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ABBREVIATIONS 

AD:  Alzheimer’s disease. Aβ: Amyloid-β. IGF: insulin growth factor. IGFR-1: insulin growth 

factor receptor-1. IRs:  insulin receptors. IRS-1: insulin receptor substrate-1. mTOR:  mammalian 

target of rapamycin. S6K1:  ribosomal protein S6 kinase 1. T2D: type two diabetes.  
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ABSTRACT  
 
Alzheimer’s disease (AD) is the most common neurodegenerative disease. The causes of 

sporadic AD, which represents more than 95% of AD cases, are unknown. Several AD risk 

factors have been identified and among these, type two diabetes increases the risk of 

developing AD by two-fold. However, the mechanisms by which diabetes contributes to AD 

pathogenesis remain elusive. The mammalian target of rapamycin (mTOR) is a protein kinase 

that plays a crucial role in the insulin signaling pathway and has been linked to AD. We used a 

crossbreeding strategy to remove one copy of the mTOR gene from the forebrain of Tg2576 

mice, a mouse model of AD. We used 20-month-old mice to assess changes in central insulin 

signaling and found that Tg2576 mice had impaired insulin signaling. These impairments were 

mTOR dependent as we found an improvement in central insulin signaling in mice with lower 

brain mTOR activity. Further, removing one copy of mTOR from Tg2576 mice improved 

cognition and reduced levels of Aβ, tau, and cytokines. Our findings indicate that mTOR 

signaling is a key mediator of central insulin dysfunction in Tg2576. These data further highlight 

a possible role for mTOR signaling in AD pathogenesis and add to the body of evidence 

indicating that reducing mTOR activity could be a valid therapeutic approach for AD.   
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INTRODUCTION 
 
The prevalence of Alzheimer’s disease (AD) and type two diabetes (T2D) is growing at an 

alarming pace (Alzheimer's, 2016; Menke et al., 2015). Clinically, AD is associated with memory 

loss and alterations in other cognitive domains that eventually lead patients to be bedridden 

(Lambon Ralph et al., 2003; Perry and Hodges, 1999). While the etiology of AD remains 

unknown, the accumulation of amyloid-β and tau and the development of neuroinflammation are 

key neuropathological hallmarks of AD (Querfurth and LaFerla, 2010). T2D leads to extensive 

systemic alteration affecting multiple organs including heart, kidneys, and eyes (Trikkalinou et 

al., 2017). While several prominent risk factors for T2D have been identified, dysregulation of 

insulin signaling is a critical event in the disease pathogenesis (Sims-Robinson et al., 2010). 

 

Multiple epidemiological studies have indicated that diabetes increases the risk of developing 

AD by about 2-fold (Ott et al., 1999; Sims-Robinson et al., 2010). Consistent with these 

observations, biochemical and neuropathological examinations have indicated insulin 

dysregulation in human AD tissue and animal models of AD (Pedersen and Flynn, 2004; 

Rodriguez-Rivera et al., 2011; Vandal et al., 2015). This type of evidence has led to the 

hypothesis that central and peripheral metabolic dysfunctions are linked to AD pathogenesis 

(Diehl et al., 2017; Kandimalla et al., 2017; Shinohara and Sato, 2017). Despite this wealth of 

information, the molecular mechanisms underlying the interaction between AD and T2D remain 

elusive.  

 

The mammalian target of rapamycin (mTOR) is a protein kinase that regulates cell growth and 

proliferation, as well as protein turnover via autophagy (Saxton and Sabatini, 2017). Under 

physiological conditions, mTOR is activated by several signaling pathways, including in 

response to activation of the insulin receptors (IRs) and the insulin growth factor receptor-1 

(IGFR-1) (Saxton and Sabatini, 2017). A key mediator of mTOR function is the ribosomal 
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protein S6 kinase 1 (S6K1), which is activated following direct phosphorylation by mTOR 

(Magnuson et al., 2012). While physiological activation of mTOR signaling positively regulates 

insulin signaling, chronic hyperactivation of mTOR, which is a hallmark of T2D, exacerbates 

insulin resistance and contributes to the development of T2D (Suhara et al., 2017). These 

apparent paradoxical events are linked to a negative feedback loop in which hyperactive S6K1 

phosphorylates the insulin receptor substrate-1 (IRS-1), thereby leading to the internalization of 

the receptor and insulin resistance (Um et al., 2004). 

 

Growing evidence indicates that mTOR is also hyperactive in AD (An et al., 2003; Caccamo et 

al., 2015; Chang et al., 2002; Oddo, 2012; Pei et al., 2008; Pei and Hugon, 2008). For example, 

Pei and colleagues reported that in postmortem human brains, mTOR/S6K1 signaling pathway 

is hyperactive in brain regions affected by the disease (An et al., 2003). We have confirmed 

these data using a different cohort of human patients (Caccamo et al., 2015). Hyperactive 

mTOR signaling has also been reported in multiple animal models of AD, including in Tg2575 

mice (Caccamo et al., 2014). Using complementary genetic and pharmacological approaches, 

we and others have shown that reducing hyperactive mTOR ameliorates cognitive deficits and 

reduces Aβ and tau pathology in multiple animal models of AD (Caccamo et al., 2015; Caccamo 

et al., 2014; Caccamo et al., 2013; Caccamo et al., 2010; Caccamo et al., 2011; Majumder et 

al., 2011; Spilman et al., 2010). In this study, we sought to determine the role of brain mTOR 

signaling on central insulin dysregulation associated with AD.  

 

METHODS AND MATERIALS 

Mice: Floxed mTOR mice contain LoxP sites flanking exons 49 and 50 of the mTOR gene; the 

generation of these mice has been previously described (Lang et al., 2010). Tg2576, 

APP/mTOR+/- and mTOR floxed mice used in this manuscript were previously described 

(Caccamo et al., 2014; Hsiao et al., 1995). We have previously described the breeding strategy 
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employed to obtain the mice used here (Caccamo et al., 2014). Briefly, to remove one copy of 

the mTOR gene from the brains of Tg2576 mice, we first bred hemizygous Tg2576 mice with 

homozygous mice expressing the Cre recombinase under the control of the CamKII promoter. 

From these breeding, we obtained Tg2576 mice expressing one copy of Cre, which were then 

bred with homozygous mTOR floxed mice to obtain the mice used in this study, which were all 

littermates. We used both females and males for this study. Mice were housed 4-5 per cage and 

kept on 12-hour light/dark cycle. Mice were 20-month-old at the beginning of the experiments. 

Mice were given ad libitum access to food and water. All animal procedures were approved by 

The Institutional Animal Care and Use Committee of Arizona State University. 

 

Morris water maze: The Morris water maze was used to assess spatial learning and memory. It 

was performed in a circular plastic tank of 1.5 m diameter. The tank was filled with opaque 

water kept at 23°C. A platform of 14 cm wide was held just 1.5 cm under the surface of the 

water. To make the platform invisible to the mice, the water was made opaque by non-toxic 

paint.  Extramazal cues were located throughout the room to allow the mice to find the escape 

platform. Mice were given four training trials of 60 seconds each per day for five consecutive 

days. Twenty-four hours after the last training trial, the platform was removed and a single 60 

seconds probe trial to assess spatial memory was conducted. A video camera positioned on the 

ceiling was utilized to record the entire test. A tracking software (EthoVision XT, Noldus) was 

used to analyze the data.    

 

Protein extraction: Brains were processed as described previously (Caccamo et al., 2017). 

Briefly, for biochemical analyses, mice were sacrificed by CO2 asphyxiation, their brains 

removed and sagittally bisected. The cortex was removed and homogenized in T-PER protein 

extraction buffer (Thermo Fisher, Waltham, MA; catalog number 78510), containing complete 

protease inhibitor (Roche, Indianapolis, IN; catalog number 11836153001) and phosphatase 
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inhibitor (Thermo Fisher, Waltham, MA; catalog number 524625). The homogenates were 

centrifuged at 4 °C for 30 minutes at 25,000 × g. The supernatant was stored at -80 °C and 

used for ELISA and western blots. The pellet was re-suspended in 70% formic acid and used as 

insoluble fraction.  

 

Western blot : The soluble protein extracts were loaded on SDS/PAGE precast gels (Thermo 

Fisher, Waltham, MA; catalog number WG1203BOX) and ran under reducing condition as we 

described before (Branca et al., 2014). Briefly, samples were boiled in loading buffer at 100 °C 

for 5 minutes to denature proteins. Proteins were transferred to a nitrocellulose membrane and 

incubated for 1 hour in 5% milk in T-TBS (0.1% Tween 20, 100 mM Tris, pH 7.5; 150 mM NaCl. 

These reagents were purchased from Thermo Fisher Scientific: Catalog numbers BP337-500, 

BP152-5, and BP358-10, respectively. Then, membranes were washed and incubated overnight 

at 4 °C and incubated in secondary anti-rabbit or anti-mouse HRP antibodies (1:10,000; these 

reagents were purchased from Thermo Fisher Scientific, catalog numbers 31460 and 31430, 

respectively) in blocking buffer at room temperature for 1 hour. Images were acquired with a 

developer machine using a chemiluminescent solution (Thermo Fisher, Waltham, MA; catalog 

number 34076).  

 

ELISAs : IGF1, p-IGF1, Aβ40 and Aβ42 levels were assessed via sandwich ELISA using 

commercially available kits (Thermo Fisher, Waltham, MA; catalog number: EMIGF1, LHO0501, 

KHB3481 and KHB3442, respectively) per the manufacturer’s instructions.   

 

Antibodies:  The following antibodies were used for western blots: from Cell Signaling, Danvers, 

MA: total mTOR (1:1000; catalog number 2983S), total S6K1 (1:1000; catalog number 9202S), 

pS6K1 Thr389 (1:1000; catalog number 9205S), β-actin (1:10000; catalog number 3700S), total 

IRS-1 (1:1000; catalog number 3407S), IRS Ser318 (1:1000; catalog number 5610S), IRS 
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Ser636/639 (1:1000; catalog number 2388S), totalPI3K p85 (1:1000; catalog number 4292S), 

PI3K Tyr458 (1:1000; catalog number 4228S), total AKT (1:1000 ; catalog number 9272), AKT 

Thr308 (1:1000; catalog number 2965S), AKT Ser473 (1:1000; catalog number3787S) total 

GSK3β (1:1000; catalog number 9315S), GSK3β Ser9 (1:1000; catalog number 9336S), CP13 

(1:1000; catalog number 11834S). From Millipore, Billerica, MA: APP C-terminal (1:2000; 

catalog number 171610), Tau5 (1:5000; catalog number 577801). From BioLegend, San Diego, 

CA: APP (1:3000; catalog number MAB348). PHF-1 (1:3000) was a gift from Dr. Peter. Davies. 

 

Statistical analysis:  While both sexes were used, the experiments were not powered to identify 

sex differences. For western blots and the ELISA experiments, the cortex of each mouse was 

processed as indicated above. Each statistical replicate represents proteins extracted from one 

mouse. Per each mouse, all the western blots were obtained from the same homogenate.  

Normality was tested via the D’Agostino & Pearson omnibus normality test (p’s > 0.20). Data 

were analyzed by one-way and two-way ANOVAs using GraphPad Prism. Post hoc Bonferroni’s 

test was then used to determine individual differences among groups. 

 
 

RESULTS 

Reduced mTOR levels and signaling in the cortex of aged APP/mTOR +/- mice  

Using mTOR floxed mice and a CamKII-Cre line, we have removed one copy of the mTOR 

gene from the brains of Tg2576 mice using a crossbreeding approach (Caccamo et al., 2014). 

In this study, we used 20-month-old littermates with the following genotypes: 

Tg2576+/0;mTORwt/fl;CRE0/0 (herein referred to as APP mice); Tg2576+/0;mTORwt/fl;CRE+/0 (herein 

referred to as APP/mTOR+/- mice); Tg25760/0;mTORwt/fl;CRE0/0 (herein referred to as CTL mice); 

Tg25760/0;mTORwt/fl;CRE+/0 (herein referred to as mTOR+/- mice). + indicates the presence of the 

transgene, 0 indicates the lack of the transgene, fl indicates a floxed mTOR allele, wt indicates a 
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wildtype mTOR allele. To determine the effects of removing one copy of the mTOR gene on 

learning and memory, we tested mice in the Morris water maze (MWM; n = 10/genotype). We 

started by training mice (four training trials per day per five consecutive days) to find a hidden 

platform using extra-maze cues. When we analyzed the time to find the hidden platform using a 

two-way ANOVA, we found a significant effect for days [p < 0.0001; F(4, 170) = 20.34], genotype 

[p = 0.0008; F(3, 170) = 10.18], and day x genotype interaction [p = 0.047; F(12, 170) = 2.51; Fig. 1A]. 

The day effect indicates that all mice learned the task across the five days of training. The 

genotype effect indicates that one or more genotypes had a different pace of learning. Post hoc 

analyses indicated that APP/mTOR+/- mice performed significantly better than APP mice at day 

4 (p < 0.05, t = 2.76) and day 5 (p < 0.01, t = 3.28). Twenty-four hours after the last training trial, 

we removed the platform from the maze and conducted probe trials to assess spatial memory 

during a single 60-second probe trial. We found that the number of platform location crosses 

was significantly different among the four genotypes [p < 0.0001; F(3, 34) = 11.18; Fig. 1B). Post-

hoc analyses indicated that APP mice performed significantly worse compared to CTL (p < 0.01; 

t = 5.47), mTOR (p < 0.01; t = 4.21), and APP/mTOR+/- mice (p < 0.01; t = 3.70). We then 

analyzed the latency to the first platform cross and found that there was a significant difference 

among the groups [p < 0.0001; F(3, 34) = 22.86; Fig. 1C]. Post-hoc analyses indicated that APP 

mice performed significantly worse compared to CTL (p < 0.01; t = 7.57), mTOR (p < 0.01; t = 

6.40), and APP/mTOR+/- mice (p < 0.01; t = 5.57). Notably, swim speed was not statistically 

significant among the four groups (Fig. 1D), suggesting that the performance deficits are not 

due to motor issues. These data indicate that the APP mice are significantly impaired compared 

to CTL mice in all three measurements (Fig. 1A-C), and removing one copy of the mTOR gene 

rescues these deficits.  

 

To better understand the relationship between mTOR and central insulin resistance in AD, we 

first measured the body weight of mice before we sacrificed them and found that there was no 
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statistically significant difference among the four groups (p = 0.4028; Fig. 2A). To assess mTOR 

signaling, we measured mTOR levels by western blot. We found that mTOR levels were 

significantly different among the four genotypes [p < 0.001; F(3, 16) = 36.62; Fig. 2B-C]. 

Specifically, a post hoc test with Bonferroni’s correction showed that the total levels of mTOR 

were significantly higher in APP mice compared to CTL (p < 0.01; t = 5.12), mTOR (p < 0.001; t 

= 8.57), and APP/mTOR+/- mice (p < 0.001; t = 9.65). Also, mTOR levels in CTL mice were 

higher compared to mTOR+/- (p < 0.05; t = 3.45) and APP/mTOR+/- mice (p < 0.05; t = 3.92). 

Notably, no differences were found between mTOR+/- and APP/mTOR+/- mice. To further assess 

mTOR signaling, we measured the total and phosphorylated levels of S6K1, a protein 

downstream of mTOR (Fenton and Gout, 2011). While overall levels of S6K1 were similar 

among the four groups (p = 0.3084; Fig. 2B-D), we found that the levels of S6K1 

phosphorylated at Thr389 were significantly different [p = 0.0051; F(3, 16) = 7.20; Fig. 2B-E]. A 

post hoc test with Bonferroni’s correction showed that phosphorylated levels of S6K1 were 

significantly higher in the APP mice compared to CTL (p < 0.01; t = 4.13), mTOR+/- (p < 0.05; t = 

3.47), and APP/mTOR+/- (p < 0.05; t = 3.65) mice. These data show that genetically removing 

one copy of mTOR from the brain of Tg2576 mice is sufficient to reduce mTOR levels and 

signaling. 

 

Removing one copy of mTOR rescues aberrant brain in sulin signaling 

mTOR hyperactivity is linked to insulin resistance, hyperglycemia and hyperinsulinemia in the 

periphery (Suhara et al., 2017); however, whether brain mTOR plays a role in central insulin 

metabolism remains to be elucidated. To explore the effect of genetically reducing mTOR on 

central insulin signaling, we measured the levels of the insulin receptor β (IRβ) by western blot. 

IRs are highly expressed in neurons and are downregulated in AD brains (Schulingkamp et al., 

2000; Steen et al., 2005). We found that the levels of IRβ  were different among the groups [p < 

0.0001; F(3, 16) = 37.86; Fig. 3A-B). A post hoc test with Bonferroni’s correction showed that the 
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levels of IRβ were lower in APP mice compared to CTL (p < 0.001; t = 7.74), mTOR+/- (p < 

0.001; t = 7.30), and APP/mTOR+/- (p < 0.001; t = 9.71) mice. To further investigate changes in 

central insulin signaling, we focused on the insulin receptor substrate (IRS). IRS-1 is a regulator 

of insulin signaling, and its phosphorylation at serine residues can positively or negatively 

regulate insulin signaling (Boura-Halfon and Zick, 2009; Gual et al., 2005). For example, IRS-1 

phosphorylated at Ser318 by PKCζ immediately after exposure to insulin facilitates insulin 

signaling by stimulating the activation of the PI3K/AKT pathway (Boura-Halfon and Zick, 2009; 

Gual et al., 2005). Furthermore, phosphorylation at Ser636/639 always inhibits and disrupts 

insulin signaling (Gual et al., 2005; Spilman et al., 2010). We measured the steady-state levels 

of total IRS-1 and found no difference among the four groups (p = 0.9118; Fig. 3B-C). In 

addition, we found that the levels of IRS-1 phosphorylated at Ser318 and 636/639 were different 

among the four genotypes [p = 0.0093; F(3, 16) = 7.17 and p = 0.0304; F(3, 16) = 4.53, respectively; 

Fig. 3A, D-E]. A post hoc test with Bonferroni’s correction showed that the levels of IRS-1 

phosphorylated at Ser318 and 636/639 were higher in APP mice compared to CTL (p < 0.05; t = 

4.02 and p < 0.05; t = 3.15, respectively), mTOR+/- (p < 0.05; t = 3.95 and p < 0.05; t = 3.82, 

respectively), and APP/mTOR+/- mice (p < 0.05; t = 3.43 and p < 0.05; t = 3.20, respectively).    

 

IGF-1R is tetrameric glycoprotein that belongs to the receptor tyrosine kinase superfamily, 

which can be activated by insulin and IGF-1 (Hernandez-Sanchez et al., 1995). Phosphorylation 

of IGF-1R at Tyr1135/1136 is necessary for kinase activation, and it is one of the earliest 

cellular responses to insulin. In mouse models of AD, the disruption of insulin/IGF signaling 

increases Aβ deposition, tau phosphorylation, and decreases cerebral blood flow (de la Monte, 

2012; Ke et al., 2009; Talbot et al., 2012). To study this specific aspect of insulin signaling, we 

measured the levels of total IGF-1R by ELISA and found that they were significantly different 

among the four groups (p < 0.0001; F(3, 16) = 37.81; Fig. 3F). A post hoc test with Bonferroni’s 
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correction showed that IGF-1R levels were lower in APP mice compared to CTL (p < 0.001; t = 

8.40), mTOR+/- (p < 0.001; t = 8.08), and APP/mTOR+/- (p < 0.001; t = 9.40) mice. Consistent 

with these results, we found that the levels of IGF-1R phosphorylated at Tyr1135/1136 were 

also significantly different among the four groups (p = 0.0033; F(3, 16) = 37.81; Fig. 3G). Post hoc 

analyses indicated that this difference was driven by the APP mice, which had the lowest levels 

of IGF-1R phosphorylated at Tyr1135/1136 compared to CTL (p < 0.05; t = 3.20), mTOR+/- (p < 

0.001; t = 4.35), and APP/mTOR+/- mice (p < 0.05; t = 3.22). Taken together, these results show 

that reducing brain mTOR signaling rescues metabolic alterations in the central insulin 

signaling.  

 

Reducing mTOR expression rescues the aberrant activ ation of the PI3K/AKT signaling  

The pathway linking IRS proteins to the metabolic actions of insulin and insulin growth factors 

(IGF) is the PI3-kinase (PI3K)/AKT pathway (Gual et al., 2005; Hernandez-Sanchez et al., 

1995). After insulin and IGF bind to IGFR-1 or to IRs, the PI3K/AKT pathway is activated and 

triggers a signaling transduction pathway that culminates with the phosphorylation at Thr308 

and activation of AKT (Boura-Halfon and Zick, 2009; Gual et al., 2005). mTOR-mediated 

phosphorylation of AKT at Ser473 stimulates its full enzymatic activity (Hresko and Mueckler, 

2005). To determine if reducing mTOR signaling modifies this signaling pathway downstream of 

IRS-1, we first measured the levels of total PI3K by western blot. We found that there was no 

difference among the four genotypes (p = 0.7921: Fig. 4A-B). In contrast, when we measured 

the levels of PI3K phosphorylated at Tyr458, we found a statistically significant difference 

among the four groups (p = 0.0036; F(3, 16) = 11.01; Fig. 4A, C). A post hoc test with Bonferroni’s 

correction showed that the levels of phosphorylated PI3K were higher in the APP mice 

compared to CTL (p < 0.01; t = 4.87), mTOR+/- (p < 0.001; t = 4.95), and APP/mTOR+/- mice (p < 

0.01; t = 4.04). To investigate if changes in phosphorylated PI3K would affect its downstream 

targets, we measured the levels of total and phosphorylated AKT. While total AKT levels were 
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similar among the four groups (Fig. 4A, D), we found that the levels of AKT phosphorylated at 

Thr308 and Ser473 were significantly different among the four genotypes (p = 0.0063; F(3, 16) = 

5.86 and p = 0.0075; F(3, 16) = 6.45, respectively; Fig. 4A, E-F). A post hoc test with Bonferroni’s 

correction showed that the levels of AKT phosphorylated at Thr308 and Ser473 were higher in 

APP mice compared to CTL (p < 0.05; t = 4.09 and p < 0.05; t = 3.38, respectively), mTOR+/- (p 

< 0.05; t = 3.37 and p < 0.05; t = 3.62, respectively), and APP/mTOR+/- mice (p < 0.05; t = 3.70 

and p < 0.05; t = 3.74, respectively). Taken together, these data indicate that 20-month-old APP 

mice have abnormal central insulin signaling, and these alterations were rescued by reducing 

brain mTOR signaling.  

 

Reducing mTOR signaling lowers A β and tau levels in Tg2576 mice 

Brain insulin resistance has been implicated as a key factor in the development of AD pathology 

(de la Monte, 2012; Diehl et al., 2017; Kandimalla et al., 2017). To evaluate the effect of 

lowering mTOR signaling on Aβ, we first measured Aβ load in cortical sections of APP and 

APP/mTOR+/- mice, stained with an Aβ42-specific antibody. We found that Aβ deposits were 

significantly reduced in APP/mTOR+/- mice compared to APP mice (p < 0.0001; t = 12.99; Fig. 

5A-B). We also measured full-length APP and its major C-terminal fragments, C99 and C83, by 

western blot in the APP and APP/mTOR+/- mice. We found that the levels of APP, C99 and C83 

were not statistically different between the two genotypes (p = 0.183, p = 0.454, and p = 0.297, 

respectively; Fig. 5C-F). Next, we measured soluble and insoluble Aβ levels by sandwich ELISA 

and found that soluble Aβ40 and Aβ42 levels were significantly reduced in the cortex of the 

APP/mTOR+/−mice compared to APP mice (p = 0.0004; t = 5.71 and p = 0.0003; t = 6.00, 

respectively; Fig. 5G). While the levels of insoluble Aβ40 were similar between the two groups, 

insoluble Aβ42 levels were lower in the APP/mTOR+/− mice compared to APP mice (p = 0.0002; 

t = 6.13; Fig 5H). These results show that reducing mTOR signaling is sufficient to reduce Aβ 

levels, without modifying APP processing. This finding is highly consistent with previous reports 
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(Caccamo et al., 2015; Caccamo et al., 2014; Caccamo et al., 2013; Caccamo et al., 2010; 

Majumder et al., 2011; Spilman et al., 2010). 

 

Tau accumulation is another neuropathological feature of AD (Khurana et al., 2006). While 

Tg2576 mice do not develop frank neurofibrillary tau pathology, increases in tau 

phosphorylation have been reported (Sturchler-Pierrat et al., 1997). Furthermore, previous 

reports have indicated a direct link between mTOR and tau (Caccamo et al., 2015; Caccamo et 

al., 2014; Caccamo et al., 2013; Oddo, 2012). Hence, we looked at endogenous tau levels by 

western blot in all four groups of mice. We first measured total levels of endogenous tau and 

found a statistically significant difference among the four genotypes (p = 0.0068; F(3, 16) = 7.84; 

Fig. 6A-B). A post hoc test with Bonferroni’s correction showed that tau levels were higher in the 

APP mice compared to CTL (p < 0.05; t = 4.00), mTOR+/- (p < 0.05; t = 3.87), and APP/mTOR+/- 

mice (p < 0.05; t = 3.98). We next probed for changes in tau phosphorylation using two different 

phospho-specific tau antibodies: CP13, which recognizes tau phosphorylated at Ser202, and 

PHF-1, which recognizes tau phosphorylated at Ser396/404.  We found that CP13 levels were 

significantly different in the four genotypes (p < 0.001; F(3, 16) = 12.42; Fig. 6A, C). Interestingly, a 

post hoc test with Bonferroni’s correction showed that the APP mice have the higher levels of 

phosphorylated tau compared to CTL (p < 0.001; t = 5.60), mTOR+/- (p < 0.01; t = 4.25), and 

APP/mTOR+/- mice (p < 0.05; t = 4.75). In contrast, we found that there were no statistically 

significant differences in PHF-1 levels among the four groups (p = 0.1717; Fig. 6A, D). To 

explore the mechanism of tau phosphorylation, we investigated levels of GSK3β, a tau kinase 

that has been involved in AD pathogenesis (Ma, 2014). In vitro and in vivo studies have shown 

that Aβ activates GSK3β, by preventing its inhibitory phosphorylation at Ser9. A similar increase 

in GSK3β activity has been detected in human AD brains. This increase in activity is believed to 

be involved in tau hyperphosphorylation and memory dysfunction (Kremer et al., 2011; Llorens-

Martin et al., 2014).  Further, GSK3β activity is linked to insulin signaling (Cross et al., 1995). 
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We found that the levels of total GSK3β were unchanged among the four genotypes (p = 

0.9770; Fig. 6E). In contrast, the levels of GSK3β phosphorylated at Ser9 were different among 

the four groups (p < 0.0001; F(3, 16) = 34.54; Fig. 6F). A post hoc test with Bonferroni’s correction 

showed that the levels of GSK3β phosphorylated at Ser9 were lower in the APP mice compared 

to CTL (p < 0.001; t = 9.11), mTOR+/- (p < 0.01; t = 7.60), and APP/mTOR+/- mice (p < 0.05; t = 

3.23). This finding indicates that GSK3β is hyperactive in APP mice compared to CTL mice and 

that decreasing mTOR levels restores GSK3β activity. While further studies are needed to 

address the mechanisms leading to GSK3β hyperactivity in APP mice, it is plausible that Aβ 

accumulation might play a key role in this process (Kremer et al., 2011; Llorens-Martin et al., 

2014). In summary, lowering mTOR signaling in the brain of APP mice modifies insulin signaling 

and reduces GSK3β and tau phosphorylation. 

 

Lowering mTOR levels reduces overproduction of cyto kines 

Overproduction of pro-inflammatory cytokines is a feature of AD and metabolic disorders, such 

as diabetes (Da Mesquita et al., 2016; King, 2008). To this end, brain inflammation has been 

linked to altered insulin signaling in AD and increase in tau phosphorylation (Kitazawa et al., 

2004). To investigate the link between mTOR/insulin signaling and cytokines production, we 

measured the levels of and of IL1β and TNFα, two significant cytokines linked to AD (Kitazawa 

et al., 2004). We found that IL1β levels were different among the groups (p = 0.0010; F(3, 16) = 

8.29; Fig. 7A-B). A post hoc test with Bonferroni’s correction showed that the levels of IL1β were 

higher in the APP compared to CTL (p < 0.01; t = 4.11), mTOR+/- (p < 0.01; t = 4.33), and 

APP/mTOR+/- mice (p < 0.05; t = 3.65). We found similar results when we analyzed TNFα levels 

(p = 0.01; F(3, 16) = 8.29; Fig. 7A-C).  A post hoc test with Bonferroni’s correction showed that the 

levels of TNFα were higher in the APP compared to CTL (p < 0.05; t = 3.61), mTOR+/- (p < 0.05; 
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t = 3.68), and APP/mTOR+/- mice (p < 0.05; t = 3.62). These results show that lowering mTOR 

signaling and restoring insulin signaling reduces levels of toxic cytokines overproduction. 

 

DISCUSSION 

There is a clear and unchallenged link between diabetes and AD (Diehl et al., 2017; Kandimalla 

et al., 2017; Ott et al., 1999; Sims-Robinson et al., 2010). Consistent with these results, patients 

with diabetes and familial (caused by presenilin mutations) or sporadic AD had worse cognitive 

deficits compared to AD cases without diabetes (Abner et al., 2016; Aguirre-Acevedo et al., 

2016). Abnormalities in insulin signaling have been consistently reported in human AD brains 

and animal models of AD (de la Monte, 2012; Diehl et al., 2017; Kandimalla et al., 2017; Ke et 

al., 2009; Pedersen and Flynn, 2004; Rodriguez-Rivera et al., 2011; Shinohara and Sato, 2017; 

Sims-Robinson et al., 2010; Talbot et al., 2012; Velazquez et al., 2017). For example, we 

recently reported that in Tg2576 mice, central insulin dysregulation proceeds peripheral insulin 

dysregulation; these changes are associated with alteration in brain energy metabolism 

(Velazquez et al., 2017). Despite this report, the mechanisms linking AD to insulin dysregulation 

remain unknown. Here we report the novel finding that hyperactive mTOR signaling contributes 

to insulin dysregulation in Tg2576 mice. This finding is consistent with our previous report 

showing that high sucrose diet alters central insulin signaling and exacerbates AD-like 

pathology in a mTOR-dependent manner (Orr et al., 2014). 

 

We and others have previously shown that mTOR is hyperactive in postmortem human brains 

and in animal models of AD (An et al., 2003; Chang et al., 2002; Oddo, 2012; Pei et al., 2008; 

Pei and Hugon, 2008; Velazquez et al., 2017). mTOR phosphorylates and activates S6K1, 

which in turn phosphorylates the IRS-1 causing its internalization (Um et al., 2004). Chronic 

mTOR activation leads insulin resistance (Um et al., 2006). Consistent with these observations, 

here we showed that the levels of insulin receptor substrate-1 phosphorylated at Ser318 and 
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Ser363/639 were significantly increased in Tg2576 brains; however, after removing one copy of 

the mTOR gene, the levels of phosphorylated IRS-1 went back to CTL levels. Notably, we 

previously reported that these changes in insulin receptor substrate-1 phosphorylation in the 

brain of Tg2576 occur before changes in peripheral insulin signaling (Velazquez et al., 2017). 

Taken together, these data suggest that hyperactive mTOR may contribute to insulin resistance 

in AD. 

 

There is a growing appreciation for a role of mTOR signaling in AD pathogenesis (Oddo, 2012). 

The data presented here show that decreasing mTOR signaling reduces Aβ deposition and 

levels, which is consistent with previous reports from multiple groups, including our own 

(Caccamo et al., 2015; Caccamo et al., 2014; Caccamo et al., 2010; Majumder et al., 2011; 

Spilman et al., 2010; Tramutola et al., 2017). Specifically, we showed that reducing mTOR 

signaling leads to Aβ and tau reduction by increasing autophagy induction and by decreasing 

translation of BACE-1 and tau mRNA (Caccamo et al., 2015; Caccamo et al., 2014; Caccamo et 

al., 2010). We have also shown that Aβ is sufficient to increase mTOR signaling, suggesting a 

vicious cycle between Aβ and mTOR (Caccamo et al., 2010; Caccamo et al., 2011; Talboom et 

al., 2015). Despite the strong evidence linking Aβ and mTOR, the mechanisms leading to 

mTOR hyperactivity in AD remain elusive. mTOR associates with several proteins to form two 

high molecular weight complexes (known as mTORC1 and mTORC2; (Saxton and Sabatini, 

2017). mTORC1 is mainly linked to energy metabolism, cell growth and proliferation while 

mTORC2 is primarily linked to cytoskeletal organization (Saxton and Sabatini, 2017). The 

proline-rich Akt substrate 40 (PRAS40) is a key component of mTORC1, and it regulates mTOR 

activity by physically binding to it. When PRAS40 is bound to mTOR, mTOR activity is reduced; 

in contrast, when mTOR detaches from PRAS40, mTOR is active (Saxton and Sabatini, 2017). 

Specifically, insulin signaling facilitates the Akt-mediated phosphorylation of PRAS40 at Thr246. 

Once phosphorylated, PRAS40 detaches from mTOR, thereby facilitating mTOR activity 
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(Sancak et al., 2007; Wang et al., 2007). We have previously shown that accumulation of 

amyloid-β (Aβ) leads to hyperactive mTOR via a PRAS40-mediated mechanism (Caccamo et 

al., 2011). Given these data and the role of PRAS40 in insulin signaling, it is tempting to 

speculate that Aβ accumulation increases PRAS40 phosphorylation, which in turn leads to 

chronic hyperactive mTOR and S6K1 signaling.  

 

It is plausible that factors other than Aβ might trigger mTOR hyperactivity. For instance, 

diabetes and alterations in insulin signaling are known to directly affect mTOR signaling (Suhara 

et al., 2017). In turn, as we previously showed, hyperactive mTOR increases Aβ and tau 

production by altering the expression of BACE-1, a key enzyme in the production of Aβ, and tau 

(Caccamo et al., 2015). Additionally, hyperactive mTOR decreases turnover of Aβ and tau by 

reducing autophagy (Orr and Oddo, 2013). While further studies are needed to determine the 

upstream and downstream mechanisms in this cascade of events, there is an evident interplay 

between insulin signaling and Aβ and tau (de la Monte, 2012; Diehl et al., 2017; Talbot et al., 

2012). For example, high Aβ and tau levels can lead to insulin resistance while insulin 

dysregulation can also lead to increased Aβ and tau levels (de la Monte, 2012; Diehl et al., 

2017; Talbot et al., 2012). Here we show that mTOR is mechanistically linked to such interplay. 

Consistent with these data, we previously showed that mTOR hyperactivity mediates the 

detrimental effects of a high sucrose diet on Aβ and tau pathology (Orr et al., 2014).    

 

In summary, we report that insulin dysregulation in Tg2575 mice is mTOR dependent. 

Furthermore, we present compelling evidence indicating that removing one copy of mTOR in the 

brain of Tg2576 mice reduces Aβ and tau levels. Notably, there is overwhelming evidence 

showing that lowering mTOR increases lifespan and health span. Given the role of aging in AD, 

these data further link mTOR signaling to the pathogenesis of this insidious disorder. Taken 
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together, these data suggest that reducing mTOR signaling may be a valid therapeutic 

approach for AD.  
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Figure Legends 

Figure 1: Reduced mTOR signaling improves learning and memory in the APP/mTOR +/- 

mice.  A, Learning curve of 20-month-old mice trained in the spatial reference version of the 

MWM. Mice were trained for five days to swim to find a hidden platform using extramazal visual 

cues. Each day represents the average of four training trials. All genotypes significantly learned 

the task; however, APP mice took more time to find the platform on day 4 and day 5. B-C, 

Memory, was tested 24 h after the last training trial. The APP mice were significantly impaired 

compared with the other three genotypes. Remarkably, the APP/mTOR+/− mice performed as 

well as the WT mice in both the parameter analyzed. D, Swim speed measured during the 

probe trials was not statistically different among the four genotypes. n = 10/genotype, 5 females 

and 5 males. Data are presented as means ± SEM and were analyzed by two-way ANOVA with 

Bonferroni's correction.  

 
 

Figure 2: Reduced mTOR levels and signaling in APP/ mTOR+/- mice.  A, Weight of mice at 

the time of death. There were no statistically significant changes for any of the genotypes (p = 

0.4028). B, Representative western blots of proteins extracted from the cortices of 20-month-old 

mice probed with the indicated antibodies. C-E, Quantification of the blots indicates a significant 

decrease in the levels of mTOR and phospho-S6K1 in APP/mTOR+/- and mTOR+/- mice 

compared to the other two groups (p < 0.0001; p = 0.0051, respectively). Levels of total S6K1 

were unchanged (p = 0.3084). Data were obtained by normalizing the protein of interest to β-

actin loading control. Results presented as means ± SEM and analyzed by one-way ANOVA 

with Bonferroni's correction. Panel A, n = 10 mice/genotype (5 females and 5 males); Panels B-

E, n = 5 mice/genotype (3 females and 2 males). * indicates that the APP and the CTL groups 

are significantly different compared to the other two groups. 
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Figure 3: Low mTOR rescues aberrant insulin signali ng in APP mice. A , Representative 

western blots of protein extracted from CTL, mTOR+/-, APP and APP/mTOR+/- mice probed with 

the indicated antibodies. B, Quantification of IRβ levels shows a decrease in the levels of this 

protein in the APP mice compared to the other genotypes (p < 0.0001). C, Levels of total IRS 

were unchanged among the groups (p = 0.9118). D-E, Levels of IRS-1 phosphorylated at 

Ser318 (p = 0.0093) and Ser636/639 (p = 0.0304) were significantly higher in the APP mice 

compared to the other groups (n = 5 mice/genotype). F-G, Sandwich ELISA measurements of 

total IGF-1R and phospho-IGF-1R. Both proteins were lower in the APP/mTOR+/- mice 

compared to the APP mice (p < 0.0001 and p = 0.0033, respectively) n = 5 mice/genotype, 3 

females and 2 males. Data were obtained by normalizing the protein of interest to β-actin 

loading control. Results presented as means ± SEM and analyzed by one-way ANOVA with 

Bonferroni's correction. 

 

Figure 4: Reduced mTOR signaling rescues the aberra nt activation of the PI3K/AKT 

pathway.  A, Representative western blots of protein extracted CTL, mTOR+/-, APP and 

APP/mTOR+/- mice probed with the indicated antibodies. B-C, Quantification of the total and 

phospho levels of Pi3K. While the levels of total PI3K remain unchanged among the groups, 

there was a significant increase in phospho-PI3K in the APP compared to the other three 

genotypes (p = 0.7921 and p = 0.0036, respectively). D-F, Quantification of total and phospho-

AKT. The level of total AKT remains unaltered in the four groups (p = 0.1115), while the levels 

of AKT Thr308 and AKT Ser473 were decreased in the APP/mTOR+/- compared to APP mice (p 

= 0.0063 and p = 0.0075, respectively). The graphs were generated by normalizing the protein 

of interest to β-actin loading control. Results presented as means ± SEM and analyzed by one-

way ANOVA with Bonferroni's correction. For each experiment shown, n = 5 mice/genotype, 3 

females and 2 males. * indicates that the APP group was significantly different compared to the 

other three groups. 
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Figure 5: Reducing aberrant mTOR signaling lowers A ββββ levels in APP/mTOR +/ mice. A , 

Representative cortical sections from APP and APP/mTOR+/- mice stained with an Aβ42-specific 

antibody. B, Quantitative analysis of the section showed a significant reduction in number of 

plaques in APP/mTOR+/- mice (p < 0.0001). C, Representative western blot of protein from APP 

and APP/mTOR+/- mice probed with the indicated antibodies. D-F, Quantitative analyses showed 

that APP, C99 and C83 levels were similar between APP and APP/mTOR+/- mice (p = 0.1831, p 

= 0.2945 and p = 0.4524, respectively). G, Measurements of soluble Aβ42 and Aβ40 by sandwich 

ELISA. The levels of both peptides were lower in the APP/mTOR+/- mice compared to APP (p = 

0.0003 and p = 0.0004, respectively). H, Measurements of insoluble Aβ42 and Aβ40 by sandwich 

ELISA. The levels Aβ42 were lower in the APP/mTOR+/- mice compared to APP while the levels 

of Aβ40 were unchanged (p = 0.0002 and p = 0.5982, respectively). Data were obtained by 

normalizing the protein of interest to β-actin loading control and analyzed by Student's t-test. 

Panels A-F: n = 5/genotype, 3 females and 2 males; Panel G-H: n = 6/genotype, 3 females and 

3 males. 

 

Figure 6: Reduced endogenous tau levels in APP/mTOR +/- mice. A,  Representative western 

blot of protein from CTL, mTOR+/-, APP and APP/mTOR+/- mice probed with the indicated 

antibodies. B, Quantitative analysis of total mouse tau indicated that endogenous tau levels 

were decreased in APP/mTOR+/- compared to the APP mice (p = 0.0068). C, Quantitative 

analysis of phosphorylated tau using CP13, an antibody that recognizes tau phosphorylated at 

Ser202. The levels of this protein were reduced in APP/mTOR+/- compared to the APP mice (p = 

0.0027). D, Quantitative analysis of phosphorylated tau using PHF-1, an antibody that 

recognizes tau phosphorylated at Ser396/404. No changes were detected in the levels of this 

protein among the four genotypes (p = 0.1343). E-F, Quantification of total and phospho-
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GSK3β. The levels of total GSK3β were the same for all genotypes (p = 0.9770). Phospho-

GSK3β levels were higher in the APP/mTOR+/- compared to the APP mice (p < 0.0001). Data 

were obtained by normalizing the protein of interest to β-actin loading control. Results presented 

as means ± SEM and analyzed by one-way ANOVA with Bonferroni's correction. For each 

experiment shown, n = 5 mice/genotype, 3 females and 2 males. * indicates that the APP group 

was significantly different compared to the other three groups. 

 

Figure 7: Decrease of pro-inflammatory cytokine in APP/mTOR +/- mice. A , Representative 

western blot of protein from CTL, mTOR+/-, APP and APP/mTOR+/- mice probed with the 

indicated antibodies. B, Quantitative analysis of IL1β.  The graph shows that the levels of IL1β 

were reduced in the APP/mTOR+/- compared to the APP mice (p = 0.0010). C, Quantitative 

analysis of TNFα. The graph shows that the levels of TNFα were lower in the APP/mTOR+/- 

compared to the APP mice (p = 0.0206). Data were obtained by normalizing the protein of 

interest to β-actin loading control. Results presented as means ± SEM and analyzed by one-

way ANOVA with Bonferroni's correction. For each experiment shown, n = 5 mice/genotype, 3 

females and 2 males. 
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Highlights 

 

• Reducing brain mTOR signaling improves central insulin dysregulation in 20-month-old 
Tg2576 mice 

• Reducing brain mTOR signaling lowers Aβ and tau levels in 20-month-old Tg2576 mice 
• Reducing brain mTOR signaling lowers cytokines levels in 20-month-old Tg2576 mice. 
• Hyperactive mTOR may contribute to AD-like pathology in 20-month-old mice. 




