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Abstract

The development of preventive strategies in eddges Alzheimer’s disease (AD) requires
measures that can predict future brain atrophyy @ratter network measures have such
potential as they are sensitive to detect verydadin structural alterations that are related to
amyloid burden in cognitively normal older indivalg, and predict clinical progression in
preclinical AD. Here, we show that within individsavith preclinical AD, grey matter

network measures predict hippocampal atrophy ratesreas other AD biomarkers (total
grey matter volume, CSF total tau and MMSE) do Ratthermore, in brain areas where
amyloid is known to start aggregating (i.e., amtecingulate and precuneus) disrupted
network measures predict faster subsequent atriopttyer distant areas, mostly involving
temporal regions, which are associated with AD. Wiepeating analyses in a sample of age-
matched, cognitively unimpaired individuals withrmal levels of amyloid and total tau in
CSF, we did not find any associations between ndétweeasures and hippocampal atrophy,
indicating that the associations seem specifierfdviduals with preclinical AD. Our

findings suggest that disrupted grey matter neteonky indicate a treatment opportunity in
individuals with preclinical AD but before the on®d irreversible overt atrophy and

cognitive impairment.

Keywords. Alzheimer’s disease; amyloid; atrophy; preclinjahgle-subject grey matter
networks



1. Introduction

Alzheimer’s disease (AD) is a neurodegenerativerder that is the most common cause of
dementia (Lobo et al., 2000; Plassman et al., 200Mpng the earliest pathological changes
in AD is aggregation of amyloid beta into plaguBatéman et al., 2012; Jansen et al., 2015),
starting in the anterior cingulate cortex and trecpneus (Palmquist et al., 2017; Villain et
al., 2012; Villeneuve et al., 2015). Once amyloés laggregated, it may take up to 10 years
before atrophy starts (Bateman et al., 2012), whidst prominently affects more distant
brain areas in the medial temporal lobes (Che&tlat., 2012; Dickerson et al., 2009;
Whitwell et al., 2007) and is more closely relatedognitive decline (van Rossum et al.,
2012). How amyloid aggregation in one brain aregn&ally leads to neurodegeneration in
more distant brain areas remains largely uncleardevelopment of preventive strategies it
is important to predict future brain atrophy, as tnay aid in identifying which individuals
with abnormal amyloid but still normal cognitiong(i, preclinical AD; Sperling et al., 2011)

will show disease progression but before the oofseteversible atrophy.

Amyloid aggregation disrupts local synaptic funotiay (Koffie et al., 2009; Shankar et al.,
2008; Walsh et al., 2002), potentially leading igraptions of large-scale brain connectivity
networks (Buckner et al., 2005; Kuchibhotla et 2008; Kurudenkandy et al., 2014;
Palmquist et al., 2017; Palop et al., 2007; Spgréihal., 2009). One approach to measure
brain networks is based on intracortical similaatystructural MRI (i.e., grey matter
connectivity; Mechelli et al., 2005; Tijms et &012). Intracortical similarity has been
associated with coordinated growth patterns (AleeatBloch et al., 2013b), functional co-
activation (Alexander-Bloch et al., 2013a) and ata@onnectivity (Gong et al., 2012). We
and others have shown that grey matter networkdiarepted in AD (He et al., 2008; Pereira

et al., 2016; Tijms et al., 2013a; Tijms et al.12b; Yao et al., 2010), associated with



cognitive impairment (Tijms et al., 2013a; Tijmsagt 2014) and related to faster disease
progression and cognitive decline in the prederaesitige of AD (Dicks et al., 2018; Tijms et
al., 2018; Verfalllie et al., 2018). Furthermoresrdpted grey matter network organization has
been associated with aggregating amyloid in cogglitinormal individuals (ten Kate et al.,
2018; Tijms et al., 2016) and before overt atroghgvident (Voevodskaya et al., 2018).
Taken together, these findings suggest that gratenm@etwork measures might have use to
identify those individuals who will progress to AIl2mentia in the earliest, preclinical stages
of AD and before the onset of irreversible atrophy. In a crossisaat study, Seeley and
colleagues previously showed that atrophy patterdd dementia patients reflect brain
regions that show both strong functional co-acioratis well as covariation in grey matter
volume across a group of cognitively normal induats, suggesting that regions that are
highly interconnected share vulnerability for nedegeneration (Seeley et al., 2009). It could
be hypothesized that grey matter network disrugtaune to amyloid aggregation in one
region of the brain may capture the earliest neegederative changes in preclinical AD and
predict future atrophy in more distant regions. ldger, as previous findings were based on
cross-sectional studies and/or used only one né&tpergroup of individuals, it is still

unclear whether grey matter network disruptionsmaalict the rate and location of future

atrophywithin individuals.

In this study, we used a subject-specific apprdaatonstruct grey matter networks in
individuals with preclinical AD and investigated &ther altered grey matter network
measures at baseline could predict the rate amadidocof future atrophy. We first compared
the predictive performance for future hippocamped@hy between whole-brain grey matter
network measures and other Alzheimer’s diseasearmthat have been previously
associated with reduced grey matter volume (oga) grey matter volume, CSF total tau

levels and MMSE scores). We then investigated wdreghey matter network measures



specifically in regions, where amyloid has previguseen shown to start aggregating (i.e.,
anterior cingulate and precuneus; Palmqvist eR@ll/; Villeneuve et al., 2015), could
predict the rate of subsequent atrophy in othanlaeeas within single individuals with
preclinical AD. We also performed analyses in ctigely unimpaired, age-matched
individuals without evidence of amyloid or tau palthigy to study whether results were
specific for preclinical AD, and additionally inwegated the effects of clinical progression,
tau pathology and sex on network disruptions aed #ssociations with future hippocampal

atrophy.



2. Methods

2.1. Participants

Data used in the preparation of this article wdraimed from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://atbmi.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led byétpal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whetlegrat magnetic resonance imaging (MRI),
positron emission tomography (PET), other biologiarkers, and clinical and
neuropsychological assessment can be combineddsureethe progression of mild cognitive
impairment and early Alzheimer’s disease. ADNI wagproved by the institutional review
board of all participating institutions and writteriormed consent was obtained from all

participants at each site.

We selected all participants with preclinical ADrn ADNI as defined by normal cognition
and abnormal amyloid CSF markers at baseline wdah&east 1 year of MRI-follow-up

with a minimum of two structural MRI scans availbMdditionally, we included cognitively
unimpaired, age-matched individuals without amylmidau pathology as a control group
(control; n=71), in order to determine whether tesswere specific for individuals with
preclinical AD. Details of clinical diagnostic agitia have been previously described (Aisen et
al., 2015; Petersen et al., 2010). Briefly, cogeily normal individuals had to have a CDR
score of 0, an MMSE score between 24 and 30, anchpaired memory as based on
education-adjusted cut-offs on the delayed recditest of the Logical Memory Il subscale of
the Wechsler Memory Scale-Revised (Aisen et all52@etersen et al., 2010). In total, 110
preclinical AD individuals were included with a mad of 5 (min-max: 2-10) repeated MRI
scans over a median follow-up time of 2.2 (min-mk@) years, during which time 25% of

individuals progressed to mild cognitive impairmentiementia due to AD. Diagnoses of



mild cognitive impairment or dementia were baseaagnitive impairment on the CDR,
MMSE or logical memory delayed recall (for cut-etfores, see Aisen et al., 2015; Petersen
et al., 2010). Additionally, dementia patients t@adhave a clinical diagnosis of probable AD

according to the NINCDS-ADRDA criteria (McKhannadt, 1984).

We used CSF measures for amyloid beta 1-42 tordeteramyloid abnormality and
additionally CSF total tau to determine tau abnditsnan control individuals. Amyloid beta
1-42 and total tau were measured with the multiglebdP Luminex platform (Luminex

Corp, Austin, TX) and Innogenetics (INNO-BIA AlzBBpGhent, Belgium) immunoassay Kit-
based reagents (Shaw et al., 2009). Abnormal athwas indicated by levels <192 pg/ml,

and abnormal tau was indicated by levels of >98np@Bhaw et al., 2009).

2.2. MRI acquisition & preprocessing

Image acquisition details and initial preprocessiage been previously described
(http://adni.loni.usc.edu/methods/mri-analysistklat al., 2008). We downloaded all 3D T1-
weighted structural scans that were preprocessidgradient-nonlinearity correction, B1
inhomogeneity and/or N3 correction and of suffitignality from the ADNI LONI Image &
Data Archive (IDA) [date of last access: 29.03.2017534]. Scans that were acquired using

different field strengths within subjects were exisd.

First, all images were reoriented with FSL (v5.0M@xt, to reduce bias in longitudinal
registration (Reuter et al., 2012), we createdgestrspecific median template image with
Freesurfer (v5.3.0) to which all longitudinal scavere co-registered. We then segmented
images into grey matter, white matter and cerebnasfiuid with the Markov Random Fields

parameter set to 2 and default settings for akioffarameters. Co-registration and



segmentation was performed with SPM12 running uitgfab (v.7.12.0.635). Finally, using
the subject specific inversed normalization paransethe automated anatomical labeling
atlas (AAL; Tzourio-Mazoyer et al., 2002) was watgeom standard space to subject space
and we calculated regional grey matter volumeémh of the 90 cortical and subcortical
AAL areas. Total intracranial volume was computedhee sum of grey matter, white matter
and cerebrospinal fluid volumes in £and grey matter volume was normalized to baseline
total intracranial volume. All grey matter segmeiatas and subject-specific atlases were

visually checked for quality.

2.3. Single-subject grey matter network measures

Single-subject grey matter networks were reconsttlifrom subject space grey matter
segmentations of baseline MRI scans using an auéahmaethod
(https://github.com/bettytijms/Single_Subject Grighatter Networks), which has been
described previously (Tijms et al., 2012). Briefiypdes were defined as small regions of
interest of 3x3x3 voxel cubes and connected wheyshowed similar gray matter structure
as defined by a significant correlation betweenel®xf two nodes. By defining nodes as
cubes, both spatial information (i.e., the foldstgicture of the cortex) and local grey matter
values were used to assess the correlation betmaskes. Because the cortex is a curved
object, regions of interest could be located atragle to each other, thus possibly decreasing
correlations. Therefore, for each pairwise comparishe seed cube was rotated by an angle
with multiples of 45° to identify the maximum colaBon coefficient. Next we binarized the
networks using subject-specific thresholds basednopirical null model distributions

(Noble, 2009) that ensured that all individualsve&d a similar chance of 5% false-positive

connections within the network. A detailed desdoiptof the single-subject network



extraction technique can be found in (Tijms et2012). For each single-subject grey matter
network we computed the network size, degree, aivity density, clustering coefficient
and path length. The network size is the numbeodes (i.e., cubes) in the network. The
degree corresponds to the number of connectionsqui. The connectivity density is the
ratio of present connections divided by the nundfgrossible connections in the network.
The clustering coefficient indicates the intercartedness of neighboring nodes and the path
length corresponds to the average shortest pativeée all nodes in the network (Rubinov
and Sporns, 2010). To obtain network measures®ptecuneus and anterior cingulate we
averaged measures across nodes that were labetwdiag to the AAL atlas. Global

network measures were obtained by averaging mesaaress all nodes of the network. We
additionally computed the global normalized clusigcoefficient, normalized path length
(gamma, lambda) and small-world coefficient for t&le brain in order to estimate how
these network measures deviated from randomly argdmetworks as follows: Gamma and
lambda were computed by normalizing clustering foteht and path length values with the
respective mean values of five randomized refereete@orks, which kept the degree
distribution intact (Maslov and Sneppen, 2002). $hmall-world coefficient is defined as the
ratio of gamma to lambda (Humphries and Gurney38208ll network measures were
calculated using functions from the Brain ConnettiVoolbox
(https://sites.google.com/site/bctnet/; Rubinov &pdrns, 2010) adjusted for large-sized

networks.

2.4. Statistical analysis

Cortical atrophy was determined by fitting lineaixed models for each AAL area with

longitudinal grey matter volume as outcome and tiram baseline as predictor. We fitted
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random slopes for time and intercepts for individuand assumed an unstructured
covariance structure using the R package ‘Ime4téd8at al., 2015). We first assessed
whether global network measures could predict &uhippocampal atrophy, as a prominent
region for AD associated atrophy. Repeated hipppednwvolume over time was used as the
outcome (i.e., hippocampal volume at baseline,dupmpal volume at visit 1, hippocampal
volume at visit 2 etc.) and baseline network mess(NM), time and their interaction as the

predictors.

Hippocampal volume = Brtercept + BumNM + BrimeTime + Byyxrime NM X Time

+ (1 + Time|Subject)

We repeated these analyses including clinical gsgion as a main term and interaction
effect (i.e., network measure x time x clinical gnession) to investigate whether the
observed effects were stronger for those indivislwdio progressed during follow-up.
Similarly, we also investigated the effects of #audl sex on baseline network disruptions and
associations with future hippocampal atrophy byuding tau abnormality or sex as
additional interaction term in the analyses. Welitatevely compared the predictive
performance between global network measures aret pthrkers that are associated with
reduced grey matter volume (i.e., CSF total tau, 8BVkcores, total grey matter volume). For
visualization purposes and to aid in comparisothefpredictive performances we
additionally performed linear regression analysghk subject-specific hippocampal atrophy
slopes as outcome and baseline whole-brain gretenratwork measures or Alzheimer’'s

disease markers as predictor.

A Hippocampal volume = Brptercept + BnmNM

In order to investigate whether altered network sneas in early amyloid accumulating
regions (i.e., anterior cingulate and precuneus)dcpredict the rate and location of future

11



atrophy we repeated analyses as for hippocampamabut with longitudinal local grey
matter volumes for each AAL region as the outcomgklacal network measures of the
anterior cingulate or precuneus, time and thearaattion as the predictors. All local grey
matter volumes and network measures were stanedrdizross regions according to the
mean baseline values of individuals who remainagphitively stable to aid interpretation of
the results. We also performed analyses for hipppedand whole-brain atrophy in control
individuals, who were age-matched to the origimahple using the R package ‘Matching’
(Sekhon, 2008) to study specificity of resultspoeclinical AD. All analyses were adjusted
for age, gender, field strength and total grey eratblume. Statistical analyses were
performed in R (version 3.4.4, 2018-03-15) and &ef(version 2017-08-08) was used to

visualize regional results.
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3. Resaults

3.1. Characteristics of the study sample

In this study we selected all individuals from teNI cohort who had normal cognition and
abnormal CSF levels of amyloid beta 1-42 at basedimd at least 1 year of MRI follow-up
available (n=110). Table 1 shows the baseline dtanatics of the included sample and by
clinical progression. Individuals were on average&/years old and 57 % were female.
During follow-up (median (IQR) 2.2 (2-4) years), @&rticipants (25%) showed clinical
progression (n=21 to prodromal AD and n=7 to AD datia). Progressing participants were
on average older, had more MRI scans over a |diefjew-up period available and had
higher total intracranial volum@<0.05). Additionally, progressing participants tragher
network size and degree (due to higher grey mattieime;p<0.065) and lower gamma and
small-world coefficient values at baseline(.05) and showed a tendency for lower lambda
values compared to those who remained staisi@.065). Over time, the total sample showed
cortical atrophy with fastest rates observed inhippocampusptSE; left hippocampus: -
0.15%0.01, right hippocampus: -0.14+0.01;@&dD.001) (Fig. 1 and Fig. 2A). Individuals who
progressed during follow-up showed faster hippoaraprophy rates compared to those who
remained stable(eraciion<0.001; Fig.2A; see also Supplementary Fig. 1 ampfmentary
Table 1). Additional analyses performed in a sub$@tdividuals who had amyloid PET
available showed highest uptake in the precuneasrapared to controls with normal CSF

amyloid levels (see Supplementary Fig. 2).
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3.2. Prediction of hippocampal atrophy rates

We first investigated whether baseline global nekwoeasures and other AD-markers that
have been related to cognitive decline (MMSE scdZ&¥- total tau, total grey matter
volume) could predict hippocampal atrophy ratesdiae MMSE scores, CSF total tau and
whole-brain grey matter volume did not show assmsa with subject-specific hippocampal
atrophy rates (ap>0.05; Table 2) (see also Figure 2B-D). Lower catingy density and
lower clustering at baseline predicted faster sgibset hippocampal atroph§fSE; both
0.04+0.01p<0.005; Table 2) (see also Fig. 2E-F). Analysehitling disease progression as
an additional interaction term did not show sigrafit interaction effects (g#0.05; see
Supplementary Table 1), suggesting that the adsmtiaf baseline network measures and
subsequent atrophy was similar for individuals wémained stable and those who showed

clinical progression during follow-up.

3.3. Prediction of whole-brain atrophy patterns

We further investigated whether network measurd¢leranterior cingulate and precuneus
could predict the spatiotemporal pattern of atrofuth local clustering and path length
values showed associations with subsequent greginatophy, for specific parts of the

brain (Fig. 3, see Supplementary Fig. 3 for crasgisnal relationships): Lower clustering
values in the anterior cingulate and precuneustf bemispheres were associated with faster
atrophy in mostly temporal regions, including tight superior, middle temporal pole,
hippocampus and left parahippocampal gyruspel.05; Fig. 3A-D). Higher path length
values in the right anterior cingulate and bildteracunei were associated with faster atrophy
in mostly frontal regions, including the right suipe, middle frontal gyrus and left middle

cingulate (allp<0.05; Fig. 3E-H). Grey matter volumes of the aotecingulate or precuneus

14



did not predict future hippocampal atrophy ratdlsa0.05; see Supplementary Table 2),
indicating that network measures contain infornratiwat relate to the rate of hippocampal

atrophy beyond volumetric measures.

3.4. Prediction of atrophy ratesin control individuals

We then performed analyses in cognitively unimphisemyloid/tau normal, age-matched
individuals (control) to investigate whether thesetved effects were specific for preclinical
AD individuals. At baseline, controls had more yeaf educationg<0.05) and slightly

higher grey matter volume<0.065) compared to preclinical AD (see Supplenrgniable

3). We observed slightly higher path length val(ge®.065) and higher gamma, lambda and
small-world coefficient values (gk0.05) for control as compared to preclinical AD,
suggesting that networks were more random in prieeali AD individuals. Over time,

controls also showed cortical atrophy with the gés¢ rate in the left hippocampa8E; -
0.1+0.01;p<0.001; see Supplementary Figure 4), albeit at @nslower rate than preclinical
AD. We found no effects of baseline whole-brainygmeatter network measures or other AD
markers (i.e., CSF total tau, MMSE, total grey mattolume) on the rate of future
hippocampal atrophy in control individuals (see @damentary Table 4). On a regional level,
higher baseline clustering and path length valdi¢lseoanterior cingulate and precuneus were
associated with faster atrophy rates in mostlythband temporal regions, but not the
hippocampus (see Supplementary Fig. 5; see Supptargd-ig. 6 for cross-sectional

relationships).
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3.5. Effect of tau and sex on network disruptions and associationswith

hippocampal atrophy rates

Finally, we investigated the potential influencésam abnormality and sex on our analyses.
Individuals with abnormal levels of total tau (n33@re on average older, had lower levels
of CSF amyloid beta 1-42 and had lower connectidégsity and clustering values at
baseline compared to those with normal levels w{te80) p<0.05; see Supplementary
Table 5). There was no effect of tau abnormalityhgepocampal atrophy rates over time (see
Supplementary Table 6). When including tau abnatgnas additional interaction term with
the predictors for hippocampal atrophy we obsen@dignificant effects, suggesting that
individuals with abnormal and normal tau levelswtsimilar associations between AD
markers or grey matter network measures and hipppabatrophy rates (gfineraction >0.05;

Supplementary Table 6).

Comparing female to male individuals with preclali&D, male individuals were on average
older, more highly educated, had higher total crxaial volume and grey matter volume,
while they showed lower normalized grey matter weducompared to female preclinical AD
individuals 0<0.05; Supplementary Table 7). Male individualgtar showed higher
network size and degree and lower lambda valubasaline. Both sexes had similar
hippocampal atrophy rates over tinpguracion>0.05; Supplementary Table 8). Repeating
analyses for hippocampal atrophy including sexmagdalitional interaction term showed
stronger associations between connectivity demasityclustering values with future
hippocampal atrophy rates in female preclinical ikBividuals as compared to males

(interactionfxSE; both -0.05+£0.03<0.05; Supplementary Table 8).
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4. Discussion

The main result of our study is that individualshapreclinical AD who had low clustering
and high path length values in early amyloid acdatmg regions (i.e., anterior cingulate and
precuneus) showed faster rates of subsequent gthoplstant temporal and frontal regions.
These results suggest that grey matter networkumessnay have use for identifying those

individuals with preclinical AD who will show disea progression, but before overt atrophy.

Individuals with preclinical Alzheimer’s diseaseat increased risk for cognitive decline
(Donohue et al., 2017; Parnetti et al., 2019; Maa.e2013). In our sample 25% of
individuals with preclinical Alzheimer’'s diseaseogressed to mild cognitive impairment or
dementia during follow-up, which is in line withguious estimates (Donohue et al., 2017;
Parnetti et al., 2019; Vos et al., 2013). Furtheenwe observed that individuals with
preclinical Alzheimer’'s disease who later showedical progression had lower gamma
values at baseline than those who remained stapkcating our previous observations in
another clinical cohort (Tijms et al., 2018). Wetlier found that lower grey matter network
measures at baseline predicted future hippocantqugdrey rates, whereas MMSE scores, CSF
total tau or total grey matter volume were not agded with individual rates of hippocampal
atrophy, suggesting that network measures mightoapore subtle neurodegenerative
changes in very early preclinical stages. We didfind associations between network
measures and future hippocampal atrophy ratesgnitbeely-unimpaired age-matched
individuals without amyloid or tau pathology, sugtieg that these effects were specific for
individuals with preclinical AD. A practical implation of our findings is that disrupted grey
matter network measures may have use to identifsetindividuals with preclinical AD who
will show disease progression ligfore the onset of irreversible atrophy and cognitive

impairment. These results warrant further studyuitiple independent datasets to
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investigate to what extent single-subject grey aratetwork measures can be used for e.g.

patient identification in clinical trials.

One unresolved question in AD is the seeming sgaatiporal disconnect between the brain
areas that are prone to aggregate amyloid eatheinlisease, and medial temporal lobe
atrophy in later disease stages. One hypothethatishis might be driven by network
(dis)connections: disruption of local synaptic ftiocing or connectivity due to amyloid
(Koffie et al., 2009; Shankar et al., 2008; Walshle 2002) and subsequent early neuronal
cell death might lead to the loss of neurotrophittdrs and/or absence of stimulation, and
thus atrophy of connected, but still more distagions (Salehi et al., 2006; Seeley et al.,
2009). A previous study showed that group-baseattsiral covariance networks were indeed
predictive for the locations of dementia type sfiectrophy patterns (Seeley et al., 2009).
Our results further extent on that work by showaith our single-subject approach in
preclinical AD that grey matter network measuresany amyloid accumulating regions can
predict the rate of future atrophy and the anatahtaxation inindividual persons. It should

be noted, however, that grey matter networks refiggilarity in grey matter morphology, or
atrophy patterns, which could exist in the abseriairect anatomical connections. Future
studies should further investigate the neurobi@algbasis of these findings in combination
with functional measures, such as functional MREBG/MEG, or anatomical measures such

as DTI to further investigate in what way theseatisregions are connected.

We also found that clustering coefficient and gatigth values were both related to
subsequent atrophy in other distant and differegions of the brain, respectively in temporal
and more frontal regions. This suggests that dlugi@nd path length may reflect different
aspects of neuronal degeneration as captured vathrgatter covariance networks.
Clustering values indicate the interconnectednésgighboring nodes, while path length

measures the average shortest connections betWeades in the entire network (Rubinov
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and Sporns, 2010). Possibly, lower clustering v&alue., higher dissimilarity between
neighboring nodes) reflect asynchronous atrophyah areas that were initially more
similar to each other, while higher path lengthuesl (i.e., higher dissimilarity network-wide)
potentially reflect asynchronous atrophy over there brain. Higher path length values were
associated with faster future atrophy rates in @madantly frontal, but still widespread areas
of the brain. These regions are affected relatilaly in the disease by tau pathology (Braak
& Braak, 1991). It would be of interest for futstudies to investigate how network
alterations are associated with tau PET patterosa@alyses in age-matched individuals
without amyloid or tau pathology, higher clusteramd path length values were most
consistently associated with faster atrophy ratdsointal and temporal regions, which are
more associated with ‘normal’ aging processes [(Efedl., 2014; Fjell et al., 2009). Our
finding thathigher clustering values were associated with fasteipaiaates in these
individuals suggests that neighboring regions shoifiorm neurodegenerative changes,
presumably due to causes other than amyloid aggpegdaken together, our findings
suggest that lower clustering values might indiésBespecific atrophy, while higher path

length values may indicate brain alterations thigihtrreflect ‘normal’ aging.

Our finding that preclinical AD showed globally lewpath length values than controls, but
similar local associations of higher path lengthuga with faster atrophy rates seems
conflicting. Additional post hoc comparisons foc#éb path length values showed that for
preclinical AD, path length values were lower instiptemporal regions compared to
controls (Supplementary Figure 7), which explahesdifferences in global path length
values. Importantly, local path length values did differ between the groups for our a priori
defined target regions (i.e., anterior cingulatd precuneus). These results and our findings

of similar local associations of higher path lengtifues with faster atrophy rates further
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support that local path length values of the aotaiingulate and precuneus may reflect

normal aging processes.

We found no associations between baseline MMSEescQSF total tau or total grey matter
volume with future hippocampal atrophy. Individualgh preclinical AD are still cognitively
normal, and all had very high MMSE scores, ancheditmited variability may explain the
lack of predictive power for hippocampal atrophyrthermore, while changes in CSF total
tau levels might occur relatively early in the dise process around the same time as atrophy
in the hippocampus starts (Bateman et al., 20X2yiq@us studies in individuals with
preclinical AD also did not find direct associatdnetween levels of CSF total tau and
hippocampal (Wang et al., 2015) or entorhinal coaophy (Desikan et al., 2011), which is
in line with our findings. Additionally, the obsesg associations between network measures
and hippocampal atrophy did not depend on tau abaliy, and there were no differences
between individuals with abnormal and normal lewél®tal tau in grey matter network
disruptions (when accounting for age differencBggsibly, this indicates that CSF total tau
levels and grey matter network disruptions mayexftlifferent aspects of neurodegeneration.
In line with this explanation, we previously alsmhd that when predicting clinical
progression in predementia AD grey matter netwoelasures contained predictive
information in addition to CSF total tau levelsj(is et al., 2018). Another previous study
reported higher clustering values for individuaihvabnormal levels of phosphorylated tau
in CSF (Cantero et al., 2018). Possibly, the dszney with our results is that those
individuals had normal amyloid levels, which hasoabeen called ‘suspected non-Alzheimer
disease pathophysiology’ or ‘'SNAP’ (Jack et al.1@0which reflects other disease causes
than AD. Possibly, grey matter networks changeeminhtly depending on the underlying
pathology, and future research should further itigate grey matter network alterations in

SNAP populations. Additionally, baseline total gragitter volume, precuneus and anterior
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cingulate volumes were not associated with futyppdcampal atrophy, suggesting
measurable, gross atrophy had not manifested ybese individuals. These findings are in
line with the notion that whole-brain grey mattetwork measures contain more information
than more simple volumetric measures and suggash#twork measures can predict

hippocampal atrophy before irreversible overt atgoand cognitive impairment manifest.

Finally, we observed that the associations of cotiviey density and clustering values on
hippocampal atrophy were stronger for female aspaoed to male individuals, while there
were no significant differences between femaleraatk individuals in baseline network
measures or hippocampal atrophy rates over timéleWhdate no study has investigated the
effect of sex specifically on grey matter disrupgan AD, this result seems to be in line with
other studies showing that female individuals whaaehhigher levels of amyloid show
relatively faster hippocampal atrophy or cognitilexline as compared to male individuals,
and as such hint at potentially higher susceptybitir AD pathology in women (Buckley et
al., 2018; Koran et al., 2017). Future studies &hturther investigate potential implications
of sex differences for individual patient-based sugas on their e.g. grey matter network

measure profile.

A potential limitation of our study is that althduthis is the largest longitudinal dataset on
preclinical AD available, with individuals followeadp to nine years, the median follow-up
duration was of 2.2 years. Therefore, we canndueecthe possibility that more individuals
would have shown disease progression if they whaige been followed for a longer period
of time. Still, even within this relatively shortadian follow-up duration we were able to
observe a relationship between baseline grey maatarork measures and subsequent
atrophy. Another potential limitation of this stuidythat, while we ensured that scans of the
same field strength were included within subjeiitdd strengths differed between

individuals. To account for this we included fislength as covariate in our analyses, and
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although we cannot exclude that this might haviei@mficed our results, previous studies in
ADNI have shown similar atrophy rate estimateslf& Tesla and 3 Tesla scans (Dicks et al.,
2019; Ho et al., 2010). A strength of this studthis use of our method to construct
individual participant level grey matter networkdereas previous approaches only allowed
to construct one network across a group of indi@isluThis method enabled us to investigate
associations of grey matter network measures anghat rates within individuals.
Furthermore, grey matter networks were reconstduicten structural MRI, which is

routinely acquired in patient care and thereforg ligh potential to translate to daily practice.

5. Conclusion

In conclusion, we showed that lower grey mattewonet measures in early amyloid
accumulating regions predict the rate and anatdrpatéern of future atrophy in cognitively
normal individuals with abnormal amyloid markerfege results suggest that grey matter
network measures are a sensitive measure to detect grey matter atrophy, and so may be
useful as a tool to select individuals for potdmi@vention opportunities in the earliest

stages of AD.
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Tablesand Figures

Table 1. Baseline characteristics of the total sample gndlibical progression.

Total Stable Progression
N 110 82 (75%) 28 (25%)
Female 63 (57%) 51 (62%) 12 (43%)
Age in years 74.871 (6.084) 74.05 (6.357) 77.2758A)*
MMSE 29 (29-30) 29 (29-30) 29 (28-30)
Education in years 16 (14-18) 16 (14-18) 16 (14-18)
CSF A3 1-42 in pg/ml 149.166 (25.393) 150.138 (25.626) 6.321 (24.934)
CSF total tau in pg/ml 73.845 (38.418) 71.063 (38)2 81.989 (35.391)
Abnormal total tau >93 pg/ml 30 (27%) 20 (24%) 36%)
Total intracranial volume in cin 1439.591 (144.808) 1417.037 (145.665) 1505.643.(85)**
Grey matter volume in ¢ 0.601 (0.067) 0.597 (0.069) 0.614 (0.064)
°Normalized grey matter volume in ém 0.419 (0.04) 0.423 (0.038) 0.409 (0.043)
Number of repeated MRI 5 (4-6) 5 (4-5.8) 6 (3.8)7.2
Follow-up time in years 2.2 (2-4) 2.1 (2-4) 4 (Bp*
Size 6753.082 (606.983) 6658.341 (616.29) 7030(836.741)**
Degree 1204.765 (132.373) 1191.003 (129.279) 1B951035.429)t
Connectivity density 17.845 (1.14) 17.896 (1.092) 7.697 (1.279)
Clustering 0.49 (0.022) 0.491 (0.021) 0.485 (0.023)
Path length 1.998 (0.021) 2 (0.021) 1.993 (0.022)
Gamma 1.688 (0.079) 1.698 (0.076) 1.661 (0.084)*
Lambda 1.097 (0.012) 1.098 (0.012) 1.093 (0.012)t
Small-world coefficient 1.539 (0.058) 1.545 (0.055) 1.519 (0.064)*

Data are presented as N (%), mean (SD) or medi2R)(Where appropriate.
®Grey matter volume was normalized to total intracbvolume.
p<0.065; *p<0.05; **p<0.01
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Figure 1. Surface plots of regional atrophy rates over tifrtee color bar indicates standardized betas obregi
atrophy rates and were obtained with linear mixedas. Analyses were adjusted for age, sex, educdteld
strength and total intracranial volume. Subcortstalctures are plotted in ventricular areas aseqipation. L,

left hemisphere; R, right hemisphere.
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Table 2. Effects of baseline AD markers and grey mattewogt measures on cross-sectional and
longitudinal hippocampal volume.

Cross-sectional effects Longitudinal effects
MMSE 0.11+0.07 -0.01+£0.01
CSF total tau 0+0.08 -0.02+0.01
Grey matter volume 0.63+0.07*** 0£0.01
Grey matter network measures
Size 0.04+0.1 -0.02+0.01
Degree -0.11+0.1 0.01+0.01
Connectivity density -0.06+0.06 0.04+0.01**
Clustering -0.04+0.07 0.04+0.01**
Path length 0.1+0.05 -0.01+0.01
Gamma 0.07+0.07 0.02+0.01
Lambda 0.09+0.06 0.02+0.01
Sigma 0.06+0.08 0.02+0.01

Data are presented BSSE. Linear mixed models included the terms forliaseline values of the
respective predictor (e.g. baseline MMSE), follogvtime in years and their interaction (e.g. bagelin
MMSE x time). Cross-sectional effects representtfsociation between AD markers or grey matter
network measures and hippocampal volume when srheld constant and are given by the main
term for the respective predictor. Longitudinaleett describe the association between baseline AD
markers or grey matter network measures on theofatlkange in hippocampal volume over time and
are given by the interaction term for the respecf marker or network measure x time. All
analyses were corrected for age and gender, aritioaddly adjusted for field strength for grey

matter volume, and field strength and baseline gragter volume for grey matter network measures.
**p<0.01; ***p<0.001. P-values are adjusted wittetfalse-discovery rate.
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Figure 2. Association of baseline AD markers and whole-braiy matter network measures with hippocampapataates. Predicted decline in hippocampal volower
time (a) and associations of baseline AD markeid) (@nd whole-brain grey matter network measurds) (gith subject-specific annual hippocampal atyppdtes.
Longitudinal decline in hippocampal volume overdimas estimated with linear mixed models adjusbe@dde, sex, field strength and total grey mattdnme. To aid in
comparison of predictive performances we reportdaedized3+SE for (b-h) as estimated with linear regressioalgses. Linear regression analyses included thestéor
subject-specific annual hippocampal atrophy rasesuicome and baseline values of AD markers (b-dyey matter network measures (e-h) as the raspgutedictor.
Note that standardized betas for (b-h) estimaték hviear regression analyses do not correspotitetbetas in Table 2, which were estimated witedimmixed models.
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Figure 3. Longitudinal effects of baseline precuneal ane@dot cingulate network measures on regional atyapter time. The color bar indicates the effectisgith as t
ratios, which were obtained with linear mixed moalehlyses with longitudinal regional grey mattelunoe as outcome and time, baseline network megswgeclustering
in the left anterior cingulate for panel a) andrtirgeraction (time x network measure) as predi&tdnalyses were adjusted for age, sex, fielcthgtieand total grey matter
volume. Subcortical structures are plotted in vieatar areas as approximation. L, left hemisphBrgjght hemisphere n.s., not significant.
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» Study if grey matter network measures can prediciré atrophy in preclinical AD
* Network measures, but not other AD biomarkers, iptddppocampal atrophy
rates
* Network measures in earlypfaccumulating regions predict the rate and location
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» Grey matter networks detect AD-related pathologitenges before overt atrophy
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