192 mM Glycine, 0.1% SDS, pH 8.3). 

Gels were transferred onto nitrocellulose membranes (Amersham, 10600001) at 25 V, 0.5 A, and 

45 minutes using Trans-Blot Turbo (Bio-Rad, 170-4155). The membranes were blocked for 1 
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hour with Odyssey blocking buffer (LiCoR, 927-40000), and then incubated overnight with 

different primary antibodies (Table 2) diluted in PBST at 2 µg/mL concentration for all the 

antibodies except SYN-1 antibody at 1 µg/mL concentration. The specificity of MJFR-14 was 

also assessed at 2 ng/mL against 180 ng of α-syn monomer, oligomers and fibrils 

(Supplementary Figure 3B). The membranes were washed three times, with 0.1% PBS-Tween 

(3x10minutes) and incubated with IR dye conjugated secondary antibodies (1:7500) (Table 1) for 

1 hour at RT. After that, the membranes were washed three times, with 0.1% PBS-Tween (3x10 

minutes). The visualization was performed by fluorescence imaging using Odyssey CLx from 

LiCor. 

 

Determination of antibody affinities by surface plasmon resonance (SPR, BIACORE) 

SPR data were collected on a Biacore 8K device (GE Healthcare). Antibodies were immobilized 

on a CM5 biosensor chip (GE Healthcare) at 10-20 μg/mL concentration in 10 mM acetate 

solution (GE Healthcare) at pH 4.5 to reach a final surface ligand density of around 2000-4000 

response units (RUs). In short, the whole immobilization procedure using solutions of 1-ethyl-3-

(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) mixture, 

antibody sample and ethanolamine, was carried out at a flow rate of 10 µl/min into the flow cells 

of the Biacore chip. Firstly, the carboxyl groups on the sensorchip surface were activated by 

injecting 200 µL of 1:1 (v/v) mixture of EDC/NHS (included in the amine coupling kit, Cytiva 

life sciences) into both flow cells 1 and 2 and followed by the injection of antibodies overflow 

cell 2 for 180 s. The remaining activated groups in both the flow cells were blocked by injecting 

129 µL of 1 M ethanolamine-HCl pH 8.5. The sensor chip coated with antibodies were 

equilibrated with PBS buffer before the initiation of the binding assays. Serial dilutions of 

analytes such as α-syn monomers or oligomers (oligomers) at a concentration ranging between 2 

M to 0.015 M in PBS buffer were injected into both flow cells at a flow rate of 30 uL/min at 

25 C. Each sample cycle has the contact time (association phase) of 120 seconds and followed 

by a dissociation time of 600 seconds. After every injection cycle, surface regeneration of the 

Biacore chips was performed using 10 mM glycine (pH 3.0). The obtained data were processed 

and analyzed using Biacore 8K evaluation software for the calculation of the binding kinetics 

(association rate constant (Ka) and dissociation rate constant (Kd)) and binding affinity (KD). 

The fitting of the data was based on either 1:1 binding model (mostly for the monomers) or 
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heterogeneous ligand binding model (for oligomers) using global kinetic fitting unless otherwise 

noted.  

 

Antibody characterization and stability analysis of oligomers by digital sandwich ELISA 

using Simoa technology  

The Quanterix Simoa platform is a highly sensitive platform that allows detection at the sub 

pg/mL concentration range (Rissin et al. 2010). Attempts to measure for example neurofilament 

light into plasma matrix were successful by Simoa technology as described before (Kuhle et al. 

2016). Kuhle et al compared three immunoassays for neurofilament light chain measurements 

into blood. The analytical sensitivity was 78 pg/mL and 0.62 pg/ml for the conventional ELISA 

and the Simoa based assay, respectively. The presence of conformational synuclein forms 

(oligomers and fibrils) into body fluids like CSF is expected to be low abundant making the 

Simoa platform the preferred technology platform for our experimental work. 

 

A sandwich ELISA Simoa immunoassay was used to assess the immunoreactivity of different α-

syn antibodies towards α-synuclein forms such as monomers, oligomers, and fibrils. To prepare 

the conjugated beads, paramagnetic carboxylated particles/beads were activated for 15 minutes at 

4 °C using 0.05 mg/mL of 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 

(EDAC) (ThermoScientific, Cat N°A35391) added to 1,4010
9
 beads/mL. The beads were 

washed using a magnetic separator, and 0.1 mg/mL of the oligomeric α-synuclein specific 

monoclonal capture antibody was added. After 2 hours of incubation on a mixer-shaker at 4 °C, 

the conjugation reaction was blocked (Quanterix blocking buffer, Cat N°101356) for 30 minutes 

at room temperature. The conjugated beads were washed and stored at 4 °C. The biotinylated 

detector antibody (SYN211) was used with an antibody/biotin ratio of 64. The assay was 

performed on the fully automated Quanterix Simoa HD-1 with a 2-step protocol. The undiluted 

samples were tested, which required 300 μL volume of samples without accounting for dead 

volume (duplicate testing). The calibrator diluent consists of 1xPBS with 0.1% milk, 0.1% 

Tween. The first incubation step of the sample with the beads was 60 minutes. After washing, 

the second incubation step with streptavidin-β-galactosidase (Quanterix, Cat N° 103397) was 5 

minutes. Prior to reading Resorufin-β-D-galactopyranoside (Quanterix, Cat N° 101736) was 
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added. The resulting fluorescence signal is captured and translated into an AEB value (Average 

Enzymes per Bead) that is proportional to the analyte concentration in the measured sample. 
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Figure 1: A schematic illustration of our antibody validation strategy. In brief, the pipeline 

included the preparation of well-defined preparations of α-syn monomers, oligomers, and fibrils. 

Oligomers were generated from three different protocols in an attempt to partially capture the 

morphological, chemical and structural heterogeneity of oligomers in vivo. The α-syn 

conformation-specific antibodies were procured from different sources. The immunoreactivity of 

these antibodies was assessed using slot blot, Western blot, a digital sandwich ELISA (SIMOA) 

assays and SPR. 

 

Figure 2: Preparation and characterization of α-syn monomers, oligomers, and fibrils. (A) 

A scheme depicting the preparation of α-syn monomers, oligomers, and fibrils. (B) SEC 

purification of monomers and oligomers. (C and D) SDS-PAGE analysis followed by Coomassie 

staining of oligomers (C) and monomers (D) purified from B. (E) ESI-MS spectra of monomers 

separated by SEC. (F) Comparison of the CD spectra of monomers and oligomers. Oligomers 

were predominantly enriched in -sheet structures and monomers showed a predominantly 

disordered structure. (G) Negatively stained EM analysis performed on monomers. (H) 

Negatively stained EM analysis performed on oligomers. (I) Width distribution of oligomers. (J) 

CD spectra of fibrils. (K) SDS-PAGE analysis followed by Coomassie staining of the total, 

supernatant, and pellet fractions obtained during fibril preparation. The pellet fraction is the fibril 

fraction devoid of monomers and oligomers that was used for further binding studies. (L) 
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Negatively stained EM analysis performed on fibrils. (M) Width distribution of the fibrils. (N) 

EM images and width distribution (O) of oligomers subjected to different temperature 

conditions, freeze-thawing cycles and incubation at 4 C and 37 C. and Q) Assessment of the 

stability of the oligomeric preparation by ELISA. Two concentrations of oligomers (20 pg/mL 

(P) and 100 pg/mL (Q)) were incubated at three different temperatures ranges (2-8°C, 20-25°C 

and 36-38°C) for varying times (2 h, 4 h and 24 h) or subjected to multiple freeze-thaw (F/T) 

cycles (1x, 3x, and 5x) (X-axis). The signals (AEB) from the immunoassay with the antibody 

A17183B were plotted on the Y-axis. The dashed lines represent the reference condition "ref" 

and a 10% decrease/increase in the AEB signal as arbitrary thresholds. 

 

Figure 3: In vitro binding analysis of antibodies against α-syn monomers, oligomers and 

fibrils using slot blots and Western blots. (A) A schematic illustration of slot blot showing the 

blotting with different α-syn samples on the nitrocellulose membrane. (B) Slot blot analysis of 

the immunoreactivity of α-syn antibodies against α-syn monomers (M), -sheet rich oligomers 

(O), and fibrils (F) under native conditions, spotted in duplicates at two different 

concentrations:180 ng and 36 ng. (C and D) Assessment of the immunoreactivity of antibodies 

against SDS and heat treated α-syn samples loaded at concentration of 36 ng (C) and 180 ng (D).  

 

Figure 4: ELISA Simoa assay of antibodies against monomers, oligomers and fibrils. A) An 

illustration of ELISA Simoa assay and its experimental steps. The 15 α-syn conformation 

specific antibodies were coupled to the beads as capture monoclonal antibodies (X-axis), 

respectively. α-syn monomers (B), oligomers (C), and fibrils (D) were used as the analyte (100 

and 1000 pg/mL). The detector antibody was a C-terminal monoclonal antibody (clone SYN211) 

with an epitope in the amino acid region from 121-125. The signal-to-noise values (S/N) are 

indicated on the Y-axis for the three α-syn forms. * indicates the availability of only 100 pg/mL 

oligomer data for antibody clone 9029 (C). 

 

Figure 5: Preparation of dopamine- and HNE-induced oligomers and analysis of their 

stability. Chemical structures of dopamine (A) and HNE (B). SEC purification of DA-induced 

oligomers (C) and HNE-induced oligomers (D) separated from monomers. (E) CD spectra of 

DA-induced oligomers. (F) Coomassie staining of dopamine and DA-induced oligomers. (G) 

Negatively stained EM analysis performed on DA-induced oligomers. DA-induced oligomers 

showed mainly spherical, undefined morphologies. (H) Assesment of the stability of the DA-

induced oligomers subjected to different temperature conditions incubation (4 C and 37 C) and 

and freeze-thawing as determined by analysis of their width distribution (I). (J) CD spectra of 

HNE-induced oligomers. (K) Coomassie staining of HNE-induced oligomers. (L) Negatively 

stained EM analysis performed on HNE-induced oligomers. (M) Assessment of the stability of 

HNE-induced oligomers incubation (4 C and 37 C) and and freeze-thawing as determined by 

analysis of their width distribution (N). 
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Figure 6: Slot blot analysis of antibodies against α-syn monomers and DA- and HNE-

induced oligomers. (A) A scheme illustrating the slot blot analysis showing the different α-syn 

samples blotted in the nitrocellulose membrane. (B) Assessment of the immunoreactivity of 

antibodies by slot blot against dopamine-induced unstructured oligomers (DO), α-syn monomers 

(M) and HNE-induced oligomers (HO), and fibrils (F) under native conditions and spotted in 

duplicates at two different concentrations: 180 ng and 36 ng.  

 

Figure 7: SPR-based kinetic analysis of different immobilized monoclonal antibodies (A17183A 

(B), MJFR-14 (C), and SYN211 (D)) binding to α-syn monomers (top) and oligomers (bottom) 

at 30, 60, 120, 250, 500, 1000 and 2000 nM concentrations. The antibodies were immobilized at 

a ligand density of approximately 3000-4000 RUs. The α-syn monomers or oligomers were 

injected for 2 min, followed by 5 min dissociation with injection of PBS buffer at a 30 μL/min 

flow rate. The sensorgrams are shown as colored lines representing varying concentrations of α-

syn monomers or oligomers, and the fits are shown as black lines. The kinetic parameters 

obtained from the fitting are shown in Table 3. 

 

 

Table 1: Materials and Reagents  

Equipment/Material description Supplier Catalogue/Reference 

Chromatography columns   

HiPrep Q FF 16/10 GE healthcare 28936543 

Hiload 26/600 superdex 200pg GE healthcare 28-9893-36 

Superdex 200 Increase 10/300 GL GE healthcare 28990944 

   

Tubes and Filters and dialysis membrane   

Low protein binding tubes Eppendorf 022431081 

30 kDa MWCO MERCK UFC903008 

100 kDa MWCO MERCK MRCFOR100 

0.22 um filters MERCK SLGP033RS 

0.45 um filters MERCK SLFH05010 

12-14 kDa MWCO dialysis membrane Spectrum Labs 9.206 67 

   

Chemicals and Reagents   

TRIS Biosolve 200923 

Ampicillin AppliChem A0839 

IPTG Biochemica A1008 

EDTA-free Protease Inhibitor Cocktail SIGMA 11873580001 

PMSF Applichem A0999 

Dopamine  Sigma Aldrich H8502 

4-hydroxy Nonenal (HNE) Cayman Chem 32100 

Benzonase® Nuclease HC MERCK 71205-3 

Ponceau S MERCK P3504 

SilverXpress Silver staining kit  Invitrogen LC6100 

   

Centrifuges and Sonicator   
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Ultrasonicator VibraCell, Sonics VCX130 

Benchtop centrifuge Eppendorf  5417R 

Ultracentrifuge Beckmann Coulter Optima Max XD 

   

Blocking Buffer and Secondary Antibodies   

Odyssey blocking buffer LiCoR 927-40000 

Goat anti-mouse AF680 Invitrogen A21058 

Goat anti-rabbit AF800 Invitrogen 926-32211 

Goat anti-rat IRDye 680RD LiCoR P/N 926-68076 
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Table 2: List and details of antibodies used in this study  

Antibody 

(clones) 
Source Specificity Immunogen Epitope Isotype Host 

Original 

Reference 

Characterization by 

purified -syn standards 

in the original reference 
24H6 

MJFF DOSAB* 
conformational 

 

HNE-induced 

oligomers 

not reactive towards 

recombinant FL α-syn 

nor synthetic peptides in 

the amino acid region 96-

140 

IgG2a, κ 

Mouse 

monoclonal 

 

 

(van Diggelen et al. 

2019)#  

 

 

 

NA 

26B10 IgG2a, κ 

26F1 IgG2a, κ 

12C6 
DHA induced 

oligomers 

reacts with synthetic 

peptide in the amino acid 

region 113-140 

IgG2a, κ 

7015 
UPenn 

 
conformational 

Strain A, in vitro α-syn 

PFF 

recognizes a 

discontinuous epitope 

with binding elements in 

the extreme C-terminus 

and near amino acid 50 

NA 
Mouse 

monoclonal 

(Covell et al. 2017) 

(Guo et al. 2013)  

Yes, 

Sandwich ELISA using 

Strain A fibrils, Strain B 

fibrils and monomer 

9029 
Strain B, in vitro α-syn 

PFF 
amino acids 32 – 58 

SYNO2 

Biolegend conformational 
α-syn fibrils (50 

μg/mouse) 

Weak signal for amino 

acids 127-140 detected 

by ELISA 

IgG1 

Mouse 

monoclonal 
(Vaikath et al. 2015) 

Yes,  

dot blot, inhibition ELISA, 

sandwich ELISA using fibrils 

and monomers 

SYNO3 IgG1 

SYNO4 IgG1 

A17183A 

Biolegend 
conformational 

 

Recombinant α-syn 

aggregate 
NA 

IgG2a, κ 

Rat 

monoclonal 

 

BioLegend  

Cat. No. 864901 

 

NA 

 

A17183E NA NA 

A17183G IgG1, κ 
BioLegend  

Cat. No. 865103 

A17183B IgG2a, κ 
BioLegend  

Cat. No. 865001 

MJFR-14 MJFF/Abcam conformational 

Recombinant α-syn 

filament amino acids 1 

to the C-term 

amino acids 133 – 138 NA 
Rabbit 

monoclonal 

Martinez et al., 2016,  

Poster 413.21, 

Abcam 

Cat. No. ab209538 

Yes,  

dot blot using filament, 

oligomer and monomer 

Luminex assay using 

monomer, oligomer and 

fibrils 

5G4 
Kovacs 

(Merck millipore) 

Aggregated α-

syn 

TKEGVVHGVATVAE 

(44 – 57) 
amino acids 46 – 53 IgG1, κ 

Mouse 

monoclonal 
(Kovacs et al. 2012) No 

ASyO5 Agrisera conformational 
Human α-syn (111-

125) 
NA IgG1 

Mouse 

monoclonal 

Agrisera Cat. No. 

AS13 2718 

Yes, dot blot using monomer, 

oligomer, and fibrils 

SYN211 Abcam sequence 
Recombinant full-

length Human α-syn 
amino acids 121 – 125 IgG1 

Mouse 

monoclonal 

(Giasson et al. 2000), 

Abcam  

Cat. No. ab80627 

Yes, 

Westetn blot using monomer 

SYN-1 BD-biosciences sequence 
Rat Synuclein-1 

amino acids 15-123 
amino acids 91 – 99 IgG1 

Mouse 

monoclonal 

(Perrin et al. 2003) 

BD-biosciences 

Cat. No. 610787  

Yes, 

Western blot using monomer 

*Antibodies were generated by ADx NeuroSciences in a MJFF sponsored project (DOSAB) in collaboration with Crossbeta. 
# Reference contains the information of the immunogen used for the generation of antibodies. 

DHA: docosahexaenoic acid; NA: informations not available
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Table 3: Kinetic parameters of the antibodies binding to α-syn monomers or oligomers  

 

 

 

 

 

 

 

 

 

 

 

Immobillised 

antibodies 

Injected α-

syn 
ka(M

−1
s

−1
) kd(s

−1
) KD 

     

A17183A 

monomers 1.18  10
4
 4.26  10

-2
 3.61 M 

oligomers ka1:2.3110
4  

ka2:2.99 10
3
 

kd1:8.46  10
-2 

kd2:1.35  10
-4

 

KD1: 3.67 M 

KD2: 45 nM 

     

SYNO4  

monomers 1.22  10
4
 6.93  10

-2
 5.67 M 

oligomers ka1:4.2510
5  

ka2:2.34 10
4
 

kd1:1.06  10
-1 

kd2:5.01  10
-7

 

KD1: 249 nM 

KD2: 2.14 pM 

     

26F1  

monomers 2.58  10
2
 1.97  10

-2
 76 M 

oligomers ka1:1.0110
4  

ka2:7.94 10
3
 

kd1:2.13  10
-2 

kd2:2.22  10
-6

 

KD1: 2.12 M 

KD2: 279 pM 

     

12C6  

monomers ka1:5.8710
4  

ka2:4.60 10
4
 

kd1:4.32  10
-2 

kd2:3.86  10
-3

 

KD1: 737 nM 

KD2: 8.4 nM 

oligomers ka1:4.4310
7  

ka2:1.32 10
4
 

kd1:3.29  10
-1 

kd2:9.83  10
-6

 

KD1: 7.4 nM 

KD2: 0.74 nM 

     

MJFR-14  

monomers ka1:1.0410
5  

ka2:2.22 10
4
 

kd1:3.43  10
-1 

kd2:5.7  10
-6

 

KD1: 3.29 M 

KD2: 0.25 nM 

oligomers ka1:9.0710
5  

ka2:1.54 10
4
 

kd1:6.95  10
-4 

kd2:4.31  10
-7

 

KD1: 0.76 nM 

KD2: 2.8 pM 

     

9029  
monomers No fitting No fitting No fitting 

oligomers No fitting No fitting No fitting 

     

SYN211  

monomers ka1:1.5210
4  

ka2:8.37 10
2
 

kd1:4.10  10
-1 

kd2:1.81  10
-5

 

KD1: 271 M 

KD2: 217 nM 

oligomers No fitting No fitting No fitting 
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Table 4: Morphologies and structural properties of oligomers used in this study 

 

Oligomers Morphologies Width/diameter 
Secondary structure composition (%) 

-helix -strand irregular 

Oligomers annular pore, 

spherical, 

tubular 

6-14 nm 27 38 32 

DA 

oligomers 

near-spherical, 

globular 

5-20 nm 11 11 78 

HNE 

oligomers 

curvi-linear 5-11 nm 27 26 49 
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Table 5: Immunoreactivity and binding specificity of antibodies against native structures of α-

syn species by different techniques 

 
M: monomers; O: oligomers; DO: DA induced oligomers; HO: HNE induced oligomers; F: fibrils. 

-- : no detection; + : faint detection; ++ : medium detection; +++ : strong detection; ø : data not available  

*** : strong affinity; * : weak affinity 

Immunogen Antibodies 
Slot blot analysis ELISA assay SPR 

M O DO HO F M O F M O 

oligomers 

26F1 + +++ -- +++ +++ -- ++ ++ * *** 

12C6 +++ +++ +++ +++ +++ +++ +++ +++ *** *** 

24H6 + +++ +++ +++ +++ -- ++ +++ ø ø 

26B10 + ++ +++ +++ ++ -- ++ +++ ø ø 

fibrils 

7015 ++ +++ +++ +++ +++ + +++ +++ ø ø 

9029 ++ +++ +++ +++ +++ ++ +++ +++ ø ø 

SYNO2 + +++ +++ +++ +++ + +++ +++ ø ø 

SYNO3 + +++ +++ +++ +++ + +++ +++ ø ø 

SYNO4 + +++ +++ +++ +++ -- +++ +++ * *** 

recombinant α-syn 

aggregates 

A17183A + +++ +++ +++ +++ -- +++ +++ * *** 

A171183B + +++ +++ +++ +++ + +++ +++ ø ø 

A17183E + +++ +++ +++ +++ -- + +++ ø ø 

A17183G + ++ +++ +++ +++ + +++ +++ ø ø 

a.a. (44-57) 5G4 + +++ ++ +++ +++ -- -- +++ ø ø 

a.a. (1-140) SYN211 +++ +++ +++ +++ +++ ø ø ø *** ø 

a.a. (15-123) SYN-1 +++ +++ +++ +++ +++ ø ø ø ø ø 

a.a. (111-125) ASyO5 ++ +++ ++ +++ +++ ø ø ø ø ø 

α-syn filaments MJFR-14 +++ +++ +++ +++ +++ -- ++ +++ * *** 
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Table 6: Immunoreactivity of antibodies against SDS and heat treated α-syn samples by Western 

blot analysis 

 

 

 

 

M: monomers; O: oligomers; F: fibrils. 

-- : no detection; + : faint detection; ++ : medium detection; +++ : strong detection; ø : data not available 

 Western blot analysis against α-syn at 36 ng (for all antibodies) and 180 ng (# selected antibodies) concentrations. 

Immunogen Antibodies 

Western blot analysis 

M O F 

36 ng 180 ng 36 ng 180 ng 36 ng 180 ng 

oligomers 

26F1
#
 + ++ +++ +++ + ++ 

12C6 +++ ø +++ ø +++ ø 

24H6
#
 -- ++ + ++ -- ++ 

26B10 ++ ø ++ ø +++ ø 

fibrils 

7015 + ø + ø ++ ø 

9029 +++ ø +++ ø +++ ø 

SYNO2
#
 -- +++ +++ +++ + +++ 

SYNO3 +++ ø +++ ø +++ ø 

SYNO4
#
 + +++ +++ +++ + +++ 

recombinant α-syn 

aggregates 

A17183A
#
 -- +++ -- +++ -- +++ 

A171183B +++ ø +++ ø +++ ø 

A17183E
#
 + -- +++ +++ + + 

A17183G
#
 -- +++ -- +++ + +++ 

a.a. (44-57) 5G4
#
 -- -- -- -- -- + 

a.a. (1-140) SYN211 +++ ø +++ ø +++ ø 

a.a. (15-123) SYN-1 +++ ø +++ ø +++ ø 

a.a. (111-125) ASyO5 +++ ø + ø +++ ø 

α-syn filaments MJFR-14 +++ ø +++ ø +++ ø 
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Highlights 

 We present a pipeline for the characterization and validation of -syn antibodies 

 16 conformation-/aggregation-state specific -syn antibodies were characterized  

 None of the antibodies tested are specific for one particular type of α-syn species 

 All antibodies that were reported to be oligomer-specific recognized α-syn fibrils 

 Previous findings based on “oligomer-specific” antibodies should be reassessed  
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