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Abstract

The current study tested the accuracy of primary MRI and cerebrospinal fluid (CSF) biomarker candidates and neuropsychological tests
for predicting the conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) dementia. In a cross-validation paradigm,
predictor models were estimated in the training set of AD (N � 81) and elderly control subjects (N � 101). A combination of CSF
t-tau/A�1-4 ratio and MRI biomarkers or neuropsychological tests (free recall and trail making test B (TMT-B)) showed the best statistical

t in the AD vs. HC comparison, reaching a classification accuracy of up to 64% when applied to the prediction of MCI conversion (3.3-year
bservation interval, mean � 2.3 years). However, several single-predictor models showed a predictive accuracy of MCI conversion
omparable to that of any multipredictor model. The best single predictors were right entorhinal cortex (prediction accuracy � 68.5% (95%

CI (59.5, 77.4))) and TMT-B test (prediction accuracy 64.6% (95% CI (55.5, 73.4%))). In conclusion, short-term conversion to AD is
predicted by single marker models to a comparable degree as by multimarker models in amnestic MCI subjects.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Alzheimer’s disease (AD) is a complex chronically pro-
gressive neurodegenerative disease and the most common
form of dementia. The prevalence of clinically manifest AD
is about 2% at the age of 65 years but increases to about
30% at the age of 85 years (Wimo et al., 1997).

At the mildest clinical stage of AD pathology, the clin-
ical diagnosis is challenging since dementia symptoms are
not yet fully expressed. Mild cognitive impairment (MCI)
with aging is a clinical syndrome of focal cognitive impair-
ment that has been associated with increased risk of AD
(Petersen et al., 1999). However, MCI may stem from a
variety of different etiologies and pathologies and shows
sometimes high rates of reversion back to normal, suggest-
ing that the clinical symptoms of MCI can occur due to
causes other than underlying AD pathology (Ritchie et al.,
2001). Thus, at an early stage, the diagnosis of AD is
inherently difficult when based upon clinical symptoms
only.

The biomarker-based assessment of the neuropathologi-
cal characteristics of AD has been proposed to enhance the
clinical detection of AD in early prodromal stages of the
disease (Dubois et al., 2007). The rationale for the use of
biomarkers in diagnostics is that these biological tests may
enable us to detect AD pathology to determine whether the
MCI symptoms are due to AD pathology and represent early
stage, prodromal AD. Such an etiological classification is
important for the timely administration of disease modify-
ing drugs, such as A� immunization currently tested in
clinical trials, to prevent or slow down the clinical manifes-
tation of AD-type dementia. Among the primary biomarker
candidates recommended by consensus expert groups on
biomarkers (Frank et al., 2003) are cerebrospinal fluid
(CSF) based measures of phosphorylated Tau protein (p-
tau), t-tau protein, beta amyloid peptide (A�1-42) (Blennow
and Hampel, 2003; Herukka et al., 2005; Hansson et al.,
2006; Ewers et al., 2007) as well as MRI-based assessments
of the hippocampus and entorhinal cortex (Jack et al., 1999;
Kantarci and Jack, 2003; Schuff et al., 2009). The hip-
pocampus shows characteristic global and local subfield
structural changes that are specific for AD in early stages of
the disease (Csernansky et al., 2000; Frisoni et al., 2008;
Wang et al., 2009). Entorhinal cortex has been previously
reported to be especially sensitive for AD at the early
prodromal stages of the disease (Du et al., 2001; Pennanen
et al., 2004; Tapiola et al., 2008). CSF biomarkers of total
tau, p-tau, and A�1-42 have also been shown in numerous
tudies to predict the conversion from MCI to AD at clin-
cally relevant levels of accuracy (Ewers et al., 2007;

erukka et al., 2007; Mattsson et al., 2009). o
Results of recent studies of smaller sample size have
hown that a combination of both MRI-based assessment of
ippocampus volume and CSF based biomarkers may pos-
ess additive value for enhanced prediction accuracy (Bou-
man et al., 2007; Brys et al., 2009b). A recent study as part
f the large-scale multicenter trial of the American Alzhei-
er’s Disease Neuroimaging Initiative (ADNI) using pat-

ern recognition techniques of structural brain changes of
ray matter, white matter and CSF space in the whole brain
Vemuri et al., 2008) showed that volumetric changes and
SF markers were associated with higher risk of AD in
CI when compared with each marker alone (Vemuri et al.,

009). In addition to biomarkers, measures of both memory
nd nonmemory related cognitive ability may contribute to
he prediction of AD in subjects with MCI (Jacobs et al.,
995; Devanand et al., 2007). However, the effective gain in
redictive accuracy by combining different biomarkers or
europsychological variables for the prediction of AD in
CI has not been conclusively tested so far. Here, we

xamined on the basis of the data collected within the
arge-scale multicenter ADNI the accuracy of the combina-
ion of the automated MRI-assessed hippocampus and en-
orhinal measurement, major CSF-biochemical biomarker
andidates, and neuropsychological tests for the prediction
f the conversion of subjects with MCI to clinical AD over
n observation time period of up to 3.3 years.

. Methods

.1. Patients

Subjects with a complete data set of MRI, CSF and
europsychological tests were drawn from the ADNI data
et including 81 patients with AD, 130 amnestic MCI sub-
ects, and 101 elderly HC (Figure 1). Neuropsychological
ssessment and MRI are routinely taken, and—in a subset of
ubjects—cerebrospinal fluid samples. Thus, the current
ample with a complete data set was a subsample of the
arger sample of subjects with amnestic MCI (N � 397),
ild AD (N � 193) and HC (N � 229). The subsample who

ad completed the full data assessment was virtually the
ame in terms of age, Mini Mental State exam (MMSE),
ducation, ADAS and Ray auditory verbal learning test
AVLT) compared with the remainder of subjects within the
DNI data sample (data not shown). Thus, no selection bias
as evident based on the variables tested. All collected data

re online freely accessible to researchers (downloaded on
9/9/08 and updated on 8/19/09 at www.loni.ucla.edu/
DNI). General inclusion criteria included an age between
5 and 90 years, a modified Hachinski score � 4, education

f at least 6 grade level, and stable treatment of at least 4

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
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weeks in case of treatment with permitted medication (for full
list see www.adni-info.org, Procedures Manual). The di-
agnosis of AD was made according to the NINCDS-
ADRDA criteria (McKhann et al., 1984). Inclusion criteria
for AD encompassed subjective memory complaint, mem-
ory impairment as assessed by an education adjusted score
on delayed recall of a single paragraph as tested by the
Wechsler Logical Memory II Subscale as follows: 0–7 years
of education: � 2, for 8–15 years: � 4, for 16 years or more:
� 8, a MMSE score between 20 and 26 and a clinical
dementia rating (CDR) score of 0.5 or 1. For the diagnosis
of amnestic MCI, the subjects had to show subjective mem-
ory impairment and objective memory impairment identical
to that for AD, a CDR of 0.5 including the memory box
score of 0.5 or greater, and a MMSE score between 24 and
30, with unimpaired general cognitive ability and functional
performance such that they did not meet criteria for demen-
tia. HC had to show normal performance on the Logical
Memory II Subscale adjusted for education as follows: 0–7
years: � 3, 8–15 years: � 5, 16 or more years: � 9, and
absence of significant impairment on cognitive function or
activities of daily living.

2.2. CSF measurement

All CSF samples collected at the different centers were
shipped on dry ice to the Penn ADNI Biomarker Core
Laboratory at the University of Pennsylvania, Philadelphia
for storage at �80 °C until further analysis at the laboratory.
More details on data collection of the CSF samples can be
found at (www.adni-info.org, under “ADNI study proce-
dures”). The CSF concentration of A�1-42, t-tau, and p-
au181 were measured in the baseline CSF samples using
nnogenetics reagents (research use only AlzBio3 immuno-
ssay kits, Ghent, Belgium) and the multiplex xMAP Lu-
inex platform (Lumnix Corporation, Austin, TX) at the
enn ADNI Biomarker Core Laboratory. For detailed de-
cription see (Shaw et al., 2009).

.3. MRI acquisition and ROI measurement

The data of left and right hippocampus volume and
ntorhinal cortex thickness were downloaded from the pub-
ic ADNI databank (www.loni.ucla.edu/ADNI). All MRI
ata were acquired on 1.5 T MRI scanners with 3D T1-
eighted sequences optimized for the different scanners as

ndicated at www.loni.ucla.edu/ADNI/Research/Cores/
ndex (Jack et al., 2008). All images were corrected for
patial distortion due to gradient nonlinearity and normal-
zed for B1 nonuniformity (see also www.loni.ucla.edu/
DNI/Data/ADNI_Data.shtml). MRI measures of hip-
ocampus volume and entorhinal cortex were reconstructed
ith the software program Freesurfer in Dr. Dale’s labora-

ory at University of California, San Diego as previously
escribed in detail (Fennema-Notestine et al., 2009). Auto-
ated 3D whole-brain segmentation procedure (Fischl et
l., 2002; Fennema-Notestine et al., 2009) was used, which c
as been shown to be largely robust to variation in image
cquisition including scanner type, software version and
can protocol (Fischl et al., 2002). Minimal manual editing
f the images was applied (Fennema-Notestine et al., 2009).

.3.1. Neuropsychological tests
Episodic memory was assessed with the Rey Auditory

erbal Learning test (RAVLT), which includes a list of 15
ords to be recalled immediately after each of the 5 verbal
resentations, as well as after an interference list and after a
0-minute delay including a free recall and recognition test
Rey, 1964). Tests of frontal lobe functions included digit
pan forward and backward (score: total correct responses)
Wechsler, 1987), and the trail making test A and B
TMT-A and trail making test b (TMT-B), score: total
umber of seconds to complete the test) (Reitan and Wolf-
on, 1985). Verbal fluency was assessed through tests of
ategory fluency including animals and vegetables (score:
umber of examples recalled) (Morris et al., 1989). The
oston Naming test (score: total number of items correctly
amed) (Kaplan et al., 1983) and Digit Symbol Substitution
est (score: correct number of substitutions) (Wechsler,
981) were tested in addition. For details on the adminis-
ration and scoring see the “Procedures Manual” at www.
dni-info.org/Scientists/AboutADNI.aspx.

.4. Statistics

All variables were examined for normal distribution
ithin each diagnostic group using QQ plots. Variables

ncluding age, right and left hippocampus volume, and CSF-
oncentration levels of t-tau, p-tau181, and A�1-42, were

log-transformed to achieve normal distribution.
Total intracranial volume (TIV) was not used here as we

did not anticipate it as a confounding factor for diagnostic
classification (Fennema-Notestine et al., 2009), although we
appreciate that TIV correction may have reduced further
potential nondisease related variation in ROI volume.

In a first step, logistic regression analysis was used to
establish a prediction model for the discrimination between
AD and HC. In order to test the robustness of the model and
to control for potential sample-specific overfitting, the lo-
gistic regression analysis was reiterated 1000 times using
random-split resampling. In each trial, a logistic regression
model was constructed on the basis of a subset of randomly
chosen portion of two-thirds of the AD and HC (training
set) and the predictive accuracy was tested in the remaining
1⁄3 of the AD and HC subjects (test set). The sensitivity and
pecificity of the regression model for the test set was
ecorded within each resampling trial. The best regression
odel was defined as the particular regression model that
as generated most frequently during the resampling trials.
or the best model, the average sensitivity and specificity
cross resampling test trials and the regression coefficients
ogether with the 95% confidence interval (95% CI) of the
ampling distribution was reported. Predictors tested in-

luded left and right hippocampus volume and entorhinal

http://www.adni-info.org
http://www.adni-info.org
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Research/Cores/index
http://www.loni.ucla.edu/ADNI/Research/Cores/index
http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml
http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml
http://www.adni-info.org/Scientists/AboutADNI.aspx
http://www.adni-info.org/Scientists/AboutADNI.aspx
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cortex, CSF-measures of t-tau, p-tau181, A�1-42, ratio of
-tau/A�1-42 and p-tau181/A�1-42, age, gender and ApoE
enotype. ApoE genotype was binarized into ApoE �4 al-
ele carrier and ApoE �4 allele non-carriers. Note that in the
ost accurate model across the 1000 resampling trials, age,

ender, and ApoE genotype were not significant predictors
nd thus did not contribute to the predictive accuracy of the
odels reported here. The prediction model derived from

he first step was applied in the second step for the discrim-
nation between MCI-AD converters and MCI-AD non-
onverters.

We reported previously a logistic regression derived for-
ula for the detection of AD based on ApoE genotype and
SF obtained antemortem tested in autopsy confirmed AD
atients and living cognitive normal HC (Shaw et al., 2009).
e tested here whether this algorithm including CSF-con-

entration of t-tau, A�1-42, and number of ApoE �4 alleles
(designated LRTAA) could be augmented by the current
MRI markers for the prediction of MCI to AD. To this end,
the 2 prediction models (i.e., with and without neuropsy-
chological markers) were rerun, but this time the separate
CSF markers of total tau, p-tau181, and A�1-42 and ApoE
enotype were substituted by the LRTAA predictor.

In addition to the biomarker-only models, we tested
whether neuropsychological variables contributed to the
predictive power of the biomarker based model. We re-
peated the random-split resampling based logistic regres-
sion analysis for the discrimination between AD and HC in
the same way as described above, but this time feeding in
the regression model also neuropsychological test scores
including AVLT immediate and 30 minute free recall,
AVLT recognition test, TMT-A and TMT-B, category flu-
ency, digit span forward and digit span backward, Digit
Symbol Substitution test and the Boston naming test. A
correlation matrix was between all tests was computed
across all subjects to check colinearity, using Pearson mo-
ment correlations.

Note that the model established in AD vs. HC compar-
ison on the basis of the best statistical fit of the logistic
regression model may not necessarily translate into the
model with the best classification accuracy (Schemper,
2003). Therefore, we compared in a second approach the
classification accuracy for each combination of the vari-
ables. In a first step, the coefficients were estimated in the
AD vs. HC sample (in the whole sample) and then applied
for the MCI prediction. Models for all possible combination
of the 24 predictors including the biomarker candidates,
neuropsychological variables, and demographic variables
including age and gender were estimated, with the restric-
tion of a maximal number of predictors of 4. This restriction
of the maximum number of predictors in a particular model
was done for computational reasons since the total number
of possible combinations of 24 variables is exceedingly
high. Moreover, models with high number of predictors are

less attractive in terms of implementation in clinical prac-
tice. To keep the follow-up interval consistent across sub-
jects, the follow-up interval was restricted to at least 1.9
years in MCI stable subjects and the time to conversion was
maximally 2.1 years for MCI converters (n � 128 MCI
ubjects). Using bootstrapping with replacement, the clas-
ification accuracy for the MCI conversion prediction was
ecorded for each model estimated during each of 100
ootstrap trials. In each bootstrap trial, the different models
ere ranked according to the overall classification accuracy.
he mean and 95% CI of the sampling distribution of the

ank and classification accuracy indexes (total classification
ccuracy, sensitivity and specificity) were computed across
ootstrapping trials. The 95% CI of the classification accu-
acies was used to test for statistically significant differences
n the classification accuracy between different prediction
odels.
Note that in the first cross-validation approach to estab-

ish the best prediction model in the AD vs. HC comparison,
ype I error accumulation due to multiple tests or overfit-

ing was controlled for by random-split resampling. Age
nd gender were tested as covariates in all models but were
ot found to contribute to prediction accuracy. The statisti-
al significance threshold for variable entry was � � 0.05

and for removal of a variable from the regression model
� � 0.1 was used. In the comparison of systematically
aried prediction models on the basis of the 95% CI, the
umber of comparisons between models was limited to the
odels with the highest ranks of predictive accuracy, thus

imiting the number of statistical tests. Second, as we did
ot find a significant difference based on the 95% CI, the
onclusion of the current study holds regardless of Bonfer-
oni correction.

Finally, within the MCI sample, time to conversion to
D was tested via Cox regression analysis.
The analyses were conducted with open source statistical

oftware package R (www.r-project.org/) and SPSS 16.0
SPSS, Inc, Chicago, USA).

. Results

Demographic variables for the different diagnostic
roups are displayed in Table 1. Among the subjects with
CI, 58 out of 130 subjects developed AD within 3.3 years

f clinical follow up, with a mean follow up interval of 2.3
ears (SD � 0.6). In order to check for co-linearity between
he predictors, a Pearson-moment correlation matrix was
omputed among all predictors within the AD and HC
ubjects. For no pairing of predictors, the correlation was
igher than r � 0.9 (data not shown).

.1. Differentiation between AD vs. HC

When only biomarker variables were entered, the logistic
egression analysis showed that the combination of the CSF
atio of t-tau/A�1-42 (B � 3.6, 95% CI (2.6, 4.7)), left
entorhinal cortex (B � �2.4, 95% CI (�3.3, �1.5)), and left

http://www.r-project.org/
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hippocampus volume (B � �6.8, 95% CI (�9.7, �3.8)) was
he model most frequently chosen as the most accurate classi-
cation model. Potential confounding factors such as age and
ender did not contribute to the best model. The overall clas-
ification accuracy of the most frequently yielded best model
as 86.7% with a sensitivity of 82.5% and specificity of 90.1%

t a cut-off point of the probability of the predicted probability
f p � 0.5 based on the regression equation.

When biomarkers and neuropsychological variables were
ombined, the model most frequently chosen as the best model
ncluded again the biomarker of CSF t-tau/A�1-42 ratio (B �
.9, 95% CI (3.4, 8.4)), but this time in combination with the
ollowing neuropsychological predictors: RAVLT immediate
ree recall (B � �11.7, 95% CI (�7.4, �16.1)), RAVLT
0-min. delayed recall (B � �2, 95% CI (�1.1, �2.9)), and
MT-B (B � 4.2, 95% CI (2.7, 5.6). The MRI measures were
o longer significant in this extended model. The sensitivity
as 93.8% and the specificity 95.6%, with an overall classifi-

ation accuracy of 94.8%.
In a recent study, based on CSF samples obtained ante-

ortem from AD patients followed to autopsy with post-
ortem confirmed diagnoses of AD, and CSF from living

ognitive normal HC, we reported a logistic regression

Fig. 1. Flow chart of number of patients undergoing the test under evaluatio
cortical thickness.

Table 1
Demographic descriptive for each of the diagnostics groups. Mean (stand

Group Sample size Age

C 101 75.2 (5.4)
CI-nonAD 72 73.4 (7.4)
CI-AD 58 74.6 (7.3)
D 81 74.4 (7.8)
, Female; m, male; �4-, ApoE genotype without �4 allele; �4�, ApoE genotype
odel based upon CSF-concentration of t-tau, A�1-42, and
umber of ApoE �4 alleles (designated LRTAA) (Shaw et
l., 2009). When this LRTAA based formula was fed into the

regression analysis in the current study, results showed that
LRTAA (B � 4.4, 95% CI (2.8, 5.9)) was a significant
redictor in addition to left entorhinal and hippocampus
easures. The overall classification accuracy for the LRTAA

plus MRI measures model was 91.1%, with a sensitivity of
90.1% and specificity of 92.1%.

When the analysis was repeated with the LRTAA formula plus
europsychological tests entered, the LRTAA was a significant

predictor of AD (B � 5.3, 95% CI (3.0, 7.5)) in addition to the
same neuropsychological predictors, i.e., RAVLT immediate free
recall, RAVLT 30-min. delayed recall, and TMT-B. The sensi-
tivity for this model was 92.2% and the specificity was 97.5%
with an overall classification accuracy of 95.2%.

3.2. Prediction of conversion from MCI to AD based
upon best classification model established in the AD vs.
HC comparison

For the best biomarker-only model including the combi-
nation of the CSF t-tau/A�1-42 ratio and the left entorhinal

test) and the reference test. HCV, Hippocampus volume; ERC, Entorhinal

iation) are indicated for Age and MMSE

Gender (f/m) MMSE ApoE (�4�/�4�)

48/53 29.0 (1.0) 76/25
28/44 27.4 (1.6) 39/33
19/39 26.9 (1.8) 20/38
48/33 23.5 (1.8) 24/57
n (index
ard dev
with at least 1 �4 allele.
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and hippocampus measures (see above), 80.4% of the 56
MCI-AD converters were correctly identified by the model,

Fig. 2. Distribution of MCI-AD converters (green triangles) vs. MCI nonA
ratio (A) and for the entorhinal cortex (mm3) vs. CSF tau/A�1-42 ratio (
onconverters. The risk of MCI conversion associated with the left hippoca
n each line. The arrow points in the direction of risk increase associated
he CSF tau/A�1-42 ratio as indicated by the slope of the lines, but a decreas

by the height of the lines is associated with an increased risk of MCI-AD
and 48.6% of the MCI-AD nonconverters. The overall clas-
sification accuracy was 62.5% (Fig. 2A,B). For the combi-
nation of the biomarkers plus neuropsychological variables

circles) as a function of left hippocampus volume (ln) and CSF tau/A�1-42

lines show the risk zones for classification as MCI converters or MCI
olume (A) or left entorhinal cortical thickness (B) is labeled as percentages
ecrease in the MRI measures (inset in A and B). Note that an increase in
hippocampus volume (A) or left entorhinal cortical thickness (B) indicated
sion.
D (red
B). The
mpus v
with a d
e in left
(CSF t-tau/A�1-42 ratio, AVLT immediate and delayed free
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recall, and TMT-B), the total classification accuracy was
64.1%, with a sensitivity of 80.4% and specificity of 51.4%.

When the LRTAA plus MRI based regression model de-
rived above was used for the classification of the MCI
conversion, the classification accuracy was 64.8%, with a
sensitivity of 76.8% and specificity of 55.6%. For the com-
bination of the LRTAA with neuropsychological predictors,
he overall classification accuracy was 68.0%, with a sen-
itivity of 82.1% and specificity of 57.0%.

.3. Cox regression analysis of the prediction of time to
onversion from MCI to AD

When biomarkers and demographic variables were en-
ered in a feedforward manner, the combination of right
ippocampus volume (B � �2.9, SE � 0.7, p � 0.001) and
SF P-tau181 (B � 0.7, SE � 0.3, p � 0.01) significantly

predicted time to conversion from MCI to AD.
When neuropsychological test scores in addition to biomarkers

and demographic variables were fed into the model, the combi-
nation of right hippocampus volume (B � �3.6, SE � 0.8, p �
0.001), ApoE genotype (B � 0.6, SE � 0.3, p � 0.04),
AVLT immediate recall (B � �1.5, SE � 0.4, p � 0.001),
and Digit span (B � �1.8, SE � 0.4, p � 0.001) predicted
time to conversion.

3.4. Statistical test of the difference in the accuracy of
predicting MCI conversion between different
prediction models

It is possible that a regression model that yields the
highest classification accuracy for the discrimination be-
tween AD vs. HC may not necessarily select the best model
for the prediction of conversion form MCI to AD. More-
over, model selection based on the statistical fit may not

Table 2
The single-predictor models that ranked highest in terms of overall classi
follow-up interval are shown. The classification accuracy (CAC), sensitiv
AD as well as the discrimination between AD and HC. Note that bootstra

Variable Rank MCI converter vs. MCI nonconverte

CAC (95% CI) in % Sensitivity (

Biomarkers
RERC 1 68.5 (59.5, 77.4) 53.4 (39.7, 6
RHC 2 67.5 (58.9, 76.2) 66.8 (53.6, 8
LHC 4 63.5 (54.0, 72.9) 70.1 (58.0, 8
CSF P-tau181 5 61.9 (53.8, 70.1) 63.9 (51.2, 7
CSF T-tau 6 59.9 (51.3, 68.4) 60.7 (46.1, 7
LERC 7 59.2 (50.1, 68.4) 54.8 (43.0, 6

europsychological tests
TMT-B 1 64.6 (55.8, 73.4) 49.6 (35.8, 6
AVLT–IM REC 2 61.8 (53.9, 69.8) 74.3 (61.7, 8
AVLT-DEL REC 3 61.7 (53.4, 69.9) 78.1 (67.5, 8
Cat fluency (veg) 4 60.2 (52.7, 67.8) 55.8 (44.6, 6
Digit score 5 59.9 (51.7, 68.2) 50.9 (37.3, 6
AVLT-DEL RECOG 6 58.9 (50.6, 67.1) 50.0 (37.2, 6

VLT-DEL REC, AVLT delayed free recall; AVLT-IM REC, AVLT imm
VEG), Category fluency for category of vegetables; digit span B, digit s
ortex thickness; LHC, left hippocampus volume; RERC, right entorhinal
always result in statistically significant improvement of ac-
tual classification of subjects into clinical diagnostic cate-
gories, such as MCI-AD converters and MCI nonconvert-
ers. Therefore, we tested in a bootstrapping approach the
difference in classification accuracy for the discrimina-
tion between MCI-AD converters and MCI-AD noncon-
verters between all possible combinations of the 24 pre-
dictors. The maximum number of variables in a particular
model was set to 4.

For the single-predictor model, the biomarker and neu-
ropsychological predictors for which the total prediction
accuracy exceeded 50% are listed in Table 2. The top
ranked single-predictor was the right entorhinal cortex
(mean total CAC � 68.5% (95% CI � 59.6, 77.4)). For
neuropsychological predictors, the top ranked predictor was
TMT-B (mean total CAC � 64.6% (95% CI � 55.8, 73.5)).
The 95% CI of the total classification accuracy overlapped
among single predictor models, indicating comparable pre-
diction accuracy between different biomarkers or neuropsy-
chological variables (Fig. 3, Table 2).

We asked the question whether any combination of bio-
markers or neuropsychological variables shows a significant
gain over the single-predictor model in terms of classifica-
tion accuracy. Bootstrapped classification accuracy was
compared among all possible combinations of predictors,
with the restriction of no more than 4 predictors being
included in a particular model. Figure 3 shows classification
accuracy of the best 24 models for 2-, 3-, and 4 predictor
models vs. each single predictor model (for model identifi-
cation see supplementary Table 1). Tables 3 and 4 display
the total classification accuracy, sensitivity and specificity
along with the 95% CI of the best 1-, 2-, 3-, or 4-predictor
models for the biomarker-only models (Table 3) and the
biomarker-plus-neuropsychology models (Table 4). For the

accuracy with a minimum classification accuracy � 50% at 2-year
specificity are indicated for the prediction of conversion from MCI to
f the classification accuracy was performed only in the MCI group

AD vs. HC

) in % Specificity (95% CI) in % CAC Sensitivity Specificity

77.0 (66.5, 87.4) 78.0 67.9 86.1
66.7 (55.9, 77.4) 76.4 65.4 85.1
58.7 (45.7, 71.6) 76.4 66.7 84.2
58.9 (45.8, 71.9) 73.6 66.7 79.2
58.9 (46.5, 71.3) 72.0 64.2 78.2
63.5 (50.8, 76.3) 79.7 74.1 84.2

76.2 (66.9, 85.5) 46.2 32.1 57.4
53.0 (40.7, 65.4) 90.7 90.1 91.1
49.4 (38.3, 60.6) 88.5 86.4 90.1
65.6 (53.0, 78.3) 81.9 79.0 84.2
66.0 (55.2, 76.7) 48.9 39.5 56.4
65.2 (54.1, 76.4) 79.7 65.4 91.1

ree recall; AVLT-DEL RECOG, AVLT recognition memory; Cat Fluency
kwards(length); digit score, digit span total score; LERC, left enthorinal
thickness; LHC, left hippocampus volume; TMT-B, trail making test B.
fication
ity and
pping o

r

95% CI

7.1)
0.1)
2.3)
6.6)
5.2)
6.7)

3.4)
6.9)
8.7)
6.9)
4.5)
2.8)

ediate f
pan bac
biomarker-only models, there was a numerical but statisti-



(
7

l
c
c
(

�

A
c

1210 M. Ewers et al. / Neurobiology of Aging 33 (2012) 1203–1214
cally nonsignificant increase in total classification accu-
racy from the best single marker model of the entorhinal
cortex thickness (68.5%, 95% CI (59.5, 77.4)) to best for
the 4-predictor model including right hippocampus vol-
ume, CSF total-tau/A�1-42 ratio, ApoE genotype, and age
overall classification accuracy � 70.9% (95% CI (63.1,
8.6), Table 3)).

For the models combining biomarker and neuropsycho-
ogical test performance, a numerical increase of the overall
lassification accuracy by 11.7% in total classification ac-
uracy was observed in favor of the best 4-predictor model
TMT-B, right hippocampus volume, CSF p-tau181/A�1-42

and age, classification accuracy � 76.3% (95% CI (68.4,
84.2)) when compared with the best single neuropsycholog-
ical predictor (TMT-B, classification accuracy � 64.6%,
95% CI (55.8, 73.5), see above and Table 4). However, the

Fig. 3. Bootstrapped mean of the total overall classification accuracy and
4-predictor models for the classification of MCI conversion within a 2-year
are identified by their corresponding rank.

Table 3
Combined biomarkers models for different follow up intervals. The overa
during the bootstrapping trials for single and multiple predictor models ar
only in the full 2-year sample.

Follow-up
interval (in years)

Sample size
MCI-AD/MCI nonAD

Model

2-y follow up 58/72 RERC
LERC and RHC
RHC and CSF P-tau181 and
RHC and tau/A�1-42 and A

3-y follow up 11/15 RERC
LERC and RHC
RHC and CSF P-tau181 and
RHC and tau/A�1-42 and A

poE, ApoE genotype; LERC, left entorhinal cortex thickness; LHC, left

arriers vs. non-carriers).
mean difference between the best predictor model and best
4-predictor model was not statistically significant, as the
95% CI of the classification accuracy of both models was
overlapping (see Table 4).

4. Discussion

The major results show that a combination of MRI and
CSF or neuropsychological markers contributed indepen-
dently to the discrimination between AD and HC subjects.
However, the comparison of the classification accuracy be-
tween different models with increasing numbers of predic-
tors showed that the combination of multiple biomarkers
and neuropsychological tests did not significantly augment
the overall classification accuracy when compared with the
best single-predictor models.

I for the 24 rank ordered models of highest CAC each of 1-, 2-, 3-, and
. For identification of models see supplementary Table 1, where the models

ification accuracy, sensitivity and specificity for the top ranked models
yed for 2- and 3-year follow-up intervals. Bootstrapping was performed

Overall classification
accuracy in % (95% CI)

Sensitivity in %
(95% CI)

Specificity in %
(95% CI)

68.5 (59.5, 77.4) 53.4 (39.7, 67.1) 77.0 (66.5, 87.5)
68.4 (60, 76.8) 70.8 (58.8, 82.9) 66.6 (54.5, 78.8)
72.0 (64.0, 80.0) 79.9 (69.4, 90.3) 62.2 (50.5, 73.8)

d age 70.9 (63.1, 78.6) 79.6 (69.7, 89.5) 64.1 (53.3, 74.9)
65.4 54.5 73.3
69.2 63.6 73.3
69.2 63.6 73.3

d age 69.2 63.6 73.3

ampus volume; RERC, right entorhinal cortex thickness (ApoE �4 allele
95% C
interval
ll class
e displa

ApoE
poE an

ApoE
poE an

hippoc
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We used a widely applied method of cross-validation,
determining the best logistic regression model in the train-
ing sample consisting of AD and HC subjects. Based on
such a best-statistical-fit approach, CSF total tau/A�1-42

ratio, left entorhinal cortex and hippocampus volume were
found to independently contribute to the classification of
AD vs. HC subjects. When neuropsychological predictors
were introduced, a combination of CSF total tau/A�1-42

ratio with performance on tests of immediate and delayed
recall was found to yield the best model. This finding of
independent contribution of different biomarkers to the pre-
diction of risk of AD is consistent with previous results.

For the prediction of time to conversion from MCI to
AD, Cox regression analysis showed significant contribu-
tion of a combination of multiple variables to predict time to
conversion from MCI to AD. Previous studies reported that
a combination of hippocampus rating (Bouwman et al.,
2007) or manual hippocampus volumetry (de Leon et al.,
2006) contributed independently from CSF based core bio-
markers (de Leon et al., 2006; Bouwman et al., 2007; Brys
et al., 2009a) to the the prediction of AD in MCI subjects.
Similarly, a combination of WAIS-R Digit Span, Selective
Reminding Test (SRT) Immediate Recall and functional
assessment measures and biomarkers including MRI based
measures of entorhinal cortex and hippocampus were found
to best predict the time to conversion from MCI to AD
within 3 years of clinical follow up (Devanand et al., 2007).
In larger multicenter studies including the ADNI trial, pre-
vious studies with a mean follow up interval of 1.5 years
reported that MRI and CSF biomarkers may contribute
independently to the prediction of AD (Vemuri et al., 2009).
However, the clinical utility in terms of prediction accuracy
was not evaluated for this relatively short follow-up interval
used in that earlier study (Vemuri et al., 2009). In a similar
vein, Landau et al. recently reported that the combination of
a decrease in FDG-PET uptake and impaired free recall
shows a significantly elevated hazard ratio to develop AD
dementia within 2 years (Landau et al., 2010). These studies
support the notion that biomarker and neuropsychological

Table 4
Combined biomarkers and neuropsychological models for different follow
the top ranked models during the bootstrapping trials for single and multi
Bootstrapping was performed only in the full 2-year sample

Follow-up
interval (in years)

Sample size
MCI-AD/MCI non AD

Model

-y follow up 58/72 TMT-B
LHC and digit span
LHC and LRTAA and d
TMT-B, RHC and CSF

tau181/A�1-42 and ag
� 3-y follow up 11/15 TMT-B

LHC and digit span
LHC and LRTAA and d
TMT-B, RHC and P-ta

A�1-42 and age
predictors are independently associated with the risk of AD.
However, such results based on explained variance leave
considerable uncertainty to what extent the actual predictive
accuracy is enhanced by the addition of a particular marker
in multipredictor models (Schemper, 2003).

In the current study, the systematic combination of each
of the 24 predictor variables in models with a number of
maximally 4 predictors allowed for the direct comparison of
single predictor models and more complex models based
upon the 95% CI of the predictive accuracy. Our results
showed that although there was a numerical increase by up to
11.7% in total prediction accuracy from the best single-predic-
tor model to the best four-predictor model, this difference was
not robust based on the bootstrapped 95% CI of the prediction
accuracy. Although it is possible that a test of the same model
in a larger sample or a combination of even more predictors
may eventually lead to a significant improvement, the current
results support the notion that some sparser and economic
single-predictor models may be as good as any more complex
model for the prediction of the clinical course to the progres-
sion from MCI to AD within a short time interval.

A second finding of the current analysis is that a broad
range of both biomarker and neuropsychological predictors
yield comparable results. Previous studies have provided
evidence for the utility of CSF and MRI markers of hip-
pocampus and entorhinal cortex for the prediction of AD
(Schmand et al., 2010). We found that some neuropsycho-
logical predictors achieved a predictive accuracy that was
comparable to that of biomarkers. Note that the best neu-
ropsychological predictors included both memory measures
(free recall) and nonmemory measures (TMT-B, digit span,
and fluency). Free and cued recall of verbal list learning has
been previously shown to be highly sensitive towards mild
AD (Tierney et al., 1996; Tabert et al., 2006; Sarazin et al.,
2007; Devanand et al., 2008; Fleisher et al., 2008), even 10
years before the clinical manifestation of AD (Tierney et al.,
2005). Both immediate free recall and digit span were re-
ported to be associated with the risk of development of AD
in MCI in a previous study (Devanand et al., 2007). Our
current finding suggests that executive functions such as

ervals. The overall classification accuracy, sensitivity and specificity for
dictor models are displayed for 2- and 3-year follow-up intervals.

Overall classification
accuracy in % (95% CI)

Sensitivity in %
(95% CI)

Specificity in %
(95% CI)

64.6 (55.8, 73.5) 49.6 (35.8, 63.4) 76.2 (66.8, 85.5)
72.2 (64.5, 79.6) 77.7 (67.7, 87.7) 68.2 (57.3, 79.2)

n 74.0 (65.8, 79.6) 83.1 (74.2, 92.1) 66.8 (56.6, 76.9)
76.3 (68.4, 84.2) 87.5 (78.9, 96.0) 68.3 (56.9, 79.6)

61.5 36.4 80
76.9 81.8 73.3

n 76.9 90.9 66.7
76.9 81.8 73.3
up int
ple pre

igit spa
P-

e

igit spa
u181/
tapped by TMT-B (Arbuthnott and Frank, 2000) showed
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significant predictive value for the development of AD in
amnestic MCI. In summary, both free recall measures are
strong predictors of Alzheimer’s disease in MCI (Sarazin et
al., 2007), and fronal nonmemory neuropsychological mea-
sures (Jacobs et al., 1995; Tierney et al., 1996; Backman et
al., 2005; Tierney et al., 2005; Tabert et al., 2006; Rozzini
et al., 2007) show predictive value for the conversion from
MCI to AD. It should be noted that the use of psychometric
memory tests is somewhat controversial, since such tests were
also used for the diagnosis of AD, thus posing the risk of
circularity. On the other hand, one may argue that the inclusion
of neuropsychologically impaired subjects such as in the case
of amnestic MCI may render the test of neuropsychological
prediction of progression harder since the variability in neuro-
psychological performance is reduced in such a clinical group.
Eventually, the utility of any predictor will need to be validated
in neuropathologically confirmed AD cases.

The current results also demonstrate that the predictive
accuracy of the current biomarker models is not yet clini-
cally sufficient within a follow-up interval of up to 3.3 years
in the ADNI study. The limited predictive accuracy may be
partially explainable by censoring effects. Although our
results do not show an improvement of predictive accuracy
between a 2-year and 3-year follow-up interval, the predic-
tive accuracy of the current model is likely to improve with
extended follow-up time and may reach a plateau only many
years later. This hypothesis is consistent with findings of
a meta-analysis showing a trend towards increasingly
higher effect sizes of CSF biomarkers including t-tau,
p-tau and A�1-42 during at least 6 years of clinical fol-
low-up (Schmand et al., 2010).

The current biomarker based model did take advantage
of a clinical characterization, as a preselection of subjects in
terms of presence of amnestic MCI was used. Thus, the
results need to be interpreted in view of the clinical concept
of MCI that may be supplemented by biomarker and neu-
ropsychology based prediction of AD. An evaluation of
biomarker and neuropsychological predictor supported
models in subjects with nonamnestic subtype of MCI,
which was not included in the current study, is desirable in
the future. Previous studies have shown that the frequency
of AD-like CSF-patterns composed of the concentration of
tau and A�1-42 is significantly elevated not only in amnestic
MCI subjects, but also in the nonamnestic subtype of MCI
or subjective memory impairment when compared with
normal controls (Visser et al., 2009). Presence of the AD
like CSF pattern was associated with stronger cognitive
decline in these groups (Visser et al., 2009). Thus, it will
need to be tested whether the current result pattern holds
also in the nonamnestic type of MCI.
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Predictors of models displayed in Fig. 3. Predictors of the 24 highest rank
according to their classification accuracy across bootstrapping trials for th
in Fig. 3. digit span, total score of Wechsler’s digit span forward and bac

Rank Single predictor 2-predictor m

1 RERC LHC
digit span

2 RHC RHC
digit span

3 TMT-B RHC
TMT-B

4 LHC LHC
AVLT recog

5 CSF P-tau181 RERC
TMT-B

6 AVLT–IM REC AVLT-DEL
TMT-B

7 AVLT-DEL REC LHC
TMT-B

8 Cat fluency (veg) RERC
digit span

9 Digit score RHC
AVLT–IM R

10 CSF T-tau CSF T-tau/A
TMT-B

11 LERC LERC
digit span

12 AVLT recog. CSF P-tau/A
TMT-B

13 APOE LERC
cat fluency (

14 Gender LERC
RHC

15 CSF T-tau/A�1-42 AVLT–IM R
TMT-B
ed models including 1 to 4 predictors are listed. Models were ranked
e prediction of MCI conversion and are identified by their corresponding rank
kward test; LHC, left hippocampus; TMT-B, trail making test B

odel 3-predictor model 4-predictor model

LHC
LRTAA
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CSF P-tau181

TMT-B
age

LHC
CSF P-tau181
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Rank Single predictor 2-predictor model 3-predictor model 4-predictor model

6 TMT-A LHC
CSF T-tau
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digit span
gender
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TMT-A
digit span

17 CSF P-tau/A�1-42 RERC
gender
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TMT-B
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APOE, binary ApoE genotype (�4-allele carriers vs �4-allele non-carriers); AVLT-DEL REC, AVLT delayed free recall; AVLT-IM REC, AVLT immediate
free recall; AVLT-DEL RECOG, AVLT recognition memory; BNT, Benton naming test; Cat Fluency (ANI), Category fluency for category of animals; Cat
Fluency (VEG), Category fluency for category of vegetables; Digit span B, Digit span backwards (length); Digit span F, Digit span forward (length); Digit
Score, Digit span total score; LERC, left enthorinal cortex thickness; LHC, left hippocampus volume; RERC, right entorhinal cortex thickness; LHC, left

hippocampus volume; TMT-A, Trail Making Test A; TMT-B, Train Making Test B.
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