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A B S T R A C T

While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to
neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified
that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and
astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations
and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD
may provide insights into neurodegeneration and novel therapeutic approaches for PD.

1. Introduction

Parkinson's disease (PD) is the second most common neurodegen-
erative disorder. The degeneration of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) is a hallmark and is responsible
for the motor impairments of the disease (Moore et al., 2005). Aging is a
dominant risk factor for PD, with a sharp increase in incidence after age
60 years (de Lau and Breteler, 2006). After identifying the mutations
responsible for the disease in the SNCA gene that encodes the α-synu-
clein protein in 1997 (Polymeropoulos et al., 1997), many other pa-
thogenic mutations associated with PD have been identified. (For re-
view see Bandres-Ciga et al., 2020; Klein and Westenberger, 2012;
Trinh and Farrer, 2013). A subset of PD cases are monogenic forms
caused by mutations in specific genes, including SNCA, parkin, PTEN-
induced kinase 1 (PINK1), leucine rich repeat kinase 2 (LRRK2), and DJ-1
among others (Martin et al., 2011). In addition, unique variants of
LRRK2 and GBA with incomplete penetrance are strong risk factors for
PD in certain populations (Hernandez et al., 2016). Genome-wide as-
sociation studies (GWAS) also suggest that both adaptive and innate
immunity may play a role in PD pathogenesis (Chang et al., 2017a;
Hamza et al., 2010; Holmans et al., 2013; Pierce and Coetzee, 2017).

In the brain, neurons communicate with glial cells to maintain
parenchymal structure and function. Included among these cell types
are microglia, the resident macrophages in the brain, representing

5–10% of total central nervous system (CNS) cells, and astrocytes, the
most abundant cell type in the brain (Frost and Schafer, 2016;
Sofroniew and Vinters, 2010). Although glia are essential to CNS
homeostasis, (Schwartz et al., 2013; Wyss-Coray and Mucke, 2002),
there is emerging evidence that microglial and astrocytic dysfunctions
contribute to PD pathogenesis and progression. Recently, it has been
shown that many of the PD-related genes are also expressed in glial cells
as well as neurons (Booth et al., 2017; Zhang et al., 2016), suggesting
that mutated gene products in microglia and/or astrocytes could con-
tribute to PD etiology. Here, we focus on the evidence that implicating
α-synuclein, PINK1, parkin, LRRK2, DJ-1 and GBA in microglial and
astrocytic dysfunction during PD pathogenesis (See Fig. 1).

2. Microglia in Parkinson's disease

Microglia are the resident macrophages and primary immune cells
of the CNS. Averaging across brain regions, the density of microglia in a
non-diseased human brain is about 10%, making them a significant
cellular population (Mittelbronn et al., 2001). Microglia undergo
regulated cycles of renewal to maintain appropriate overall densities,
which may also regulate relative proportions of different microglial
phenotypes (Askew et al., 2017). Furthermore, individual microglia are
dynamic, mobile, and vigilant surveillants of tissue damage or infec-
tion, thus serving crucial roles for maintaining parenchymal
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homeostasis (Nimmerjahn et al., 2005). An increased focus on microglia
in PD and other neurodegenerative diseases owes largely to their roles
as mediators of immunity, especially their capacity to initiate neu-
roinflammation in response to pro-inflammatory molecules.

Whereas neuroinflammation has traditionally been assumed to be
an epiphenomenon of neurodegenerative diseases, there are many
studies identifying causal links between these states.
Neuroinflammation and associated ‘reactive’ microglia have long been
recognized as elements of PD (McGeer et al., 1988), but any causal
relationship has been problematic to decipher. The more recent dis-
covery that microglia and the innate immune system are essential for
synaptic pruning was a major demonstration of their ability to impart
changes to the neural world around them and suggested that mechan-
istically analogous processes could contribute to both neurological and
psychiatric illnesses (Hong et al., 2016; Sekar et al., 2016; Stevens et al.,
2007; Vainchtein et al., 2018). Similarly, microglia-derived inflamma-
tion may induce astrocytes to adopt neurotoxic functions or to lose
neurotrophic or synaptoptrophic functionality (Liddelow et al., 2017).

Importantly, microglia exhibit significant spatiotemporal variation
with respect to their transcriptional signatures, although the relevance
of this diversity with respect to health and disease is only beginning to
be considered (Hammond et al., 2019; Olah et al., 2018). Microglial
phenotypes in the midbrain are not identical to those elsewhere in the
CNS, which probably has important implications for the selective vul-
nerability of dopamine neurons in PD (Surmeier et al., 2017). One study
has demonstrated this on a granular scale by showing that the tran-
scriptional, morphological, and functional phenotypes of neurons in the
SNpc differ from those of the ventral tegmental area (VTA), a related
dopaminergic region that exhibits less degeneration in PD (De Biase
et al., 2017). This report also showed enrichment of disease-associated
transcripts specifically in the SNpc microglia of healthy mice, sug-
gesting that these microglia are predisposed to adopt maladaptive
functions in pathologic contexts. However, regional microglial subtype
distribution is itself dependent on signals from other cells in the vici-
nity, meaning microglial ontogeny is negotiated in a complex and non-
cell autonomous manner (Gosselin et al., 2017). Therefore, changes in

Fig. 1. Neuroinflammation in Parkinson's Disease.
Pathologic α-Synuclein (α-Syn) is released from neurons and transmitted to and activates microglia and astrocytes. PD-associated GBA or LRRK2 mutations impair
lysosomal protein degradation, which causes accumulation of α-syn. This leads to oxidative stress and proinflammatory responses. Mutations in Parkin, PINK1 and
DJ-1 contribute to enhanced oxidative stress and proinflammatory responses in microglia and astrocytes. This culminates in the release of proinflammatory mediators
derived from activated microglia, astrocytes or both, or unknown toxins released from reactive astrocytes that promote dopaminergic neuronal degeneration in PD.
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these subtypes throughout aging or disease should be understood in
relation to corresponding alterations in neighboring glia and neurons.

Genetically guided investigations of PD have also long pointed to-
ward the immune compartment as a likely substrate of disease-relevant
variation. Meta-analyses of GWAS have implicated a growing number
of loci associated with sporadic PD that are important for core micro-
glial behaviors. For example, both protein-protein and gene expression
enrichment approaches implicate immune signal transduction pathway
elements and the interferon-gamma response as being overrepresented
among PD risk loci (Nalls et al., 2018). This points to canonical immune
signaling and inflammation as being relevant to sporadic PD. However,
most other cellular pathways associated with these risk loci are also
important to microglial functions, including proteasomal protein cata-
bolism, stress responses, lysosomal function, and autophagy (Chang
et al., 2017b; Nalls et al., 2018). Because monogenic forms of PD are
also thought to impact these cellular behaviors, they may help provide
insight into how microglia sustain pathobiological processes that lead
to neurodegeneration. In the remainder of this section, we explore the
relation between microglial function and several key genes that cause
PD when mutated.

2.1. α-Synuclein

The intraneuronal inclusions of α-synuclein protein, commonly re-
ferred to as Lewy bodies (LB) or Lewy neurites (LN), are pathological
hallmark of PD. α-Synuclein is encoded by the SNCA gene, which is a
genetic risk factor for both sporadic and familial forms of PD
(International Parkinson Disease Genomics, C, 2011). Missense muta-
tions and multiplications (duplications or triplications) of the gene
cause PD (Ibanez et al., 2004; Ibanez et al., 2009; Polymeropoulos et al.,
1997; Singleton et al., 2003). Under physiological conditions, α-synu-
clein regulates the trafficking of synaptic vesicles and the formation of
the SNARE complex in the presynaptic terminals, but in pathologic
states, α-synuclein undergoes aggregation and fibrillization that leads
to neurotoxicity in PD (Burre et al., 2014; Cookson, 2009; Jo et al.,
2004). The microglial response to excess or mutant α-synuclein species
is the subject of ongoing investigations. Extracellular α-synuclein oli-
gomers function as damage-associated molecular patterns (DAMPs),
activating innate immune receptors on the surface of microglia, in-
cluding toll-like receptor 2 (TLR2) (Kim et al., 2013a). α-Synuclein is
also reported to bind Fc gamma receptor IIB (FcγRIIB) on microglial
surfaces and reduce microglial phagocytosis, which could impair the
clearance of aggregated species or other parenchymal debris (Choi
et al., 2015b). Fibrillar α-synuclein activates the NF-κB pathway in
microglia (Yun et al., 2018), which is central to the inflammatory mi-
croglial response. A recent study showed that the uptake of α-synuclein
fibrils by microglia is regulated by Fyn kinase—which was genetically
linked to PD in a recent GWAS analysis (Nalls et al., 2018)—and class B
scavenger receptor CD36 (Panicker et al., 2019). The same investiga-
tion showed that this signaling mechanism led to NLRP3 inflammasome
priming and activation, thereby driving IL-1β release by microglia.
Thus, aggregated α-synuclein induces pro-inflammatory microglial be-
haviors via both classic innate immune receptors and interactions with
intracellular signaling cascades.

Several other immune pathways and cellular functions are reported
to interact with α-synuclein in microglia, both in vitro and in vivo. For
example, α-synuclein carrying the A30P, E46K, and A53T mutations
stimulate microglial cytokine secretion and activate mitogen-activated
protein (MAP) kinase pathways in vitro, including p38, ERK(1/2), and
JNK (Hoenen et al., 2016; Klegeris et al., 2008). Multiple studies have
also shown dramatic ROS production induced by mutant α-synuclein
(Jiang et al., 2015; Zhang et al., 2007). Animal models have also im-
plicated microglial reactivity in PD; for example, human A53T α-sy-
nuclein overexpression increased nigral neurodegeneration and neu-
roinflammation in mice lacking the microglial fractalkine receptor
(CX3CR1) (Castro-Sanchez et al., 2018). In the rodent intrastriatal α-

synuclein preformed fibril (PFF)-injection model, microgliosis is ob-
served in the substantia nigra prior to the onset of dopamine cell loss in
rats, suggesting early microglial reactivity may be an important event
and translational target in this model (Duffy et al., 2018). Other studies
have observed sustained microglial reactivity in α-synuclein PFF-in-
jected mice (Yun et al., 2018). In marmosets, overexpression of wild-
type or A53T α-synuclein caused long-lasting (> 1 year) microglial
morphology changes, suggesting again a prolonged microglial engage-
ment in α-synucleinopathy (Barkholt et al., 2012). Given that brainstem
LPS- and α-synuclein-induced inflammation are probably not identical
(Couch et al., 2011), there may be microglial immune programs of
particular relevance to α-synucleinopathy, which remain an active area
of investigation.

2.2. Parkin and PINK1

Most PD-related parkin (encoded by PARK2) and PINK1 (encoded
by PINK1) mutations are loss-of-function mutations associated with
early-onset familial PD (Dawson and Dawson, 2010; Kawajiri et al.,
2011). Parkin is a ubiquitin E3 ligase and PINK1 is a serine/threonine
protein kinase; both play critical roles in mitochondrial quality control.
Mutations in parkin and PINK1 dysregulate mitochondrial quality con-
trol leading to the neurodegeneration in PD (Panicker et al., 2017;
Pickles et al., 2018; Pickrell and Youle, 2015; Scarffe et al., 2014). How
this might alter microglial biology is only starting to be understood and
represents a largely untapped target of research. Mitochondria are at
the nexus of many key immunometabolic and innate immune pathways,
such that their proper function is essential to the regulation of im-
munity. For example, mitochondria serve as physical scaffolding ap-
paratuses for the mitochondrial antiviral signaling (MAVS) protein
pathway, which mounts a type I interferon (IFN-I) response to viral
RNA detection (Seth et al., 2005). Damaged or dysfunctional mi-
tochondria can also perpetuate inflammatory responses by generating
ROS or releasing mitochondrial damage-associated molecular patterns
(DAMPs). Thus, in the absence of healthy mitochondrial function, mi-
croglia may be biased toward a more inflammatory phenotype. For
example, the NLRP3 inflammasome, a multi-protein ensemble that
mounts massive inflammation via IL-1β and IL-18, is activated by mi-
tochondrial ROS in the context of impaired mitophagy (Nakahira et al.,
2011; Zhou et al., 2011). This process is parkin-dependent in macro-
phages, suggesting that its presence in microglia may be important in
parkin-linked PD (Zhong et al., 2016). NLRP3 activation exacerbates
tau and Aβ pathology in mouse models (Heneka et al., 2013; Ising et al.,
2019; Venegas et al., 2017) and may be involved in α-synucleinopathy
induced neurodegeneration as well (Gordon et al., 2018; Panicker et al.,
2019), suggesting a potential inflammatory link for aggregates in
neurodegenerative diseases. However, roles for parkin, PINK1, or mi-
tochondrial quality control in these specific mechanisms remain spec-
ulative. Parkin deficiency may enhance NF-κB-dependent NLRP3 acti-
vation in microglia (Mouton-Liger et al., 2018), but the upstream
mediators of this mechanism were not conclusively shown. One study
found that caspase-1, a downstream NLRP3 effector, cleaves parkin to
inactivate it, though this was not shown in microglia (Kahns et al.,
2003). Interestingly, another group found that PINK1 could bind to
multiple IL-1R signal transduction proteins, suggesting that PINK1
could act downstream of the inflammasome to modulate cellular re-
sponses to IL-1β, but microglia were not examined specifically in these
studies either (Lee and Chung, 2012; Lee et al., 2012).

Parkin and PINK1 are also both involved the repression of mi-
tochondrial antigen presentation (MitAP), another critical intersection
of mitochondria and immunity (Matheoud et al., 2016). Antigenic
molecules are typically displayed on cell-surface major histocompat-
ibility complex (MHC) proteins and detected by T cells, enabling the
latter to sample the internal chemical milieu of a cell and sense self or
non-self particles (Guermonprez et al., 2002). MHC pathways are the
principal molecular mechanism for antigen presentation; intuitively,
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MitAP appears to be an analogous system for the presentation of mi-
tochondrial antigens, where externalization is mediated by mitochon-
dria-derived vesicles (MDV) intermediaries (Matheoud et al., 2016).
Loss of parkin or PINK1 increased the production of MDV for MitAP,
demonstrating a role for these PD-linked genes in regulating a potential
source of autoimmune dysfunction. Given that genetic variants in the
human leukocyte antigen (HLA) system—which encode MHC protein-
s—have been linked to PD, aberrant antigen recognition is a potential
source of autoimmune inflammation with causal relevance (Nalls et al.,
2018). This in turn may initiate or sustain microglial reactivity and
neuroinflammation. Thus, these findings represent an exciting avenue
of research into how MitAP may help elucidate a role for the adaptive
immune system in PD.

Mouse models of PD or dopaminergic function have also suggested
links between microglial dysfunction and parkin or PINK1. Germline
parkin−/− mice exhibit increased motor deficits and SNc neurodegen-
eration in response to systemic LPS injections over time (Frank-Cannon
et al., 2008) and parkin expression is reportedly downregulated by LPS
in an NF-κB-dependent manner in both microglia and neurons (Tran
et al., 2011). Transcriptomic analysis of PINK1−/− mice brains is
consistent with inflammatory module induction, particularly in older
mice, which may drive microglial reactivity (Torres-Odio et al., 2017).
Other research has focused on how loss of parkin or PINK1 alter the
behavior of microglia in vitro. Parkin knockout in BV2 microglia re-
duced necroptosis in one study, possibly through ubiquitination of ne-
croptosis machinery (Dionisio et al., 2019). Failure to undergo ne-
croptotic cell death may prolong inflammation and theoretically
preclude the replacement of pro-inflammatory microglia with im-
munoregulatory microglia, thereby exacerbating neurological disease
(Lloyd et al., 2019). Another study found that PARKIN−/− murine glial
cultures had relatively more microglia and fewer astrocytes than wild
type cultures (Solano et al., 2008). Similarly, PINK1−/− glial cultures
exhibited increased nitric oxide production and reduced anti-in-
flammatory IL-10 production, though whether this can be specifically
attributed to microglia was unclear (Sun et al., 2018). Collectively,
however, these studies hint at likely roles for parkin and PINK1 in
microglia in the pathogenesis of PD.

2.3. DJ-1

The PARK7 gene encodes DJ-1, which exhibits a diverse range of
intracellular functionalities (Dolgacheva et al., 2019), making it diffi-
cult to link to specific microglial behaviors. Furthermore, only a few
studies have examined potential microglia-relevant effects of PARK7
mutation. Intranigral injection of LPS elicits greater dopaminergic
neurodegeneration in Park7 KO mice than wild-type mice, suggesting a
broad role for Park7 in the regulation of nigral inflammatory reactivity
(Chien et al., 2016). However, a related study did not see any parkin-
sonism or dopamine cell loss induced by systemic LPS exposure
(Nguyen et al., 2013). Park7 KO microglia exhibit increased IL-1β and
IL-6 secretion in response to dopamine exposure, suggesting an inter-
action between local dopaminergic levels and DJ-1 function in micro-
glia (Trudler et al., 2014). This study also showed increased ROS pro-
duction and monoamine oxidase (MAO) levels in the Park7 KO
microglia and that a MAO inhibitor could normalize the microglial
phenotype, implicating monoamine metabolism and ROS more speci-
fically in the process. One group has shown that Park7 KO reduces IFNγ-
induced activity of suppressor of cytokine signaling 1 (SOCS1) in as-
trocytes and microglia, possibly implicating the interferon system in
DJ-1-mediated inflammation (Kim et al., 2013b; Kim et al., 2014). We
are aware of only one study that has analyzed the impact of Park7 KO
on microglial autophagy and α-synuclein phagocytosis and degrada-
tion, which did observe an impairment in these processes (Nash et al.,
2017).

2.4. LRRK2

Mutations in LRRK2/PARK8 are associated with both monogenic
and sporadic forms of PD, while their penetrance is incomplete and age-
dependent (Kluss et al., 2019). For example, the most common muta-
tion, G2019S has an age range of penetrance increasing from 17% at
50 years old to 85% at 70 years old. Moreover, some carriers never
develop PD (Lee et al., 2017; San Luciano et al., 2010). Autosomal-
dominant mutations in LRRK2 may represent the most compelling in-
flammation-based model of genetic PD, as LRRK2 has been widely
implicated in immune cell function. LRRK2 is a serine/threonine kinase
with diverse functions and targets (Islam and Moore, 2017). PD-causing
mutations in LRRK2 enhance its kinase activity and contribute to
neurodegeneration (Berwick et al., 2019; Cookson, 2015). Among PD
patients with LRRK2 mutations, serum levels of inflammatory cytokines
differentiate patients on the basis of disease presentation, suggesting
close connections among LRRK2, disease progression, and the immune
system (Brockmann et al., 2016; Brockmann et al., 2017; Dzamko et al.,
2012). Even in sporadic or idiopathic PD, LRRK2 levels are increased in
PD patient monocytes, lymphocytes (Cook et al., 2017), and neutrophils
(Atashrazm et al., 2019). Both idiopathic and LRRK2-associated PD
(G2019S and R1441G) individuals had increased cyclooxygenase-2
activity in patient-derived fibroblasts in another study (Lopez de
Maturana et al., 2014). Finally, LRRK2 genetic variants may explain
part of the noted co-morbidities between PD and autoimmune condi-
tions such as Crohn's disease, further implicating immune-based me-
chanisms in LRRK2 pathobiology (Hui et al., 2018; Witoelar et al.,
2017). Animal studies largely corroborate these findings. For example,
LRRK2 appears to modulate the overall inflammatory and oxidative
stress responses in microglia treated with α-synuclein fibrillar ag-
gregates (Russo et al., 2019). Similarly, LRRK2 deficient rats are re-
sistant to α-synuclein mediated dopaminergic neurodegeneration with
reduction in proinflammatory responses (Daher et al., 2014).

Despite the apparent immunological import of LRRK2, the relevance
of microglial LRRK2 to in vivo microglial function in PD is con-
troversial. A study on this topic found that mice overexpressing the
R1441G LRRK2 mutation showed dopamine cell loss and exacerbated
peripheral inflammation in response to systemic LPS injection, de-
monstrating synergy between inflammation and LRRK2 dysfunction in
PD (Kozina et al., 2018). However, the authors found no evidence for
LRRK2 expression in microglia that were acutely isolated from the ex-
perimental mice; rather, flow-sorting showed enrichment only in neu-
rons (Kozina et al., 2018). Independent neuropathological studies have
failed to detect LRRK2 mRNA (Sharma et al., 2011) and LRRK2 protein
(Dzamko et al., 2017) in the microglia of PD patients with LRRK2
mutations. These results complicate the interpretation of microglia-
specific LRRK2 investigations that rely upon primary or immortalized
microglia studied in vitro, such as those discussed below. It is now
understood that microglial phenotypes are profoundly altered upon
removal from a normal CNS environment, which could explain these
discrepancies (Butovsky et al., 2014; Butovsky and Weiner, 2018).

These concerns acknowledged, it is still important to understand the
effects of LRRK2mutations on microglial function, which have not been
definitively excluded as etiological events in human PD. Additionally,
there remains a clear relation to neuroinflammation and its attendant
effects on microglia. Bacterial LPS increases LRRK2 expression in pri-
mary rodent microglia and LRRK2 inhibition reduces LPS-induced cy-
tokine induction (Gillardon et al., 2012; Kim et al., 2012; Moehle et al.,
2012). Interestingly, LRRK2 appears to regulate microglial motility via
focal adhesion kinase such that gain-of-function mutations (e.g.
G2019S) reduce motility, thus impaired microglial relocalization to
local insults could facilitate LRRK2-associated neurodegeneration (Choi
et al., 2015a). This idea was recapitulated in another study showing
that Lrrk2−/− microglia increase migratory behaviors and that altered
responses to fractalkine (CX3CL1) may mediate this phenotype (Ma
et al., 2016). The kinase activity of mutant LRRK2 also increased
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mitochondrial fission in microglia, leading to impaired mitochondrial
dynamics and higher TNFα production that could be rescued with a
LRRK2 kinase inhibitor (Ho et al., 2018). Collectively, these studies are
consistent with roles for LRRK2 in cytoskeleton-associated and in-
flammatory cellular behaviors in microglia.

Similarly, given the extensive literature describing the roles of
LRRK2 in neuronal vesicle trafficking (Cookson, 2016), it has been
suggested that LRRK2 mutations could alter microglial vesicle traf-
ficking to increase inflammatory cytokine release or externalization of
surface receptors with pro-inflammatory signaling capabilities (Russo
et al., 2014). Microglia derived from LRRK2-G2019S PD patients also
increase phagocytic function mediated by cytoskeleton remodeling
factors, consistent with an immobile and inflammatory “ameboid” mi-
croglia phenotype (Kim et al., 2018). Consistent with this, another
study found that LRRK2 knockdown reduced autophagic flux in murine
immortalized microglia (Schapansky et al., 2014). Therefore, normal
LRRK2 function is likely important for endolysosomal function in mi-
croglia. Interestingly, LRRK2 knockout increased phagocytosis of α-
synuclein by murine primary microglia in another study, but the au-
thors did not characterize other impacts on autophagic function,
making it difficult to compare these results to the others here (Maekawa
et al., 2016). Future work may clarify more comprehensively how au-
tophagy or vesicle trafficking are specifically altered in microglia by
PD-specific mutations.

2.5. GBA (Glucocerebrosidase)

Glucocerebrosidase (encoded by GBA) is a lysosomal enzyme im-
portant for glucocerebroside metabolism. Homozygous GBA mutations
cause the lysosomal storage disorder Gaucher's disease (GD) and het-
erozygous mutations are common risk factors for PD (Sidransky et al.,
2009). These mutations reduce its enzymatic (GCase) activity, which
may lead to impaired lysosomal protein degradation and increased
exosomal release of α-synuclein (Magalhaes et al., 2016; Tremblay
et al., 2019). Lysosome function is important to microglial biology
given the critical role microglia play in clearing parenchymal debris
and pro-inflammatory particles, such as pathologic α-synuclein. More-
over, genetic variants that ontologically sort into lysosomal and au-
tophagy function are consistently identified in GWAS of PD (Chang
et al., 2017b). GBA-associated parkinsonism is further genetically
modified by other lysosomal genes, such as CTSB (cathepsin B)
(Blauwendraat et al., 2019), a gene that is dramatically upregulated by
disease-limiting microglial subtypes (Keren-Shaul et al., 2017). Relative
to sporadic PD cases, PD patients with GBA mutations exhibit increased
plasma levels of inflammatory markers and cytokines, including IL-8
and macrophage inflammatory protein 1α (Chahine et al., 2013). Glu-
cocerebrosidase accumulation may also activate complement, which
could exacerbate microglia-mediated neuronal dysfunction (Pandey
et al., 2017). Indeed, systemic GCase inhibition was observed in one
study to increase α-synuclein aggregation in the substantia nigra and to
upregulate complement C1q (Rocha et al., 2015). Although GCase
function in microglia has not been very closely investigated on a me-
chanistic level, macrophages from Gaucher patients homozygous for
the PD-linked N370S mutation exhibit impaired autophagy, lysosome
dysfunction, and consequent NLRP3 inflammasome hypersensitivity
(Aflaki et al., 2016). A demonstration of this mechanism in microglia
could help provide a mechanistic link between Gaucher variants and
neuroinflammation mediated by NLRP3 in PD. Thus, microglial GCase
function in health and disease remains an under-investigated area with
high potential for insightful discoveries.

3. Astrocytes in Parkinson's disease

Astrocytes are the most abundant glial cells in the CNS and play a
variety of physiological roles, including secretion of neurotrophic mo-
lecules, regulation of synaptic transmission, maintaining homeostasis of

water and ions, and regulation of the permeability of the blood-brain
barrier (BBB) (Allaman et al., 2011; Sofroniew and Vinters, 2010;
Wilton et al., 2019). Since glial-derived neurotrophic factor (GDNF)
promotes the survival and differentiation of dopaminergic neurons (Lin
et al., 1993) and BBB is disrupted in PD patients (Cabezas et al., 2014;
Gray and Woulfe, 2015), it is not surprising that the loss of normally
supporting astrocyte roles (loss-of-function) is implicated in the onset
and progression of PD. In contrast, reactive astrocytes formed by re-
sponse to stimulus or injuries in the CNS promotes PD pathogenesis by
toxic gain-of-function (Phatnani and Maniatis, 2015; Sofroniew, 2009).
These reactive astrocytes release a variety of chemokines and cytokines
such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-
1β), which are neurotoxic (Lau and Yu, 2001; Leal et al., 2013). A re-
cent study shows that activated microglia induce neurotoxic A1 astro-
cyte by secreting interleukin-1α (IL-1α), TNF-α and C1q and that A1
astrocytes are found in postmortem brains of human neurodegenerative
diseases including PD (Liddelow et al., 2017). Moreover, pathological
α-synuclein contributes to formation of A1 astrocytes and preventing α-
synuclein-induced microglial activation and A1 astrocyte conversion
protected against dopaminergic neurodegeneration and behavioral
deficits in a mouse model of sporadic PD (Yun et al., 2018). Taken
together, these findings demonstrate that both dysfunctional astrocyte
and reactive astrogliosis contribute to PD pathogenesis and progression.

Recent studies have revealed the regional heterogeneity of astro-
cytes (For review see Ben Haim and Rowitch, 2017; Khakh and Deneen,
2019; Khakh and Sofroniew, 2015) by RNA profiling (Lanjakornsiripan
et al., 2018; Morel et al., 2017), proteomic analysis (Chai et al., 2017)
or single-cell analysis (Batiuk et al., 2020). These observations have
compared astrocyte populations across diverse brain region, indicating
the cellular, molecular, and functional heterogeneity of astrocytes in
the adult brain. For example, hippocampal and striatal astrocytes have
unique functional and morphological properties. Astrocytes from
striatum exhibit less gap junction coupling, K+ currents and interac-
tion with neurons that those from the hippocampus (Chai et al., 2017).
These regional differences of astrocytes may contribute to selective
vulnerability in PD, while the relation of those changes with aging or
disease progression should be addressed. In this section, we review the
implication of PD-associated genes in astrocyte dysfunction in PD.

3.1. α-Synuclein

Although α-synuclein is expressed at low levels in astrocytes when
compared to neurons (Zhang et al., 2014; Zhang et al., 2016), α-sy-
nuclein deficiency disrupted astrocyte fatty acid uptake and trafficking
(Castagnet et al., 2005), suggesting that α-synuclein has a physiological
role in astrocytes. As noted above, pathologic α-synuclein accumulates
in postmortem PD brains (Braak et al., 2007; Song et al., 2009;
Wakabayashi et al., 2000). Because of cell-to-cell transmission of α-
synuclein and its predominant expression in neurons (Hansen et al.,
2011; Zhang et al., 2014; Zhang et al., 2016), it is thought that astro-
cytes accumulate α-synuclein released from the neurons. Studies from
co-culture of primary astrocytes with human neuroblastoma cells se-
creting α-synuclein showed uptake of α-synuclein and formation of
inclusion bodies in astrocytes (Lee et al., 2010b). Thus, α-synuclein acts
as an exogenous stimulator of astrocytes. Astrocytes with accumulated
α-synuclein have been shown to produce proinflammatory cytokines
such as IL-1, IL-6 and TNF-α, as well as chemokines such as C-X-C motif
ligand 1 (CXCL1) in cultures (Lee et al., 2010a). This α-synuclein-in-
duced proinflammatory response is dependent on Toll-like receptor 4
(TLR4), while astrocytes do not seem to require TLR4 for uptake of
extracellular α-synuclein (Fellner et al., 2013; Rannikko et al., 2015). In
addition, a mouse that selectively expresses A53T α-synuclein in as-
trocytes showed non-cell autonomous killing of neurons and they de-
veloped a neurodegenerative movement disorder (Gu et al., 2010).
Presymptomatic and symptomatic accumulation of α-synuclein ag-
gregates in astrocytes disrupted astrocytic functions, such as glutamate
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uptake and blood-brain barrier regulation as well as induced microglial
activation in the midbrain, brainstem and spinal cord, where a sig-
nificant loss of dopaminergic and motor neurons was observed, sug-
gesting that accumulation of α-synuclein in astrocytes leads to neu-
roinflammation and reactive astrogliosis that contribute to PD
neurodegeneration (Gu et al., 2010).

More recently, another mechanism for the formation of neurotoxic
reactive astrocytes that are induced by activated microglia was identi-
fied (Liddelow et al., 2017). Both in primary culture and mouse models,
pathologic α-synuclein activated microglia to secrete Il-1α, TNF-α and
C1q, followed by the induction of reactive A1 astrocytes that caused
neuronal cell death in cultures and neurodegeneration in vivo (Yun
et al., 2018). Moreover, prevention of microglial-mediated conversion
of astrocytes by a glucagon-like peptide-1 receptor (GLP1R) agonist was
neuroprotective against the loss of dopaminergic neurons and beha-
vioral deficits in the α-synuclein PFF mouse model of sporadic PD (Yun
et al., 2018), providing evidence for an indirect role of α-synuclein in
astrocyte-mediated neurodegeneration via microglial activation in PD.

3.2. Parkin and PINK1

The expression and distribution of astrocytic parkin is selectively
increased by intracellular stress. The expression of PINK1 has an im-
portant role in the astrogliogenesis during brain development (Choi
et al., 2016; Ledesma et al., 2002), suggesting that mutations in parkin
and PINK1 in astrocyte may play a specific role on PD pathogenesis. In
mouse astrocytes, the pro-inflammatory cytokine IL-1β decreased the
level of parkin, whereas TNF-α induced its upregulation (Khasnavis and
Pahan, 2014). Parkin regulation in the astrocytic inflammatory re-
sponse is dependent on nitric oxide (NO) generated by inducible NO
synthase (iNOS) (Khasnavis and Pahan, 2014). Astrocytes deficient in
parkin display stress-induced elevation of nucleotide-oligomerization
domain receptor 2 (NOD2), a cytosolic receptor integrating ER stress
and inflammation (Singh et al., 2018). Parkin−/− astrocytes showed
increased ER stress and cytokine release, as well as reduced astrocytic
secretion of neurotrophic factors, which make neurons more susceptible
to neurotoxins (Singh et al., 2018; Solano et al., 2008). Furthermore,
Parkin−/− astrocytes exhibited decreased proliferation and increased
proapoptotic protein expression (Solano et al., 2008). Parkin−/− as-
trocyte also may cause neurotoxicity through increased levels of da-
maged mitochondria (Schmidt et al., 2011).

PINK1 deficiency also may contribute to astrocyte dysfunction, at
least in part by mitochondrial defects. PINK1−/− reduced astrocytic
differentiation and glial fibrillary acidic protein (GFAP)-positive as-
trocytes in mouse brain (Choi et al., 2016). In PINK1−/− astrocyte
cultures, increased p38 activation and decreased epidermal growth
factor receptor (EGFR) expression and AKT activation appeared to be
linked to the proliferation defects of astrocyte (Choi et al., 2013). In
addition, mitochondrial defects, as demonstrated by decreased mi-
tochondrial mass and membrane potential, increased intracellular re-
active oxygen species (ROS) level, and decreased ATP production also
contribute to decreased proliferation in Pink1 KO astrocytes (Choi et al.,
2013). PINK1 also regulates the inflammatory response in astrocytes.
Loss of PINK1 enhanced pro-inflammatory astrocyte functions, such as
increased iNOS, NO, TNF-α and IL-1β expression via NF-kB signaling,
which cause neuronal death in co-cultured system (Sun et al., 2018).

3.3. DJ-1

Since DJ-1 is predominantly expressed in astrocytes compared to
neurons in human brain (Bandopadhyay et al., 2004), a role of DJ-1 in
astrocyte biology has been widely studied. In PD brains, DJ-1 is upre-
gulated in reactive astrocytes (Rizzu et al., 2004). Overexpression of
DJ-1 in astrocytes protected neurons against rotenone-induced death,
whereas knockdown or knockout of DJ-1 impaired the neuroprotective
capacity of astrocytes and decreased neuronal survival (Lev et al., 2013;

Mullett and Hinkle, 2009). It has been suggested that DJ-1 may have
multiple neuroprotective roles in astrocytes.

Astrocytic DJ-1 is important for mitochondrial function and reg-
ulating oxidative stress. Knockdown of DJ-1 reduced mitochondrial
motility in astrocytes that are observed in rotenone treated cells (Larsen
et al., 2011). Moreover, rotenone-induced decrease of mitochondrial
fission and membrane potential were exacerbated by astrocytic DJ-1
knockdown (Larsen et al., 2011). The role of DJ-1 in astrocyte-mediated
neuroprotection is dependent on mitochondrial complex I (Mullett and
Hinkle, 2011). Since DJ-1 serves as a redox sensor that recognize oxi-
dative stress (Cao et al., 2014), DJ-1 mutations may contribute to PD
pathogenesis by dysregulating nitrosative stress in astrocytes. DJ-1−/−

astrocytes generated greater than 10 times more NO than littermate
controls through p38 and iNOS-dependent mechanism, which are
neurotoxic (Waak et al., 2009). In contrast, overexpression of DJ-1
protect astrocytic function and prevent oxidative stress. Astrocytic DJ-1
overexpression in zebrafish model upregulated proteins associated with
redox regulation and mitochondrial respiration and prevented NO
generation (Froyset et al., 2018). Moreover, rats overexpressing human
DJ-1 in astrocytes were protected from rotenone-induced neurodegen-
eration and displayed a marked reduction in oxidative stress (Pelletier
et al., 1988). Taken together, DJ-1 prevent the production of oxidative
stress in astrocytes.

Another role of DJ-1 in astrocyte is the inflammatory response. DJ-
1−/− astrocytes induced the proinflammatory mediators such as cy-
clooxygenase-2 (COX-2) and IL-6 and subsequent neuronal death in
response to LPS treatment (Waak et al., 2009). DJ-1 selectively influ-
ences the TLR4 but not the TLR3 pathway to regulate astrocyte in-
flammation (Waak et al., 2009). It has been found that DJ-1 protein
associated with lipid rafts, a highly organized membrane microdomains
enriched in cholesterol and sphingolipids that play a role in synaptic
transmission, endocytosis, exocytosis and signal transduction (Kim
et al., 2013c; Munro, 2003). DJ-1−/− astrocytes disrupted lipid raft
assembly and impaired TLR4 endocytosis that may affect astrocyte in-
flammation (Kim et al., 2013c). DJ-1 also negatively regulates the in-
flammatory response of astrocytes in response to interferon-gamma
(IFN-γ) as a scaffold protein that facilitates p-STAT1 interaction with its
phosphatase SHP-1 that preventing prolonged STAT1 activation (Kim
et al., 2013b). IFN-γ treatment induced more neuronal damage in DJ-
1−/− KO brain slices than in WT (Kim et al., 2013b), supporting that
the loss of DJ-1 function may increase the risk of PD by enhancing brain
inflammation.

3.4. LRRK2

LRRK2 is constitutively expressed in astrocyte and microglia as well
as neurons in the human brain (Miklossy et al., 2006; Sharma et al.,
2011). Although there are few studies about the role LRRK2 in astro-
cytes, astrocytic LRRK2 is involved in the autophagy-lysosome pathway
like in neurons (di Domenico et al., 2019; Henry et al., 2015; Manzoni
et al., 2013). The initiation of macroautophagy is sustained by activa-
tion of ULK1 and ULK2 complexes, which are inhibited by mTOR, and
the nucleation and maturation of autophagic vesicle is mediated by
Beclin-1-Vps34-Vps15 core complexes and other proteins (Kang et al.,
2011). Inhibition of LRRK2 kinase activity induces autophagy that is
independent on mTOR in primary astrocytes (Manzoni et al., 2013).
Chemical inhibition of LRRK2 kinase activity also resulted in the sti-
mulation of macroautophagy independent of mTOR and ULK1, but
dependent on the activation of Beclin-1 (Manzoni et al., 2016), sug-
gesting that LRRK2 is implicated in either autophagosome formation or
maturation. Moreover, in a study using induced pluripotent stem cell
(iPSC)-derived astrocytes containing familial LRRK2 G2019S mutation,
dysfunctional chaperone-mediated autophagy (CMA), impaired mac-
roautophagy, and progressive α-synuclein accumulation has been ob-
served in PD astrocytes (di Domenico et al., 2019). LRRK2 itself also
regulates lysosomal size, number and function in astrocytes (Henry
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et al., 2015). Expression of PD-related pathogenic LRRK2 mutations
(G2019S, R1441C or Y1699C) produced enlarged lysosomes and di-
minished lysosomal capacity in a kinase-dependent manner in primary
astrocytes (Henry et al., 2015). Since both autophagic and lysosomal
dysfunction appear in neurodegenerative diseases including PD
(Menzies et al., 2017), astrocytic LRRK2 mutations might be implicated
in PD via dysregulating autophagy-lysosome pathway. A recent study
using a KI mouse with deficient phosphorylation of LRKK2 S910 and
S935 observed in both cell culture models and postmortem brain tissues
of PD patients (Dzamko et al., 2017; Nichols et al., 2010) showed that
striatal PD pathology was accompanied by a decreased number of as-
trocytes, whereas the number of microglia remained unchanged (Zhao
et al., 2018). This study further suggest that the LRRK2 phosphorylation
may have direct implications for astrocyte function.

3.5. GBA (Glucocerebrosidase)

Since in both GD and PD patients brain GBA mutations caused as-
trogliosis as well as abnormal α-synuclein inclusion (Wong et al., 2004),
GBA may also have a role in astrocyte on pathogenesis. Consistent with
this, Gba KO mice showed astroglial activation within nigrostriatal
pathways, accompanied by abnormal α-synuclein accumulation (Ginns
et al., 2014). The iPSC-derived astrocytes containing GBA mutations
also showed astroglial activation and impaired lysosomal cathepsin
activity, leading to aggregated α-synuclein accumulation (Aflaki et al.,
2020). Moreover, specific GBA deficiency in neural and glial progenitor
cells in mouse brain resulted in the increase of cathepsin lysosomal
protease expression in both astrocytes and neurons and the redistribu-
tion of cathepsin in areas of astrogliosis and neuronal loss (Vitner et al.,
2010). In a study using GBA D409V knockin mouse astrocytes, TLR4-
dependent inflammatory responses and lysosomal dysfunction has been
observed, which are normalized by inhibition of LRRK2 kinase activity,
suggesting functional intracellular crosstalk between GBA and LRRK2
in astrocytes (Sanyal et al., 2020). Another study showed that autop-
hagic and proteasomal machinery are defective in primary astrocytes
lacking GBA (Osellame et al., 2013). In addition, Gba KO neurons and
astrocytes showed mitochondrial dysfunction such as impaired re-
spiration and decreased membrane potential and mitochondrial frag-
mentation that is more severe in astrocytes than in neurons (Osellame
and Duchen, 2013; Osellame et al., 2013).

4. Conclusion

Since PD is characterized by the degeneration of dopaminergic
neurons in the substantia nigra pars compacta (SNpc), the majority of
PD research has been focused on selective loss of neurons and trying to
understand this vulnerability to identify targets for neuroprotection.
Less effort, however, has been spent in understanding the role of glial
cells in PD pathogenesis. There is growing evidence that glial cells,
including microglia and astrocytes, likely contribute to PD pathogenesis
by both the loss of their normal homeostatic functions and the gain of
neurotoxic functions. There are many PD-associated genes and the list is
growing. Since many of the PD-related genes are expressed in glial cells
as well as neurons, non-cell-autonomous mechanisms likely contribute
to degenerative processes and support the importance of further un-
derstanding the role of glial cells in PD. It is also important to identify
parallel, reciprocal, or complementary pathways between PD-asso-
ciated gene products rather than a single pathogenic pathway in glial
cells, which might affect neuroinflammation and neuronal death.
Overall, a better picture of the non-cell-autonomous interactions be-
tween glial cells and neurons will provide important insights into
neurodegeneration. Moreover, since PD pathology is prevented by in-
hibition of microglial activation and the conversion of resting astrocytes
into neurotoxic reactive A1 astrocytes in mice (Dawson and Dawson,
2019; Yun et al., 2018), strategic approaches targeting these non-cell
autonomous mechanisms in PD are promising avenues of therapeutic

development and intervention.
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