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bstract

Autosomal dominant mutations that increase amyloid-�(1–42) (A�42) cause familial Alzheimer’s disease (AD), and the most common
enetic risk factor for AD is the presence of the �4 allele of apolipoprotein E (apoE). Previously, we characterized stable preparations
f A�42 oligomers and fibrils and reported that oligomers induced a 10-fold greater increase in neurotoxicity than fibrils in Neuro-
A cells. To determine the effects of apoE genotype on A�42 oligomer- and fibril-induced neurotoxicity in vitro, we co-cultured wild
ype (WT) neurons with glia from WT, apoE-knockout (apoE-KO), and human apoE2-, E3-, and E4-targeted replacement (TR) mice.
ose-dependent neurotoxicity was induced by oligomeric A�42 with a ranking order of apoE4-TR > KO = apoE2-TR = apoE3-TR > WT.

eurotoxicity induced by staurosporine or glutamate were not affected by apoE genotype, indicating specificity for oligomeric A�42-

nduced neurotoxicity. These in vitro data demonstrate a gain of negative function for apoE4, synergistic with oligomeric A�42, in mediating
eurotoxicity.

2006 Elsevier Inc. All rights reserved.
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. Introduction

Autosomal dominant mutations in the amyloid precursor
rotein (APP) and presenilin genes, which result in an over-
ll increase in production of the peptide amyloid-�(1–42)
A�42), cause the familial form of Alzheimer’s disease (AD)
73]. Although amyloid deposits are a defining patholog-
cal hallmark of AD, plaque density in both AD patients
nd transgenic mice exhibits an imperfect correlation with
eurodegenerative pathophysiology and cognitive symptoms

1,8,14,23,31,56]. Therefore, recent research has focused on
oluble oligomeric assemblies of A�42 as the proximate
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ause of neuronal injury, synaptic loss and the eventual
ementia associated with AD [33]. A�42 oligomers have now
een incorporated as an early, causal factor in the pathogene-
is of AD in revisions of the “amyloid hypothesis” [18,20,72].
owever, the relative contributions of fibrillar and oligomeric
�42 to the disease process remain unresolved. To directly

ssess the conformation-dependent differences among A�42
ssemblies in vitro, we have developed protocols for the
reparation of homogenous unaggregated, oligomeric, and
brillar assemblies of A�42 [75], and demonstrated that

n vitro, oligomeric A�42 is ∼10-fold more toxic than the
brils in a neuroblastoma cell line, Neuro-2A cells [9].
ligomeric A�42 also caused a significant increase in the

nflammatory response when compared to fibrils in cultured

rimary rat glial cells [86]. In addition, oligomeric A�42
nhibited long-term potentiation (LTP) at the medial per-
orant path in the dentate gyrus of hippocampal slices while
quivalent doses of unaggregated peptide had no effect [84],

mailto:mladu@uic.edu
dx.doi.org/10.1016/j.neurobiolaging.2006.05.024
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urther demonstrating an A�42 conformation-dependent
echanism.
The �4 allele of apolipoprotein E (apoE), a lipid trans-

ort protein in the plasma, is the only established genetic risk
actor for AD. Three major apoE isoforms exist in humans
hat differ at two residues: apoE2 (Cys112, Cys158), apoE3
Cys112, Arg158), and apoE4 (Arg112, Arg158). Inheritance
f one or two copies of the �4 allele is associated with a
ose-dependent risk for AD, as well as an earlier onset of
he disease [7,69]. ApoE2, on the other hand, offers cog-
itive protection from aging, as well as AD [7,67]. The
onformation of apoE has been shown to vary based on
he source of the protein, i.e. synthetic, recombinant, glial-
ecreted, CSF, or plasma. Like A�42, the conformation of
poE results in functional heterogeneity, particularly with
egard to the affinity of apoE for specific apoE receptors
6,15,28,29,41,70], members of the low-density lipoprotein
LDL) receptor (LDLR) gene family [34]. Because of this
onformational specificity, cultured glial cells isolated from
uman apoE-targeted replacement (TR) mice were the source
f apoE-containing particles for the in vitro experiments
escribed herein. Human apoE-TR mice are perhaps the
ost biologically relevant transgenic mouse model for human

poE [78,79]. ApoE-knock out (apoE-KO) mice [60,62] have
een used to assess the role of apoE in CNS function and
re the background for a number of transgenic mouse lines
here heterologous promoters drive the expression of human

poE [3,27,66,74,80,81]. However, in the apoE-TR mice,
nly the coding domain of human apoE replaces the cod-
ng domain of mouse apoE. This is particularly important
s apoE is part of a 48 kb multi-gene complex and this
xtensive DNA sequence is critical for the expression of
poE in the brain, and includes, for example, two regula-
ory sequences 3.3 and 15 kb downstream of the apoE gene
hat are required for the expression of apoE by astrocytes
19]. Thus, in apoE-TR mice, human apoE is expressed in

conformation and at physiological levels in a temporal
nd spatial pattern comparable to endogenous mouse apoE
78,88].

To determine the effect of apoE isoform on A�42
ligomeric- and fibrillar-induced neurotoxicity in vitro, we
o-cultured wild type (WT) neurons with glia isolated from

T, apoE-KO, and human apoE2-, E3-, and E4-TR mice. Our
esults demonstrate that oligomeric A�42 induced significant
eurotoxicity in co-cultures with WT, KO, apoE2-, E3-, and
4-TR glia, an effect that was dose-dependent. Compared to
omparable doses of oligomeric A�42, fibrillar A�42 did not
nduce significant neurotoxicity. Oligomer-induced neuro-
oxicity was significantly higher when cultured with apoE4-
R glia compared to apoE-KO, E2- or E3-TR glia. WT
o-cultures exhibited the least neurotoxicity. Additionally,
poE isoform did not affect staurosporine or glutamate neuro-

oxicity, suggesting that the effect of apoE isoform is specific
o oligomeric A�42-induced toxicity. This study provides
irect evidence for a gain of negative function for apoE4,
ynergistic with oligomeric A�42 in mediating neurotoxic-
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ty. Overall, these findings provide an additional functional
ink between conformational states of A�42 and apoE iso-
orms in mediating neuronal loss, and possibly the pathology
f AD.

. Materials and methods

.1. Peptide

A�42 peptide was purchased from rPeptide, Inc. (Athens,
A) as lyophilized powder. Peptide was prepared as previ-
usly described [75] to generate A�42 oligomers and fibrils.
riefly, peptide is initially solubilized in HFIP, aliquoted, and

tored at −20 ◦C as an HFIP film. Aliquoted peptide is resus-
ended with anhydrous DMSO to 5 mM and diluted with
henol red-free F12 media (oligomers) or 10 mM HCl (fib-
ils) to a concentration of 100 �M. Peptide for the oligomer
reparation was incubated at 4 ◦C and for the fibril prepara-
ion at 37 ◦C, both for 24 h prior to use.

.2. Animals

Timed pregnant WT C57Bl/6 mice were purchased from
ackson Labs. Timed pregnant mice of the genotypes apoE-
O, apoE2-TR, apoE3-TR, and apoE4-TR were obtained

rom our breeding colonies maintained at Taconic labora-
ories. The apoE-TR mice have been backcrossed to C57Bl/6
reater than eight times to establish a strain background con-
istent with the WT and apoE-KO mice and are maintained
n a homozygous background [79].

.3. Neuron:glia primary co-cultures

Glial cultures were prepared from the cortices of 1–2-
ay-old neonatal WT, apoE-KO, E2-, E3-, or E4-TR mice, as
reviously described [24,40,43]. Cells were maintained in �-
inimum essential medium (�-MEM, Invitrogen, Carlsbad,
A) containing 10% fetal bovine serum (Invitrogen), 2 mM
lutamine, and antibiotics (100 U/ml penicillin, 100 �g/ml
treptomycin). Confluent ‘secondary’ cultures were used to
eed 24-well plates at 5 × 104 cells/well. The following day,
lia were rinsed twice with PBS to remove serum-containing
edia, and neurobasal media containing B27 supplements
as added to the cultures (NB/B27, Invitrogen). This change

n media was done at least 24 h prior to addition of the neu-
ons. These tertiary glial cultures have ∼95–97% astrocytes
nd ∼2–5% microglial cells [26].

Neuron cultures were prepared as previously described
32] with the following modifications. Cortices were dis-
ected from E14–E16 WT mouse embryos, incubated with
.25% trypsin for 10 min at 37 ◦C, and then triturated with

fire polished Pasteur pipette. FBS was added (10%) to the
issociated cells to stop trypsinization. Cells were then pel-
eted, resuspended in NB/B27, and counted. Cells were plated
5 × 104) onto poly-l-lysine-coated 10 mm round glass cov-
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lar A�42 in co-cultures of WT neurons with glia from either
WT (Fig. 1A) or apoE-KO (Fig. 1B) mice. Based on these
time course data, Fig. 2 compares the effect of 48 h treat-
ment with 5, 10, or 20 �M oligomeric and fibrillar A�42

Fig. 1. Oligomeric A�42, but not fibrillar A�42, induced a dose- and time-
dependent increase in neurotoxicity in the presence of WT glia (A) and KO
glia (B). Cortical neurons from WT C57BL/6 mice were co-cultured with
glial (∼95% astrocytes) cells from WT or apoE-KO mice. A�42 oligomers
or fibrils were added to cultures at 5 �M (�), 10 �M ( ) and 20 �M (�) and
A.M. Manelli et al. / Neurobio

rslips. Coverslips contained three paraffin ‘dots’ on one
ide (same side on which the neurons are plated) to sus-
end it over the glial cell layer without contact [2]. Cells
ere allowed to adhere to the coverslips for 1–4 h in a
umidified 37 ◦C incubator with 7% CO2. Coverslips were
insed with PBS and transferred to 24-well plates containing
he glial cells, neuron side down. Cytosine-�-d-arabinoside
5 �M) was added to the co-cultures ∼24 h later to inhibit
ivision of non-neuronal cells. Co-cultures were maintained
y changing three-fourth of the media at 3–4 days in
ulture.

.4. Toxicity experimental design

A�42 was added to co-culture media at 6–8 days in vitro
DIV), media at this point would have been ‘conditioned’ for a
inimum of 3 days. Individual well volumes were adjusted to

ccommodate the treatment samples so that the final volumes
ere equivalent. A�42 oligomers and fibrils were used at 5,
0, and 20 �M final concentrations. Endpoint determination
as at 24, 48, and 72 h following treatment. In experiments

xamining A�42 toxic effects on neurons incubated with WT
lia versus no glia, neurons were harvested from the same
issection and cultured under the same conditions until treat-
ent with A�42. Upon A�42 treatment, the coverslips with

eurons were transferred to a new 24-well plate. Conditioned
edia from a parallel set of co-cultures was filter sterilized

nd used to set up the A�42 treatment concentration in the
ew 24-well plate. Toxicity studies were also performed with
4 h exposure to glutamate and staurosporine (Sigma). Stau-
osporine was applied to cultures at concentrations of 0.003,
.01, 0.03, 0.1, 0.3, and 1 �M, and glutamate was added at
oncentrations of 0.005, 0.05, 0.5, 5, 50, and 500 �M. Appro-
riate vehicle controls were used in all experiments. Six to
ight separate experiments were performed with a minimum
f three replicates for each experiment.

.5. Cell toxicity assays

Neurotoxicity was assessed by measuring ATP using a
iaLight Plus kit (Cambrex). Cell lysis reagent (40% in
edia) was applied directly to the neuron-containing cov-

rslips, after removal from co-culture dishes. Neuron lysate
as transferred to a 96-well plate and reactions were car-

ied out according to the manufacturer’s instructions. Results
re expressed as percent survival of A�42-treated cultures,
ith vehicle-treated controls corresponding to 100% sur-
ival. Although neurotoxicity as assessed by MTT and ATP
ssays for the present co-culture model are virtually identi-
al [47], only the results from the ATP assay are reported
ere to ensure that the report of direct effects of A� on the
TT assay did not influence the assessment of neurotoxi-
ity [44]. For both the ATP and MTT assays, a reduction
n metabolic activity is an indicator of cellular toxicity. The

TT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
romide; Roche) assay colorimetrically measures conver-
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ion of MTT into formazan through succinate dehydrogenase
ctivity in functional mitochondria [55]. The ATP assay uses
uciferase, which catalyzes the formation of light from ATP
nd luciferin. The emitted light intensity is linearly related
o the ATP concentration. Selected results were further con-
rmed by propidium iodide staining for apoptotic nuclei, as
reviously described (data not shown) [32]. For statistical
nalysis, an unpaired Student’s t-test with unequal variance
as used.

. Results

.1. Oligomeric Aβ42, but not fibrillar Aβ42 induced a
ose-dependent increase in neurotoxicity independent of
poE genotype

In all apoE genotypes, oligomeric A�42 induced a sig-
ificant dose-dependent increase in neurotoxicity. Dose- and
ime-dependent effects are shown in Fig. 1 comparing 24, 48
r 72 h treatment with 5, 10, or 20 �M oligomeric and fibril-
ncubated for 24, 48, and 72 h. Results are expressed as percent survival of
�42-treated cultures with vehicle-treated controls corresponding to 100%

urvival. Neurotoxicity was assessed using the ATP assay as described in
ection 2. *Significant difference between oligomers and fibrils at equivalent
ose and time (p < 0.05).
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Fig. 2. Oligomeric A�42, but not fibrillar A�42, induced a dose-dependent
increase in neurotoxicity in the presence of apoE2-TR glia (A), apoE3-
TR glia (B) and apoE4-TR glia (C). Cortical neurons from WT C57Bl/6
mice were co-cultured with glia from apoE2-, E3-, or E4-TR mice and
exposed to 5 �M (�), 10 �M ( ), and 20 �M (�) A�42 oligomers or
fibrils for 48 h. Results are expressed as percent survival of A�42-treated
cultures with vehicle-treated controls corresponding to 100% survival. Neu-
rotoxicity was assessed using the ATP assay as described in Section 2.
*
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Significant difference between oligomers and fibrils at equivalent dose
p < 0.05). #Significant difference between E4 and E2 or E3 at equivalent
ose (p < 0.05).

n co-cultures of neurons from WT mice with glia from
poE2-TR (Fig. 2A), apoE3-TR (Fig. 2B) and apoE4-TR
Fig. 2C) mice. Oligomeric A�42 induced a significant dose-
ependent increase in neurotoxicity in apoE2-TR, apoE3-TR,
nd apoE4-TR glial co-cultures. Neurotoxicity was quan-

ified by measuring ATP levels as described in Section 2.
esults are expressed as means ± S.E.M. for percent change

rom vehicle-treated control cultures for each dose and time
oint.

t
t
d

lia. WT cortical neurons either alone (�) or in co-culture with WT glia (�)
ere treated with A�42 oligomers (5, 10, or 20 �M) for 48 h. *Significant
ifference between presence and absence of glia (p < 0.04).

.2. Aβ42 oligomer-induced neurotoxicity is higher in
he absence of glia

Glia, under basal as well as activated states, have an
mportant paracrine role in regulating neural homeostasis.
o determine the trophic or toxic effects of glia in our acute

n vitro co-culture model, WT neurons were cultured with
r without WT glia. The effect of 48-h treatment with 5, 10,
r 20 �M oligomeric A�42 on WT neurons in the absence
f glia or the presence of WT glia is shown in Fig. 3. Neu-
otoxicity was significantly increased in the absence of glia
ompared to the presence of WT glia, an effect that was seen
t all A�42 concentrations (p < 0.04).

.3. Neurons co-cultured with apoE4-expressing glia
howed the highest oligomeric Aβ42-induced
eurotoxicity

Fig. 4 directly compares the effect of apoE and apoE iso-
orm on oligomer-induced neurotoxicity. Co-cultures were
reated with 10 �M oligomeric A�42 for 48 h. Under these
onditions, oligomeric A�42 did not induce a significant
ncrease in neurotoxicity in co-cultures of WT neurons
ith WT glia. Conversely, in the presence of apoE-KO glia

nd apoE2-, apoE3-, and apoE4-TR glia, oligomeric A�42
aused significant neurotoxicity. Finally, the presence of glia
rom apoE4-TR mice caused a significant increase in neu-
otoxicity compared to co-cultures with glia from apoE-KO
nd apoE2- and apoE3-TR mice.

.4. ApoE genotype does not affect staurosporine or
lutamate neurotoxicity
We next determined whether the effect of apoE geno-
ype on oligomeric A�42-induced neurotoxicity was specific
o A�42, or a general synergism with neurotoxic insult. In
ose–response studies with staurosporine, a general protein
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Fig. 4. Neurons co-cultured with apoE4-expressing glia showed the high-
est oligomeric A�42-induced neurotoxicity. Cortical neurons from WT
C57BL/6 mice were co-cultured with glia (∼95% astrocytes) from WT (�),
apoE-KO ( ), apoE2-TR ( ), apoE3-TR ( ), or apoE4-TR (�) mice.
Oligomeric A�42 (10 �M) was added to cultures and incubated for 48 h.
Results are expressed as percent survival of A�42-treated cultures with
vehicle-treated controls corresponding to 100% survival. Neurotoxicity was
assessed using the ATP assay as described in Section 2. *Significant differ-
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Fig. 5. ApoE genotype does not affect glutamate-induced (A) or
staurosporine-induced (B) neurotoxicity. Neurotoxicity in WT mouse cor-
tical neurons following 24-h treatment with increasing concentrations of
(
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nce between WT and apoE-KO (p < 0.04). **Significant difference between
poE-KO and apoE4 (p < 0.04). #Significant difference between E4 and E2
r E3 (p < 0.05).

inase-C (PKC) inhibitor that results in apoptotic cell death,
e observed a dose-dependent (0.003–1 �M) increase in neu-

otoxicity after 24 h of treatment. No significant differences
n neurotoxicity were observed between neurons co-cultured
ith apoE-WT, -KO, or human apoE2-, E3-, and E4-TR
lia (Fig. 5A). Glutamate, a non-specific agonist for NMDA
eceptors, induced dose-dependent (0.005–500 �M) excito-
oxicity measured at 24 h (Fig. 5B). Again, no significant
ifferences were seen among the various apoE co-culture
airings.

. Discussion

One of the aims of the present study was to deter-
ine the effect of A�42 conformation on neurotoxicity.
tilizing two distinct aggregation protocols developed in
ur lab, we consistently generate homogenous preparations
f A�42 oligomers or fibrils [75]. These distinct assem-
lies are derived from chemically identical and structurally
omogeneous starting material and allow for well-controlled
omparative structure–function studies. In co-cultures of

T neurons with glia expressing different apoE genotypes,
ligomeric A�42, but not fibrillar A�42, induced a dose-
ependent increase in neurotoxicity independent of apoE
enotype (Figs. 1 and 2). In addition, A�42 oligomer-induced
eurotoxicity is higher in WT neurons cultured without glial
ells compared to co-cultures of WT neurons with WT glia

Fig. 3). In these primary co-cultures, neurons are more resis-
ant to both oligomeric and fibrillar A�42-induced toxicity
ompared to data from the Neuro-2A neuronal cell line. We
reviously demonstrated in this cell line that treatment with

o
t
I
i

A) staurosporine, or (B) glutamate was assessed using the ATP assay as
escribed in Section 2. Neurons in co-culture with glia from WT (�), apoE-
O (�), apoE2-TR (�), E3-TR (×), or E4-TR (©) mice.

ligomeric A�42 for 20 h resulted in significant neurotoxicity
t 10 nM (20%), 50% toxicity at 100 nM, and >80% toxicity
t the maximal dose of 15 �M [9]. Fibrillar A�42-induced
oxicity in the Neuro-2A cells exhibited a dose-dependent
ecrease in cell survival between 0.1 and 10.0 �M, with
0% toxicity at ∼5 �M. In the present culture model, 10 �M

ligomeric A�42 treatment for 48 h induced only 50% neuro-
oxicity in the absence of glia, the most vulnerable condition.
n co-cultures, fibrillar A�42 does not induce significant tox-
city at the time and doses measured. While these differences
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n the neurotoxic response of Neuro-2A cells and primary
euron:glia co-cultures could reflect differences in experi-
ental conditions, it is likely a result of the presence of glia

n the co-culture model. In vivo, glia play a supportive role
n neuronal homeostasis and in the present in vitro experi-

ents, acute low dose oligomeric A�42 neurotoxicity was
ompletely blocked by the presence of WT glia. This obser-
ation is a bit surprising as we have previously demonstrated
hat glial cultures treated with oligomeric A�42 for 24–72 h
esulted in an increase in several inflammatory markers that
ould potentially be toxic to neurons, including iNOS, NO,
GF�, TNF�, and IL-1� [86]. However, the neurotrophic or
eurotoxic effects of glia likely result from the interaction of
number of factors, particularly acute versus chronic treat-
ent, and results will vary with the in vitro or in vivo model

sed. In the present co-culture model, the presence of glia
rovides a protective effect from neurotoxicity induced by
cute treatment with oligomeric A�42.

Compositional and structural differences in apoE vary
ith the material source (purified, recombinant, cultured

strocytes, CSF or plasma) and, like A�42, the conforma-
ion of apoE has been shown to result in functional het-
rogeneity in vitro [15,41,70]. We previously isolated and
haracterized the unique apoE-containing lipoprotein par-
icles secreted by cultured glial cells and in human CSF
36]. As glia are the primary apoE-synthesizing cell type in
he brain [4,11,16,17,57,58,61,63,76], the endogenous apoE-
ontaining particles secreted by cultured glia are a physiolog-
cally relevant source for in vitro models of neural cell func-
ion. For these reasons, we co-cultured WT neurons with glia
xpressing no apoE (apoE-KO), mouse apoE (WT), or human
poE2, -E3, or -E4 from apoE-TR mice. Our results sup-
ort the overall hypothesis that apoE4 potentiates oligomeric
�42-induced neurotoxicity and demonstrate both a loss of
ositive function for apoE (comparing neurotoxicity in co-
ultures with WT apoE glia versus apoE-KO glia) and a gain
f negative function for apoE4 (comparing neurotoxicity in
o-cultures with apoE-KO glia versus apoE4 glia) (Fig. 4).
poE isoform effects appear specific for A�42-mediated
eurotoxicity, as neurotoxicity induced by treatment with
taurosporine and glutamate showed no apoE isoform effect.

hile our previous studies and those from other investigators
ave demonstrated that apoE inhibits A�-induced neurotoxi-
ity [32,45,54,87], the exact conformational species of A�42
ediating these effects was not known, nor addressed, and

ikely contained a mixture of oligomeric, globular, fibrillar,
nd aggregated fibrillar assemblies [75]. In the present study,
he neurotoxic effects of homogenous conformational species
f A�42 were studied together with the regulatory role of
lial-derived human apoE.

In terms of apoE isoform-specific modulation of
ligomeric A�42-induced effects on neuronal viability, we

ave previously demonstrated that oligomeric A�42 and
poE4 act synergistically to impair LTP in vitro [84]. The key
ndings in the present study are a similar synergy between
ligomeric A�42 and apoE4 on neurotoxicity in vitro. Sev-
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ral factors could contribute to the apoE isoform-dependent
egulatory effects on oligomeric A�42-induced neurotoxic-
ty. (1) In regard to apoE:A�42 complex formation, it has
een established that in vitro A�42 has a greater affinity for
poE2 and apoE3 than for apoE4 [35,37,38,77,83]. In addi-
ion, the amount of SDS-stable apoE:A�42 complex forma-
ion is apoE3:oligomers > apoE3:fibrils > apoE4:oligomers >
poE4:fibrils [46]. These results are consistent with the
ypothesis that apoE3 preferentially binds oligomers, the
oxic species of A�42, and inhibits their toxicity likely
hrough interactions with apoE receptors, either increasing
learance or altering signaling. Evidence for the latter is
hat apoE:A�42 complexes have been shown to differentially

odulate cell-death pathways [5,13,42,59,89]. (2) ApoE iso-
orms differentially alter synthesis, clearance and neurotoxic-
ty of administered oligomers and fibrils. As discussed above,
poE:A�42 complexes could alter apoE receptor binding
nd subsequent clearance, intracellular A�42 deposition, or
ellular signaling of A�42 in an isoform- and conformation-
ependent manner [10,15,22,35,41,46,64,65,69,70]. The role
f apoE in intraneuronal A� accumulation is also suggested
y several in vitro studies using smooth muscle cells (SMC).
poE and A� co-localize in SMC from both brain vessels in

myloid affected brains and in vitro following acute incu-
ation with A� [49,50,85]. In addition, apoE4 increased
ntracellular A� accumulation in SMC [52,53], an effect
otentiated by TGF�1 [51]. Exogenous apoE has also been
hown to reduce A�42 levels by 20–30% in conditioned
edia primarily by altered synthesis and, to a lesser extent,

ia clearance and/or degradation of A�42 [30]. In vitro, sev-
ral recent studies have demonstrated that apoE2 and E3 but
ot E4 protect neurons against cell death induced by non-
brillar A�42 with no effect on fibrillar-induced toxicity
13,48]. We have also demonstrated that oligomeric A�42-
nduced neurotoxicity is significantly greater in Neuro-2A
ells treated with exogenous apoE4 [48]. Recently, apoE4-
ependent increases in A�42 levels have been demonstrated
oth in vitro [90] and in vivo [12]. (3) Another potentially
elevant hypothesis is that the �4 allele may be associated
ith lower apoE levels in vitro [68] and in vivo [71]. Low-

red apoE levels in culture may not be adequate to facili-
ate clearance/degradation of administered A�42, resulting
n the apoE4-mediated potentiation of neurotoxic effects.
lternatively, we have recently demonstrated that apoE3 and

poE4 recycle differently, and apoE4 can traffic into late
ndocytic compartments where it may promote intracellular
�42 accumulation and toxicity in neurons [41]. Previous

haracterization of the apoE-TR mice demonstrate compara-
le basal levels of expression of apoE2, apoE3 and apoE4,
oth in vivo and in vitro [10,78,79]. Although not measured
n the present study, it is possible that oligomeric A�42
nduced isoform-specific changes in apoE expression. (4)

�42-induced release of pro- and anti-inflammatory factors

rom glial cells [21,82] could also have an effect on neuro-
oxicity in co-cultures. We have previously demonstrated that
poE receptors are necessary for apoE3-mediated protection
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gainst A�-induced, glial-mediated inflammation [25,39,40]
nd that oligomeric A�42 induces a greater inflammatory
ffect than fibrillar A�42 in vitro [86]. Here, we demonstrate
n vitro a general protective role for glia in acute oligomeric
�42-induced neurotoxicity, an effect further modulated by

he apoE genotype of the glial cell.
Collectively, the data from the present investigation pro-

ides evidence for a gain of negative function for apoE4,
ynergistic with oligomeric A�42 in mediating neurotoxic-
ty. It will be of interest to delineate the cellular and molecular
asis for apoE4-dependent regulation of oligomeric A�42-
ediated neurotoxicity using this co-culture model.
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