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ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoprotein A-I (apoA-I)
and apolipoprotein E (apoE). ABCA1 is an essential regulator of high density lipoproteins (HDLs) and reverse
cholesterol transport — a role that determines its importance for atherosclerosis. Over the last 10 years studies
have provided convincing evidence that ABCA1, via its control of apoE lipidation, also has a role in Alzheimer's
disease (AD). A series of reports have revealed a significant impact of ABCA1 on Aβ deposition and clearance in
AD model mice, as well as an association of common and rare ABCA1 gene variants with the risk for AD. Since
APOE is the major genetic risk factor for late onset AD, the regulation of apoE level or its functionality by ABCA1
may prove significant for AD pathogenesis. ABCA1 is transcriptionally regulated by Liver X Receptors (LXRs) and
Retinoic X Receptors (RXRs) which provides a starting point for drug discovery and development of synthetic
LXR and RXR agonists for treatment of metabolic and neurodegenerative disorders. This review summarizes the
recent results of research on ABCA1, particularly relevant to atherosclerosis and AD.

© 2014 Elsevier Inc. All rights reserved.
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Introduction

Alzheimer's disease (AD) is a senile dementia characterized by the
presence of senile plaques made of amyloid β (Aβ), neurofibrillary tan-
gles, and cognitive decline. Although the inheritance of ε4 allele of APOE
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is the major genetic risk factor for late-onset sporadic form of AD
(LOAD), the mechanisms underlying this association remain elusive. It
is conceivable that additional genetic factors influence the risk, precipi-
tating the development of dementia.

There is overwhelming data suggesting a link between lipid metab-
olism andAD (Hanson et al., 2013;Hughes et al., 2014; Reed et al., 2014;
Simons et al., 1998). Genetic linkage and association studies have iden-
tified genes involved in cholesterol metabolism or transport as AD
susceptibility genes (Harold et al., 2009; Jones et al., 2010). Dyslipid-
emia is a shared risk factor for cardiovascular disease and AD [reviewed
in (Reitz, 2013)].

ATP binding cassette transporter A1 (ABCA1) belongs to the large su-
perfamily of ABC transmembrane transporters (Koldamova et al., 2010;
Oram and Vaughan, 2006). An important step towards understanding
ABCA1 function was the discovery that mutations in its sequence cause
Tangier disease (TD) characterized by impaired cellular cholesterol ef-
flux, low levels of HDL particles and inefficient reverse cholesterol trans-
port (RCT). Transcription of ABCA1 is regulated by Liver X Receptors
(LXRs), Retinoic X Receptors (RXRs) and Peroxisome Proliferator-
activated Receptors (PPARs). ABCA1 regulates cholesterol efflux to
cholesterol acceptors, primarily lipid-free apoA-I and apoE but not to
large HDL particles. ABCA1 is an essential mediator of HDL generation
and loss of its function results in almost complete absence of HDL and
apoA-I and a decrease of apoE. The role of ABCA1 as a regulator of HDL
level determines its significance for atherosclerosis and cardiovascular
disease.

The significance of ABCA1 for AD originates from its effect on apoE
lipidation and stability. Experimental and clinical data suggest that
apoE is involved in Aβ aggregation, toxicity and clearance [reviewed
in (Tai et al., 2014)], therefore it is conceivable to expect that ABCA1
as a modulator of apoE metabolismwill have a role in AD pathogenesis.
Data from experimental animals demonstrated that Abca1 deficiency
abolishes the lipidation of apoE and increases amyloid plaques in AD
model mice (Hirsch-Reinshagen et al., 2005; Koldamova et al., 2005a,
b; Wahrle et al., 2005). In contrast treatment of AD model mice with
LXR, RXR or PPAR agonists ameliorates AD phenotype (Cramer et al.,
2012; Donkin et al., 2010; Fitz et al., 2010; Koldamova et al., 2005b;
Terwel et al., 2011; Yamanaka et al., 2012). Additional topic of interest
for AD is the effect of ABCA1onHDL in plasmaandHDL-like lipoproteins
in brain. Association studies have shown that lower concentration of
HDL (Reed et al., 2014) and apoA-I (Merched et al., 2000) correlates
with increased risk for AD. The results from GenomeWide Association
Studies (GWAS) designed to reveal genetic association of ABCA1 with
AD are controversial, however.

In this review, we summarize the results of research exploring the
role of ABCA1 in metabolic diseases, mainly atherosclerosis and
diabetes, and pathogenesis of LOAD. We will focus on the mechanism
of cholesterol efflux and generation of HDL, and how they affect cardio-
vascular and neurodegenerative diseases.

ABCA1 mediated the regulation of cholesterol efflux and
HDL generation

ABCA1 is a transmembrane protein that transfers phospholipids and
cholesterol to lipid free apoA-I or other apolipoproteins for generation
of discoidal HDL particles (Oram andVaughan, 2006). Discoidal HDL par-
ticles are composed of 100–200 lipid molecules and are surrounded by
two apoA-I molecules (Lund-Katz and Phillips, 2010). A major function
of HDLs is to participate in reverse cholesterol transport, a process by
which excess cholesterol is removed from the cells and transported to
the liver where it is metabolized for excretion (Oram and Vaughan,
2006). ABCA1 is comprised of two halves each having 6 transmembrane
domains, and two large extracellular domains connected by intramolec-
ular disulfide bonds that are important for the direct binding to apoA-I
(Nagata et al., 2013; Oram and Vaughan, 2006). The mechanism by
which ABCA1 translocates cholesterol and phospholipids is not fully
Please cite this article as: Koldamova, R., et al., ATP-binding cassette tran
(2014), http://dx.doi.org/10.1016/j.nbd.2014.05.007
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agreed upon but it is established that binding of ABCA1 to lipid-free
apolipoproteins is critical for initiating the process of lipid efflux
(Westerterp et al., 2014). In contrast to ABCA1, another transporter —
ABCG1 mediates cholesterol efflux to HDL particles but not to lipid-free
apolipoproteins (Gelissen et al., 2006; Wang et al., 2004).

According to an earlier model ABCA1 initiates translocation of phos-
pholipids and cholesterol from the cytoplasmic to exofacial leaflet of the
plasma membrane which leads to membrane bending and formation
of exovesiculated domain to which apoA-I binds with high affinity
(Vaughan and Oram, 2003; Vedhachalam et al., 2007). The next step is
a spontaneous solubilization of membrane phospholipids and choles-
terol in the exovesiculated domain by the bound apoA-I followed by for-
mation of discoidal HDLparticles (Vedhachalamet al., 2007;Westerterp
et al., 2014). A different model for the formation of discoidal HDL parti-
cles was recently proposed by Nagata et al. (2013) (Fig. 1). The authors
used a single-molecule fluorescence tracking technique to demonstrate
that ABCA1monomer diffuses freely and translocates lipids on the plas-
ma membrane by an ATP-dependent mechanism (Fig. 1, step 1). Upon
reserving sufficient cholesterol and phospholipids ABCA1 undergoes
conformational changes and forms dimers. The lipidated ABCA1 dimers
interact with the actin filaments in the plasma membrane and are
immobilized until lipid-free apoA-I directly binds to the extracellular
domains of the ABCA1 dimer (Fig. 1, step 2). In the last step apoA-I or
another apolipoprotein accepts the lipids translocated by ABCA1 lead-
ing to the formation of discoidal HDL (Fig. 1, step 3). After transferring
cholesterol and phospholipids to apoA-I, ABCA1-dimer dissociates into
monomers and resumes its function to translocate lipids in an ATP-
dependent manner.

Apolipoproteins that serve as lipid acceptor in ABCA1-mediated cho-
lesterol efflux are mainly apoA-I which comprises 60–70% of the total
HDL protein mass and to a lesser extent apoA-II and apoE (Tang and
Oram, 2009). Liver is the main peripheral organ for the synthesis of HDL
(approximately 70% of plasma HDL) and apolipoproteins, but intestine
and other extrahepatic organs may also participate. Discoidal HDLs
formed only with apoE are slightly different than HDL containing only
apoA-I, in that they are rather quasi-spheroidal (Lund-Katz and Phillips,
2010).When functional ABCA1 is lacking, the apolipoproteins which par-
ticipate in HDL formation are left un-lipidated and are subjected to degra-
dation in the kidney. Consequently, in patients without functional ABCA1
the levels of apoA-I and apoA-II fall to 1% and 7% of normal values respec-
tively. Since apoE also participates in the formation of other lipoproteins
such as very low density lipoproteins (VLDLs), intermediate density lipo-
proteins (IDLs) and chylomicrons, in patients with nonfunctional ABCA1
this apolipoprotein is partially protected from degradation and its level
is decreased only by ~50% (Alaupovic et al., 1981; Mahley et al., 1991).

Transcriptionally, ABCA1 is regulated by nuclear receptors LXRs,
RXRs and PPARs. Potential binding sites for other transcription factors
in the proximal promoter of ABCA1 do exist (Santamarina-Fojo et al.,
2001), but they have not been interrogated systematically so far.
According to a widely accepted model, ligand activated LXR/RXR and
PPAR/RXR heterodimers bind to response element upstream of ABCA1
transcription start site and drive the transcription in response to specific
extra- or intracellular signals. The understanding of the interplay be-
tween thenuclear receptors and co-regulators involved in the transcrip-
tional control of ABCA1 and APOE is critical for successful development
and testing of efficient ligand based therapies for AD (the topic is
reviewed by Landreth et al. (2014), in this SI: Nuclear Receptors in
Neurodegenerative Diseases, Neurobiol. Dis., http://dx.doi.org/10.
1016/j.nbd.2014.04.001).

Role of ABCA1 in periphery

Cardiovascular disease

The decrease of cholesterol efflux, HDL, apoA-I and apoE as a result
of loss-of-function mutations in ABCA1 affects different metabolic
sporter A1: From metabolism to neurodegeneration, Neurobiol. Dis.
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Fig. 1.Mechanismof ABCA1-dependant cholesterol efflux. Step 1: ABCA1monomer diffuses freely and translocates lipids on the plasmamembrane by ATP-dependentmechanism. Step 2:
Upon reserving sufficient cholesterol and phospholipids ABCA1 undergoes conformational changes and forms dimers. The lipidated ABCA1 dimers interact with the actin filaments in the
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function to translocate lipids.
According to the model proposed by Nagata et al.
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pathways in the periphery and central nervous system (CNS). In athero-
sclerosis and cardiovascular disease the effects of ABCA1 reflect its role
in HDL formation and RCT. TD is a rare monogenic disorder caused by
loss-of-function mutations in ABCA1 and characterized by extremely
low HDL level (less than 2% of normal) (Hobbs and Rader, 1999;
Rader and deGoma, 2012). Typical TD patients in addition to very low
HDLs often present with hepatosplenomegaly, peripheral neuropathy
and enlarged yellow tonsils (Hobbs and Rader, 1999; Rader and
deGoma, 2012). TD is inherited as an autosomal recessive trait and
almost all of the patients with clinical phenotype are compound hetero-
zygotes. At present, more than 180 ABCA1mutations have been listed in
Human Gene Mutation Database (http://www.hgmd.cf.ac.uk/ac/gene.
php?gene=ABCA1) and more than 100 of missense, nonsense and
frameshift mutations had been identified in patients with TD and in
subjects with a phenotype of HDL deficiency (Puntoni et al., 2012).
While there is a significantly increased risk of cardiovascular disease
in TD patients, the phenotypic presentation is not always exactly the
same. Some TD patients, for example have a severe form of coronary
heart disease whereas in other, typical symptoms including atheroscle-
rotic lesions are missing (Hovingh et al., 2004). In addition to the
reduced penetrance, variable expressivity of themutant alleles and alle-
lic interactions are possible explanations for the phenotypic variability
observed in a sub-set of TD patients, where concomitant with HDL,
there is a decrease in LDL level (Hobbs and Rader, 1999). Thus, in
cases of ABCA1 functional impairment, not well understood environ-
mental and other genetic factors could alleviate the effect of the
otherwise significant functional impairment of cholesterol efflux and
HDL generation.

Whereas TD patients are very rare (less than 100 diagnosed in
the world; http://ghr.nlm.nih.gov/condition/tangier-disease), ABCA1
heterozygosity in the general population is present with a frequency
of 3:1000 and also associates with decreased levels of HDL cholesterol
(Frikke-Schmidt et al., 2008).Most of the published studies report an in-
crease of atherosclerosis in heterozygous patients with missense muta-
tions in ABCA1 (Bochem et al., 2013; Clee et al., 2000; Frikke-Schmidt
et al., 2005; vanDamet al., 2002). However, not all of the functionalmu-
tations in ABCA1 are associated with an increased risk of cardiovascular
disease (Clee et al., 2000; Frikke-Schmidt et al., 2008). The explanation
of these seemingly controversial results is that the biochemical pheno-
type inherited as an autosomal co-dominant trait in heterozygotes,
and revealed by plasma HDL-C and apoA-I levels, is highly variable —
Please cite this article as: Koldamova, R., et al., ATP-binding cassette tran
(2014), http://dx.doi.org/10.1016/j.nbd.2014.05.007
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 Pthe values can be within the entire range of those measured in normal

individuals and patients with TD. A differential contribution ofmissense
mutations to the functional defect in cholesterol efflux determining the
biochemical, cellular and clinical phenotypes was recognized early after
the cloning of ABCA1. For example, some of the ABCA1 missense muta-
tions (P1065S, G1216V, N1800H, R2144X) cause only a mild decrease
of cholesterol efflux which in heterozygous state results in a relatively
small reduction of HDL (less than 30% decrease compared to the normal
values) explaining the lack of atherosclerosis (Frikke-Schmidt et al.,
2008). In contrast ABCA1 mutations which cause more than 50% de-
crease of HDLs were associated with an increased risk for ischemic
heart disease (Bochem et al., 2013; Clee et al., 2000; Frikke-Schmidt
et al., 2005).

Recent meta-analysis of GWAS demonstrated that SNPs near ABCA1
associate with lower HDL and total cholesterol levels (Teslovich et al.,
2010), but not with cardiovascular risk (Willer et al., 2008). However,
as was discussed in many recent reports, whereas GWAS have a
power to detect common variants of ABCA1, most of these variants in
heterozygous patients result only in a small reduction of HDL and are
less likely to affect the risk of cardiovascular disease (Frikke-Schmidt,
2011; Westerterp et al., 2014). In contrast using next generation
sequencing and selecting a population at the extreme end of HDL (or
other quantitative metabolic traits) could help identifying rare variants
of ABCA1 with large effects on phenotype (cardio vascular disease or
atherosclerosis) (Frikke-Schmidt et al., 2004; Service et al., 2014).

Studies with mice lacking ABCA1 in the whole body demonstrated
dramatic reduction of HDL and apoA-I, a decrease of LDL and foam cell
accumulation in the lungs (McNeish et al., 2000). Recent studies using
targeted approach to delete Abca1 only in liver showed that expression
of ABCA1 in this organ causes profound hypo-alpha-lipoproteinemia
and kidney hypercatabolism of apoA-I (Timmins et al., 2005), andmod-
ulates the susceptibility to atherosclerosis (Brunham et al., 2009).

Type 2 diabetes mellitus

It was reported thatmicewith selective ablation of ABCA1 in pancre-
atic β-cells had markedly impaired glucose tolerance and defective in-
sulin secretion but normal insulin sensitivity (Brunham et al., 2007).
The results of the study suggested that dysfunctional ABCA1 contributes
to the development of type 2 diabetes through increased cholesterol
levels in pancreatic β-cells.
sporter A1: From metabolism to neurodegeneration, Neurobiol. Dis.
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Studies in a limited number of TD patients demonstrated impaired
insulin secretion from pancreatic β-cells suggesting, in support to the
studies in genetically modified mice, that ABCA1 may be involved in
insulin secretion (Koseki et al., 2009; Vergeer et al., 2010). A highly fre-
quent non-synonymous variant of ABCA1 (R230C) was identified in a
Mexican population and shown to associate with obesity and type 2
diabetes (Villarreal-Molina et al., 2008). Also in a Mexican population
it was reported that diabetic patients harboring this mutation needed
a higher dose of glyburide to control glucose level (Aguilar-Salinas
et al., 2013). However, a recent study examining several genetic variants
in ABCA1 and ABCG1 did not find an association with an increased risk
of type 2 diabetes (Schou et al., 2012).

ABCA1 and Alzheimer's disease

The role of ABCA1 in amyloid deposition, clearance andmemory def-
icits in experimental animals has been demonstrated and confirmed by
the results of studies conducted in different laboratories. First, studies
from our and other groups have demonstrated that the lack of ABCA1
increases amyloid deposition and cognitive decline in different APP
transgenic mice accompanied by significant decrease in the levels of
soluble apoE (Hirsch-Reinshagen et al., 2005; Koldamova et al., 2005a;
Lefterov et al., 2009; Wahrle et al., 2005). Second, it was shown that
treatment with LXR and RXR ligands which increases global Abca1
expression in mice significantly ameliorates amyloid pathology (Cramer
et al., 2012; Fitz et al., 2010; Jiang et al., 2008; Koldamova et al., 2005b).
Third, transgenic mice overexpressing Abca1 in brain have less amyloid
plaques (Wahrle et al., 2008). Although similar data in humans are miss-
ing, the results of a recent case control genetic studywith the application
of advanced sequencing technologies clearly indicated that rare ABCA1
gene variants, some of them associated with higher levels of HDL, may
have protective effect against AD (Lupton et al., 2014).

Physiological function of ABCA1 in central nervous system (CNS)

ABCA1 is expressed in all brain cell types and regulates cholesterol
efflux to lipid-free apolipoproteins (Koldamova et al., 2003). ABCA1
mediates cholesterol efflux from astrocytes and microglia, brain
capillary endothelial cells and pericytes to lipid-free apolipoproteins
(Koldamova et al., 2003), (Kim et al., 2007; Panzenboeck et al., 2002;
Saint-Pol et al., 2012). Since the blood brain barrier (BBB) is not penetra-
ble for cholesterol and lipoproteins fromperiphery (Dietschy and Turley,
2001) brain HDL and ABCA1 do not contribute to RCT. In the brain apoE
is the main apolipoprotein that serves as an acceptor of the lipids
translocated by ABCA1. ApoE-containing HDL lipoproteins were identi-
fied in astrocytes conditionedmedia, brain interstitial fluid (ISF) and ce-
rebrospinalfluid (CSF) (Fitz et al., 2010; Pitas et al., 1987; Yu et al., 2010).
ApoE-containing HDL lipoproteins isolated from astrocytes conditioned
media are discoidal and do not contain cholesterol esters. In CSF apoE-
containing HDL are spherical in shape and have the size of plasma HDL
containing a core of cholesterol esters (Koch et al., 2001; Yu et al.,
2010). ApoA-I-containing lipoproteins are also detected in CSF and are
smaller than apoE-HDL (Pitas et al., 1987). ApoA-I passes BBB from the
circulation in lipid-free form but there are some reports suggesting
apoA-I expression in brain capillary endothelial cells (Panzenboeck
et al., 2002). However, using a RNA-seq approach we were not able to
detect an appreciable mRNA expression of ApoA-I in mouse brain or to
detect apoA-I protein in ISF (Koldamova & Lefterov unpublished data).

The normal physiological role of ABCA1 in the brain is currently
unknown however one can presume that it is to maintain cholesterol
transport from glial cells (mainly astrocytes) to neurons. Previous stud-
ies have reported that cholesterol is needed for neurite outgrowth and
repair, and synaptic vesicle formation and regeneration (Pfrieger and
Barres, 1997). Recently, we examined the neurite architecture of
pyramidal hippocampal neurons of Abca1ko mice (Fitz and Koldamova,
unpublished data). Our data revealed a significant decrease in neurite
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length and number of neurite segments in CA1 region of hippocampus
of Abca1komicewhen compared toWTmice suggesting the importance
of disruption of Abca1 for neurite degeneration in the brain.

In a similar way to periphery, the lack of functional ABCA1 affects
apoE lipidation and stability leading to a significant decrease of apoE in
the brain of Abca1ko mice (Hirsch-Reinshagen et al., 2004; Wahrle
et al., 2004). The effect of ABCA1 is apoE selective, since the levels of
apoJ, another lipoprotein secreted by astrocytes, do not change regard-
less of the absence of functional ABCA1. Mice with a targeted disruption
of brain Abca1 had a significant reduction of apoE in CNS and a very low
level of apoE-HDL in CSF (Karasinska et al., 2009).

Genetic variation in ABCA1 and Alzheimer's disease

Common genetic variants and risk for AD
The very first indication that there might be a link between AD and

lipidmetabolism camewith the discovery of APOE as amajor risk factor
for LOAD (Corder et al., 1993; Poirier et al., 1993; Saunders and Roses,
1993). Recent GWAS have identified genes involved in cholesterol
metabolism or transport as AD susceptibility genes, providing strong
support for the association (Harold et al., 2009; Jones et al., 2010).

The identification of ABCA1 as a principal/master regulator of RCT
and possibly a major risk factor for atherosclerosis in case of mutations
or polymorphic variants, known to influence intracellular cholesterol
efflux and HDL levels in periphery, reinvigorated the search for associa-
tion of disturbed cholesterol metabolism in the CNS and the develop-
ment of AD.

The establishment of association of non-synonymous common ge-
netic variation in ABCA1 with altered lipoprotein levels and a modified
risk for Coronary Artery Disease (CAD) (Clee et al., 2000) was followed
by more than a dozen of targeted Genetic Association Studies (GAS) to
test the hypothesis if common SNPs within the sequence of ABCA1
gene are related to the risk for AD (Cascorbi et al., 2013; Chu et al.,
2007; Jiang et al., 2012; Katzov et al., 2004; Khorram Khorshid et al.,
2011; Reynolds et al., 2009; Rodriguez-Rodriguez et al., 2007; Shibata
et al., 2006; Sun et al., 2012; Sundar et al., 2007; Wahrle et al., 2007;
Wang and Jia, 2007; Wavrant-De Vrieze et al., 2007; Wollmer et al.,
2003). The association of higher levels of HDL-C in elderly individuals
and lower risk of LOAD further rationalized studies to test the combina-
tion of ABCA1 variants and other cholesterol-related genes (Cascorbi
et al., 2013; Xiao et al., 2012). R219K (rs2230806), I883M (rs4149313),
and R1587K (rs2230808) are the non-synonymous variants most exten-
sively investigated since they translate into amino acid changes and have
been shown to associate with the risk for CAD. Altogether, the results of
those studieswere inconsistentwith lack of reproducibility even in same
ethnic groups and contradicting conclusions ranged from no effect, in-
creasing or decreasing the risk for AD (detailed comments on earlier
studies published before 2010 are available in (Koldamova et al.,
2010)). A meta-analysis based on those studies — 6214 patients and
6034 controls, concluded that the data so far does not support a model
for association between ABCA1 and AD suggesting among other reasons,
insufficient or low number of patients and controls investigated so far
(Wang et al., 2013; Xiao et al., 2012). There have been two recent reports
not included in the meta-analysis. Cascorbi et al. (2013) used cerebellar
brain tissue for genotyping from 71 histopathologically verified AD
cases and 81 non-demented controls and found no connections between
rs2230806 or rs1800977 and amyloid deposition in brain. Xiao et al.
(2012) investigated possible associations of common non-synonymous
polymorphic markers in several lipid related genes including
ABCA1R219K, with susceptibility to AD and plasma lipid levels (104
AD patients and 104 controls, Han Chinese). The results demonstrated
association of significantly higher levels of HDL cholesterol and apoA-
I, in the carriers of KK genotype and K allele, and a decreased AD risk.

Like inmany other association studies the reasons for the controver-
sial results in the studies discussed above are not clear: size of the
sample, differences in genetic background, ethnicity and race, as well
sporter A1: From metabolism to neurodegeneration, Neurobiol. Dis.
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as significant differences in minor allele frequencies in many of those
studies obviously exist. However, the results of all major GWAS on
LOAD risk associations published during the last 5 years, and numerous
meta-analysis reports based on those, demonstrate that it is very diffi-
cult or even impossible to overcome the problems listed above and
the discovery of new significant associations of variants within ABCA1
(or perhaps any other gene) is unlikely (Ridge et al., 2013). Insufficient,
or complete lack of understanding of the functional relationship of the
majority of genes identified by GWAS and LOAD (APOE is perhaps
example #1) adds strongly to this rather disappointing conclusion.
However, resent pathway analyses (Jones et al., 2010) based on associ-
ation signals identified in 2 large GWAS (Harold et al., 2009; Lambert
et al., 2009) identify sets of genes and physiological processes related
to cholesterol metabolism and innate immune response and demon-
strate that these processes are etiologically relevant and suitable targets
for novel and existing therapeutic approaches. It is quite remarkable
that while ABCA1 had not been identified in either of the GWAS, the
gene is listed in the lipid related processes as a gene with a SNP signifi-
cantly enriched at p b 0.0001. There are two subsets of genes (Table 5 in
(Jones et al., 2010)), that deserve a particular attention and provide
further insight into ABCA1 role in LOAD: a) the first subset is composed
of 3 genes: ABCA1, APOE and APOA-I. The significance of the proteins in
the pathogenesis of LOAD has been underlined numerous times in this
review; b) the second subset is represented by the following 6 genes:
APOE, APOC1, APOC1, APOC2, APOC4, and ABCG1. All of those are tran-
scriptionally regulated by LXR/RXR heterodimers and experimental
therapeutic approaches have been successfully applied numerous times
in in vitro and in vivo systems. Regardless of some controversies, the ap-
plication of synthetic RXR agonists remains promising and is being eval-
uated in preclinical and Phase I clinical trials (Cramer et al., 2012; Fitz
et al., 2013; Price et al., 2013; Tesseur et al., 2013; Veeraraghavalu
et al., 2013). There are no such other groups of genes within the lipid-
related processes identified by Jones et al. (2010). Overall, the represen-
tation of identified genes involved in cholesterol/lipid metabolism is
impressive, lending further credibility to and suggesting a role for
ABCA1, as well as other cholesterol transporters and APOE gene cluster
in AD pathogenesis. These results also provide solid foundation for the
development of relevant targeted therapeutic approaches.
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A differential contribution of missense mutation to the biochemical,
cellular and clinical phenotypes was recognized early after the cloning
of ABCA1. There are two notable examples of ABCA1 mutations highly
relevant to our understanding of its association to AD risk and AD
pathogenesis.

N935S mutation was identified in a patient with extremely low
levels of HDL, but without accelerated development of premature ath-
erosclerosis andwith signs of severe dementia and amyloid depositions
in the brain at age of 60 (Walter et al., 1994a,b). In vitro experiments
with an immortalized cell line derived from the patient's fibroblasts
demonstrated the dominant negative effect of the mutant protein and
the influence of ABCA1 mediated disturbance of cholesterol efflux on
APP processing: the cells responded to the LXR ligand (T0901317) treat-
ment with increased Aβ secretion (Koldamova et al., 2005b).

The second example is a compound heterozygous mutation
(D1099Y and F2009S) identified in a subject with severe HDL cholester-
ol deficiency (Ho Hong et al., 2002). The patient had no history or
clinical manifestation of CAD and no other cardiovascular disease risk
factors, except for low HDL cholesterol. There were no clinical signs of
TD either. The patient developed and died of complications related
to cerebral amyloid angiopathy (CAA). These two examples point to
the significance of rare functional variants of ABCA1which can be asso-
ciated with AD risk, most probably operating through HDL cholesterol
levels, although other mechanisms, influencing APP processing cannot
be excluded.
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Recently, the contribution of rare non-synonymous gene variants to
the risk of common diseases, including TREM2, APP, ABCA1, and AD has
been demonstrated by deep re-sequencing. Lupton et al. (2014) used
pooled DNA samples from 311 cases and 367 controls for next genera-
tion sequencing to identify low frequency, non-synonymous ABCA1
variation. They found a significantly higher proportion of rare ABCA1
variants in control individuals, compared toAD cases. The interpretation
of the results, according to the authors was suggestive of a protective
effect. Importantly, the number of non-synonymous alleles of previous-
ly identified rare variant E1172D, known to be associatedwith very high
HDL-C levels, was more than twice higher in the control compared to
the case samples. While the number of these studies is small and the
protocol is still relatively expensive, the potential of those studies to
reveal new gene-level associations that further explain the phenotypic
variance in AD beyond the variants identified in GWAS, is obvious.

ABCA1 and the concept of pleomorphic risk loci
In 2011 A. Singleton and J. Hardy suggested that common disease,

common variant (CDCV) and multiple rare variant (MRV) hypotheses
are not mutually exclusive and these two ideas can be brought together
as a general hypothesis for disease susceptibility (Singleton and Hardy,
2011). They coined the term “pleomorphic risk loci” (PRL) and outlined
the steps necessary to conduct, including targeted resequencing, as to
understand and delineate, in the context of the hypothesis, benign,
risk and protective rare variants. The technological advent of NGS plat-
forms, relatively easy to work out protocols to generate sequencing
libraries and the availability of free open source bioinformatics software
now makes it possible to test the hypothesis. A candidate PRL would
influence the disease through different biological effects, accomplished
by several, distinct disease-related mechanisms that coexist at the
same locus and on a single gene. The total number of mutations in
ABCA1 is more than 180, and the majority of those in heterozygous
form (excluding compound heterozygotes with Tangier disease) deter-
mine a biochemical phenotype distinguished by low, or even very low
HDL levels. Epidemiological studies provide enough evidence that in a
subset of patients those levels may underlie an increased risk for AD.
The non-synonymous rare variants already identified in patients with
amyloid depositions in brain, amyloid angiopathy and early cognitive
decline provide additional support. On the other side, the application
of newest sequencing technologies with samples from patients with
AD and atherosclerosis in case–control studies demonstrates that
there are rare, yet protective ABCA1 gene variants. It is possible to pre-
dict, that the majority of those 180 mutations within the sequence of
the entire ABCA1 will be benign with no detectable effect relevant to
any disease. We are predicting soon that we will have a better idea if
ABCA1 is a PRL.

ABCA1 and AD model mice

In APP transgenic mice ABCA1 deficiency increases parenchymal am-
yloid plaques and CAA (Hirsch-Reinshagen et al., 2005; Koldamova et al.,
2005a; Wahrle et al., 2005). In these mice the level of soluble apoE and
apoA-I in brain was significantly reduced while insoluble apoE was not
changed. In contrast, transgenic mice overexpressing Abca1 in brain
have less amyloid plaques. It was also demonstrated that overexpression
of ABCA1 resulted in apoE-containing particles with a larger size than
normal, while the total level of apoEwas decreased (Wahrle et al., 2008).

Haplodeficiency of Abca1 was examined in APP mice expressing
mouse apoE and human apoE3 or E4 isoforms. In old APP23 mice ex-
pressing mouse apoE absence of one copy of Abca1 deteriorates cogni-
tive deficits in correlation with an increased level of soluble oligomers
but not with amyloid plaques (Lefterov et al., 2009). In a recent study
Fitz et al. demonstrated that Abca1 haplodeficiency had a differential ef-
fect on the phenotype of mice expressing apoE3 or apoE4 (Fitz et al.,
2012). The lack of one copy of Abca1 significantly aggravates memory
deficits, Aβ plaques and clearance in APP/E4 but not in APP/E3 mice
sporter A1: From metabolism to neurodegeneration, Neurobiol. Dis.
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(Fitz et al., 2012) suggesting that apoE4 confers less resistance to addi-
tional genetic defects. Interestingly, the same study also found a corre-
lation between HDL in plasma and amyloid load in brain implying a
causative connection between peripheral lipoproteins and Aβ load in
CNS.

A plausible hypothesis to explain the above observations could be an
effect of ABCA1 on AD pathogenesis (if any), intertwinedwith its role in
cholesterol efflux and generation of HDL in brain and periphery. In CNS
the role of ABCA1 is generally attributed to its effect on apoE lipidation
and stability that ultimately controls apoE level. Numerous data suggest
that apoE affects Aβ aggregation and clearance in isoform-dependent
manner, however, the molecular mechanism underlying the effect is
still not sufficiently clarified [reviewed in (Kanekiyo et al., 2014; Tai
et al., 2014)]. It is a matter of debate if APOE4 isoform is deleterious or
less protective with evidence supporting both claims [reviewed in
(Kanekiyo et al., 2014; Kim et al., 2009; Mahley and Huang, 2012)].

Clinical data demonstrate that apoE protein level in plasma and CSF
is lower in APOE4 than in APOE3/APOE2 carriers. A cross sectional study
by Gupta et al. demonstrated that plasma total apoE and apoE4 levels
were significantly lower in patients with AD and they further decrease
with the increase of Aβ load as assessed by PET (Gupta et al., 2011). A
recent large-scale case–control study of CSF samples demonstrated
that apoE protein levels in CSF positively associated with CSF Aβ42
levels independent of APOE4 genotype (Cruchaga et al., 2012). These
data suggest that apoE levels in CSF or plasmamay be causatively relat-
ed to AD. In addition to total apoE level, apoE lipidation could also affect
interaction with Aβ and consequently Aβ aggregation [reviewed in
(Tai et al., 2014)]. In vitro studies have shown binding of synthetic Aβ
to apoE isolated from cell conditioned media (LaDu et al., 1994) CSF
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Fig. 2.A simplifiedmodel explaining the role of ABCA1 in Aβ deposition and clearance on both s
on several levels: (a) decreases Aβ aggregation and prevents its conversion into toxic oligom
(c) facilitates Aβ removal from the brain through BBB or drainage into CSF. In plasma, ABCA1 is ess
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(Wisniewski et al., 1993) and plasma (Strittmatter et al., 1993). Using
solid-phase binding assays we also found that synthetic Aβ40 binds av-
idly to apoE2 (KD=15 nM) and apoE4 (KD=19 nM) (Koldamova et al.,
2001). However, a recent studydemonstrated that apoE binding to Aβ is
not essential for Aβmetabolism (Verghese et al., 2013) clearly advocat-
ing formore research on this topic. Published studies are also conflicting
in regard to the effect of apoE has on Aβ aggregation. In vivo, lack of
APOE in APP transgenic mice was shown to dramatically reduce amy-
loid plaques (Bales et al., 1997), confirmed by more recent studies
(Bien-Ly et al., 2012; Kim et al., 2011). In vitro studies are more contra-
dicting with some demonstrating that apoE inhibits Aβ aggregation
(Wood et al., 1996a,b) and others that it promotes Aβ aggregation
(Castano et al., 1995; Hashimoto et al., 2012).

Our hypothesis is that ABCA1 controls over the generation of apoE
(or apoA-I)-containing HDL in brain and plasma affects Aβmetabolism
on several levels (see Fig. 2). In the brain: (a) by decreasing Aβ aggrega-
tion and preventing its conversion into toxic oligomers (Lefterov et al.,
2009) or plaques (Hirsch-Reinshagen et al., 2005; Koldamova et al.,
2005a; Wahrle et al., 2005); (b) by maintaining Aβ in soluble state
and facilitating Aβ clearance by glia or its degradation by extracellular
proteases (Jiang et al., 2008); (c) by facilitating Aβ removal from the
brain through BBB and drainage into CSF [discussed by Saint-Pol et al.
(Gosselet et al., 2013; Saint-Pol et al., 2012)]. A recent randomized clin-
ical trial tested the effect of diet in patients with mild cognitive impair-
ment and demonstrated the significance of apoE and Aβ lipidation to
impact cognitive decline (Hanson et al., 2013). However, the role of
ABCA1 in maintaining plasma levels of HDL, apoA-I and apoE may be
as important for AD as its CNS functions. Since Aβ binds HDL and
other plasma lipoproteins (Koudinov et al., 1998; LaDu et al., 1995,
E
D

ides of the BBB. In the brain ABCA1mediates apoE lipidation that can affect Aβmetabolism
ers or fibrils; (b) enables Aβ clearance by glia or degradation by extracellular proteases;
ential for HDL level that could affect Aβ clearance by themechanism of “peripheral sink” (d).
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2012), it is possible that circulating lipoproteins could affect Aβ balance
on both sides of BBB and increase its clearance by the mechanism of
“peripheral sink” (see (d) on Fig. 2). The rarity of TD patients and
death from CAD at age earlier than LOAD normally develops, preclude
studies examining an association of TD and AD and testing various as-
pects of the hypothesis as outlined above (Pervaiz et al., 2012; Shahim
et al., 2013). Someof the genetics studies as already discussed, however,
are in agreement with a concept that higher level of HDL is protective
against dementia and AD, or asmeasured byGlobal PiB index in a recent
study, lower HDL and higher LDL levels are both associated with cere-
bral amyloidosis (Dias et al., 2014; Reed et al., 2014; Xiao et al., 2012).
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Therapeutic implications

The fact that bothABCA1and apoE are under the transcriptional con-
trol of LXR andRXR transcription factors offers an attractive potential for
targeted therapeutic interventions. These approaches are rationalized
by the molecular mechanism of nuclear receptor activation (see
Landreth et al. (2014), in this SI: Nuclear Receptors in Neurodegenera-
tive Diseases, Neurobiol. Dis., http://dx.doi.org/10.1016/j.nbd.2014.04.
001), the discovery that LXRα/β have a role in AD pathogenesis and
other forms of neurodegeneration (Andersson et al., 2005; Kim et al.,
2008; Wang et al., 2002; Zelcer et al., 2007), and positive results of
experimental treatment in AD mice. Numerous studies reported data
confirming the beneficial effect of LXR agonists on amyloid plaques
and cognitive performance in APP mice (Donkin et al., 2010; Fitz et al.,
2010, 2014; Jiang et al., 2008; Katz et al., 2009; Koldamova et al.,
2005b; Riddell et al., 2007; Terwel et al., 2011; Vanmierlo et al., 2011).
More recently, Cramer et al. reported that FDA approved RXR agonist
Bexarotene decreases plaque load, increases Aβ clearance and amelio-
rates cognitive deficits in APP expressing mice (Cramer et al., 2012).
Although the effect on amyloid deposition, as reported, has not been
confirmed in follow-up studies (Price et al., 2013; Veeraraghavalu
et al., 2013), other laboratories reported a significant cognitive improve-
ment even without change in plaque load (Fitz et al., 2013; Tesseur
et al., 2013). The effect on memory was challenged in a recent study
(LaClair et al., 2013). Yet, recent experimental and clinical data demon-
strated that Bexarotene has beneficial effects on other brain disorders
such as Parkinson disease (McFarland et al., 2013) and schizophrenia,
and is safe for a chronic use (Lerner et al., 2008, 2013).

One confounding factor for the use of LXR and RXR agonists in
patients is the increase of triglycerides in plasma (Lilley et al., 2013;
Tontonoz and Mangelsdorf, 2003). Interestingly, the only published
clinical trial with LXR agonist reported adverse effects on CNS and not
an increase of serum triglycerides (Katz et al., 2009). Second, because
of the uncertainty regarding the molecular mechanisms underlying
the association of apoE4 and the increased risk of AD, there is skepticism
in the AD scientific community if the effect of LXR and RXR agonists will
be equally beneficial for APOE3 and APOE4 carriers. If studies from
transgenic mice are any indication, Bexarotene decreases Aβ oligomers
(Fitz et al., 2013) and restores cognitive deficits with similar efficiency
in both APOE3 and APOE4 expressing mice (Boehm-Cagan, in press;
Fitz et al., 2013). It is obvious that additional research is needed to an-
swer the question if AD therapies based on LXR and RXR activation are
worth pursuing.
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Conclusion

The significance of ABCA1 for cardiovascular disease is determined
by its role as essential regulator of cholesterol efflux and HDL genera-
tion. Likewise the probable implication of ABCA1 in AD pathogenesis
streams from its main physiological function namely to control the
level of lipidated apoE in CNS and plasmaHDL level subsequently affect-
ing Aβ metabolism.
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