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Abstract 

The development of preventive strategies in early-stage Alzheimer’s disease (AD) requires 

measures that can predict future brain atrophy. Grey matter network measures have such 

potential as they are sensitive to detect very early brain structural alterations that are related to 

amyloid burden in cognitively normal older individuals, and predict clinical progression in 

preclinical AD. Here, we show that within individuals with preclinical AD, grey matter 

network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total 

grey matter volume, CSF total tau and MMSE) do not. Furthermore, in brain areas where 

amyloid is known to start aggregating (i.e., anterior cingulate and precuneus) disrupted 

network measures predict faster subsequent atrophy in other distant areas, mostly involving 

temporal regions, which are associated with AD. When repeating analyses in a sample of age-

matched, cognitively unimpaired individuals with normal levels of amyloid and total tau in 

CSF, we did not find any associations between network measures and hippocampal atrophy, 

indicating that the associations seem specific for individuals with preclinical AD. Our 

findings suggest that disrupted grey matter networks may indicate a treatment opportunity in 

individuals with preclinical AD but before the onset of irreversible overt atrophy and 

cognitive impairment. 

 

Keywords: Alzheimer’s disease; amyloid; atrophy; preclinical; single-subject grey matter 
networks 
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1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder that is the most common cause of 

dementia (Lobo et al., 2000; Plassman et al., 2007). Among the earliest pathological changes 

in AD is aggregation of amyloid beta into plaques (Bateman et al., 2012; Jansen et al., 2015), 

starting in the anterior cingulate cortex and the precuneus (Palmqvist et al., 2017; Villain et 

al., 2012; Villeneuve et al., 2015). Once amyloid has aggregated, it may take up to 10 years 

before atrophy starts (Bateman et al., 2012), which most prominently affects more distant 

brain areas in the medial temporal lobes (Chetelat et al., 2012; Dickerson et al., 2009; 

Whitwell et al., 2007) and is more closely related to cognitive decline (van Rossum et al., 

2012). How amyloid aggregation in one brain area eventually leads to neurodegeneration in 

more distant brain areas remains largely unclear. For development of preventive strategies it 

is important to predict future brain atrophy, as this may aid in identifying which individuals 

with abnormal amyloid but still normal cognition (i.e., preclinical AD; Sperling et al., 2011) 

will show disease progression but before the onset of irreversible atrophy. 

Amyloid aggregation disrupts local synaptic functioning (Koffie et al., 2009; Shankar et al., 

2008; Walsh et al., 2002), potentially leading to disruptions of large-scale brain connectivity 

networks (Buckner et al., 2005; Kuchibhotla et al., 2008; Kurudenkandy et al., 2014; 

Palmqvist et al., 2017; Palop et al., 2007; Sperling et al., 2009). One approach to measure 

brain networks is based on intracortical similarity on structural MRI (i.e., grey matter 

connectivity; Mechelli et al., 2005; Tijms et al., 2012). Intracortical similarity has been 

associated with coordinated growth patterns (Alexander-Bloch et al., 2013b), functional co-

activation (Alexander-Bloch et al., 2013a) and axonal connectivity (Gong et al., 2012). We 

and others have shown that grey matter networks are disrupted in AD (He et al., 2008; Pereira 

et al., 2016; Tijms et al., 2013a; Tijms et al., 2013b; Yao et al., 2010), associated with 
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cognitive impairment (Tijms et al., 2013a; Tijms et al., 2014) and related to faster disease 

progression and cognitive decline in the predementia stage of AD (Dicks et al., 2018; Tijms et 

al., 2018; Verfaillie et al., 2018). Furthermore, disrupted grey matter network organization has 

been associated with aggregating amyloid in cognitively normal individuals (ten Kate et al., 

2018; Tijms et al., 2016) and before overt atrophy is evident (Voevodskaya et al., 2018). 

Taken together, these findings suggest that grey matter network measures might have use to 

identify those individuals who will progress to AD dementia in the earliest, preclinical stages 

of AD and before the onset of irreversible atrophy. In a cross-sectional study, Seeley and 

colleagues previously showed that atrophy patterns in AD dementia patients reflect brain 

regions that show both strong functional co-activation as well as covariation in grey matter 

volume across a group of cognitively normal individuals, suggesting that regions that are 

highly interconnected share vulnerability for neurodegeneration (Seeley et al., 2009). It could 

be hypothesized that grey matter network disruptions due to amyloid aggregation in one 

region of the brain may capture the earliest neurodegenerative changes in preclinical AD and 

predict future atrophy in more distant regions. However, as previous findings were based on 

cross-sectional studies and/or used only one network per group of individuals, it is still 

unclear whether grey matter network disruptions can predict the rate and location of future 

atrophy within individuals. 

In this study, we used a subject-specific approach to construct grey matter networks in 

individuals with preclinical AD and investigated whether altered grey matter network 

measures at baseline could predict the rate and location of future atrophy. We first compared 

the predictive performance for future hippocampal atrophy between whole-brain grey matter 

network measures and other Alzheimer’s disease markers that have been previously 

associated with reduced grey matter volume (i.e., total grey matter volume, CSF total tau 

levels and MMSE scores). We then investigated whether grey matter network measures 
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specifically in regions, where amyloid has previously been shown to start aggregating (i.e., 

anterior cingulate and precuneus; Palmqvist et al., 2017; Villeneuve et al., 2015), could 

predict the rate of subsequent atrophy in other brain areas within single individuals with 

preclinical AD. We also performed analyses in cognitively unimpaired, age-matched 

individuals without evidence of amyloid or tau pathology to study whether results were 

specific for preclinical AD, and additionally investigated the effects of clinical progression, 

tau pathology and sex on network disruptions and their associations with future hippocampal 

atrophy.   
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2. Methods 

2.1. Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment and early Alzheimer’s disease. ADNI was approved by the institutional review 

board of all participating institutions and written informed consent was obtained from all 

participants at each site. 

We selected all participants with preclinical AD from ADNI as defined by normal cognition 

and abnormal amyloid CSF markers at baseline who had at least 1 year of MRI-follow-up 

with a minimum of two structural MRI scans available. Additionally, we included cognitively 

unimpaired, age-matched individuals without amyloid or tau pathology as a control group 

(control; n=71), in order to determine whether results were specific for individuals with 

preclinical AD. Details of clinical diagnostic criteria have been previously described (Aisen et 

al., 2015; Petersen et al., 2010). Briefly, cognitively normal individuals had to have a CDR 

score of 0, an MMSE score between 24 and 30, and no impaired memory as based on 

education-adjusted cut-offs on the delayed recall subtest of the Logical Memory II subscale of 

the Wechsler Memory Scale-Revised (Aisen et al., 2015; Petersen et al., 2010). In total, 110 

preclinical AD individuals were included with a median of 5 (min-max: 2-10) repeated MRI 

scans over a median follow-up time of 2.2 (min-max: 1-9) years, during which time 25% of 

individuals progressed to mild cognitive impairment or dementia due to AD. Diagnoses of 
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mild cognitive impairment or dementia were based on cognitive impairment on the CDR, 

MMSE or logical memory delayed recall (for cut-off scores, see Aisen et al., 2015; Petersen 

et al., 2010). Additionally, dementia patients had to have a clinical diagnosis of probable AD 

according to the NINCDS-ADRDA criteria (McKhann et al., 1984). 

We used CSF measures for amyloid beta 1-42 to determine amyloid abnormality and 

additionally CSF total tau to determine tau abnormality in control individuals. Amyloid beta 

1-42 and total tau were measured with the multiplex xMAP Luminex platform (Luminex 

Corp, Austin, TX) and Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium) immunoassay kit-

based reagents (Shaw et al., 2009). Abnormal amyloid was indicated by levels <192 pg/ml, 

and abnormal tau was indicated by levels of >95 pg/ml (Shaw et al., 2009). 

 

2.2. MRI acquisition & preprocessing 

Image acquisition details and initial preprocessing have been previously described 

(http://adni.loni.usc.edu/methods/mri-analysis/; Jack et al., 2008). We downloaded all 3D T1-

weighted structural scans that were preprocessed with gradient-nonlinearity correction, B1 

inhomogeneity and/or N3 correction and of sufficient quality from the ADNI LONI Image & 

Data Archive (IDA) [date of last access: 29.03.2017; n=534]. Scans that were acquired using 

different field strengths within subjects were excluded. 

First, all images were reoriented with FSL (v5.0.6). Next, to reduce bias in longitudinal 

registration (Reuter et al., 2012), we created a subject-specific median template image with 

Freesurfer (v5.3.0) to which all longitudinal scans were co-registered. We then segmented 

images into grey matter, white matter and cerebrospinal fluid with the Markov Random Fields 

parameter set to 2 and default settings for all other parameters. Co-registration and 
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segmentation was performed with SPM12 running under Matlab (v.7.12.0.635). Finally, using 

the subject specific inversed normalization parameters, the automated anatomical labeling 

atlas (AAL; Tzourio-Mazoyer et al., 2002) was warped from standard space to subject space 

and we calculated regional grey matter volumes for each of the 90 cortical and subcortical 

AAL areas. Total intracranial volume was computed as the sum of grey matter, white matter 

and cerebrospinal fluid volumes in cm3 and grey matter volume was normalized to baseline 

total intracranial volume. All grey matter segmentations and subject-specific atlases were 

visually checked for quality. 

 

2.3. Single-subject grey matter network measures 

Single-subject grey matter networks were reconstructed from subject space grey matter 

segmentations of baseline MRI scans using an automated method 

(https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks), which has been 

described previously (Tijms et al., 2012). Briefly, nodes were defined as small regions of 

interest of 3×3×3 voxel cubes and connected when they showed similar gray matter structure 

as defined by a significant correlation between voxels of two nodes. By defining nodes as 

cubes, both spatial information (i.e., the folding structure of the cortex) and local grey matter 

values were used to assess the correlation between nodes. Because the cortex is a curved 

object, regions of interest could be located at an angle to each other, thus possibly decreasing 

correlations. Therefore, for each pairwise comparison, the seed cube was rotated by an angle 

with multiples of 45° to identify the maximum correlation coefficient. Next we binarized the 

networks using subject-specific thresholds based on empirical null model distributions 

(Noble, 2009) that ensured that all individuals showed a similar chance of 5% false-positive 

connections within the network. A detailed description of the single-subject network 
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extraction technique can be found in (Tijms et al., 2012). For each single-subject grey matter 

network we computed the network size, degree, connectivity density, clustering coefficient 

and path length. The network size is the number of nodes (i.e., cubes) in the network. The 

degree corresponds to the number of connections per node. The connectivity density is the 

ratio of present connections divided by the number of possible connections in the network. 

The clustering coefficient indicates the interconnectedness of neighboring nodes and the path 

length corresponds to the average shortest paths between all nodes in the network (Rubinov 

and Sporns, 2010). To obtain network measures for the precuneus and anterior cingulate we 

averaged measures across nodes that were labeled according to the AAL atlas. Global 

network measures were obtained by averaging measures across all nodes of the network. We 

additionally computed the global normalized clustering coefficient, normalized path length 

(gamma, lambda) and small-world coefficient for the whole brain in order to estimate how 

these network measures deviated from randomly organized networks as follows: Gamma and 

lambda were computed by normalizing clustering coefficient and path length values with the 

respective mean values of five randomized reference networks, which kept the degree 

distribution intact (Maslov and Sneppen, 2002). The small-world coefficient is defined as the 

ratio of gamma to lambda (Humphries and Gurney, 2008). All network measures were 

calculated using functions from the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/; Rubinov and Sporns, 2010) adjusted for large-sized 

networks. 

 

2.4. Statistical analysis 

Cortical atrophy was determined by fitting linear mixed models for each AAL area with 

longitudinal grey matter volume as outcome and time from baseline as predictor. We fitted 
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random slopes for time and intercepts for individuals, and assumed an unstructured 

covariance structure using the R package ‘lme4’ (Bates et al., 2015). We first assessed 

whether global network measures could predict future hippocampal atrophy, as a prominent 

region for AD associated atrophy. Repeated hippocampal volume over time was used as the 

outcome (i.e., hippocampal volume at baseline, hippocampal volume at visit 1, hippocampal 

volume at visit 2 etc.) and baseline network measures (NM), time and their interaction as the 

predictors. 

����������� 
����� =  ���������� + ����� + ��������� + ���×������ × ����

+ (1 + ����|#�$%��&) 

We repeated these analyses including clinical progression as a main term and interaction 

effect (i.e., network measure × time × clinical progression) to investigate whether the 

observed effects were stronger for those individuals who progressed during follow-up. 

Similarly, we also investigated the effects of tau and sex on baseline network disruptions and 

associations with future hippocampal atrophy by including tau abnormality or sex as 

additional interaction term in the analyses. We qualitatively compared the predictive 

performance between global network measures and other markers that are associated with 

reduced grey matter volume (i.e., CSF total tau, MMSE scores, total grey matter volume). For 

visualization purposes and to aid in comparison of the predictive performances we 

additionally performed linear regression analyses with subject-specific hippocampal atrophy 

slopes as outcome and baseline whole-brain grey matter network measures or Alzheimer’s 

disease markers as predictor. 

∆ ����������� 
����� =  ���������� + ����� 

In order to investigate whether altered network measures in early amyloid accumulating 

regions (i.e., anterior cingulate and precuneus) could predict the rate and location of future 
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atrophy we repeated analyses as for hippocampal volume but with longitudinal local grey 

matter volumes for each AAL region as the outcome and local network measures of the 

anterior cingulate or precuneus, time and their interaction as the predictors. All local grey 

matter volumes and network measures were standardized across regions according to the 

mean baseline values of individuals who remained cognitively stable to aid interpretation of 

the results. We also performed analyses for hippocampal and whole-brain atrophy in control 

individuals, who were age-matched to the original sample using the R package ‘Matching’ 

(Sekhon, 2008) to study specificity of results for preclinical AD. All analyses were adjusted 

for age, gender, field strength and total grey matter volume. Statistical analyses were 

performed in R (version 3.4.4, 2018-03-15) and Surf Ice (version 2017-08-08) was used to 

visualize regional results. 
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3. Results 

3.1. Characteristics of the study sample 

In this study we selected all individuals from the ADNI cohort who had normal cognition and 

abnormal CSF levels of amyloid beta 1-42 at baseline and at least 1 year of MRI follow-up 

available (n=110). Table 1 shows the baseline characteristics of the included sample and by 

clinical progression. Individuals were on average 75±6 years old and 57 % were female. 

During follow-up (median (IQR) 2.2 (2-4) years), 28 participants (25%) showed clinical 

progression (n=21 to prodromal AD and n=7 to AD dementia). Progressing participants were 

on average older, had more MRI scans over a longer follow-up period available and had 

higher total intracranial volume (p<0.05). Additionally, progressing participants had higher 

network size and degree (due to higher grey matter volume; p<0.065) and lower gamma and 

small-world coefficient values at baseline (p<0.05) and showed a tendency for lower lambda 

values compared to those who remained stable (p<0.065). Over time, the total sample showed 

cortical atrophy with fastest rates observed in the hippocampus (β±SE; left hippocampus: -

0.15±0.01, right hippocampus: -0.14±0.01; all p<0.001) (Fig. 1 and Fig. 2A). Individuals who 

progressed during follow-up showed faster hippocampal atrophy rates compared to those who 

remained stable (pinteraction<0.001; Fig.2A; see also Supplementary Fig. 1 and Supplementary 

Table 1). Additional analyses performed in a subset of individuals who had amyloid PET 

available showed highest uptake in the precuneus as compared to controls with normal CSF 

amyloid levels (see Supplementary Fig. 2). 
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3.2. Prediction of hippocampal atrophy rates 

We first investigated whether baseline global network measures and other AD-markers that 

have been related to cognitive decline (MMSE scores, CSF total tau, total grey matter 

volume) could predict hippocampal atrophy rates. Baseline MMSE scores, CSF total tau and 

whole-brain grey matter volume did not show associations with subject-specific hippocampal 

atrophy rates (all p>0.05; Table 2) (see also Figure 2B-D). Lower connectivity density and 

lower clustering at baseline predicted faster subsequent hippocampal atrophy (β±SE; both 

0.04±0.01; p<0.005; Table 2) (see also Fig. 2E-F). Analyses including disease progression as 

an additional interaction term did not show significant interaction effects (all p>0.05; see 

Supplementary Table 1), suggesting that the association of baseline network measures and 

subsequent atrophy was similar for individuals who remained stable and those who showed 

clinical progression during follow-up. 

 

3.3. Prediction of whole-brain atrophy patterns 

We further investigated whether network measures in the anterior cingulate and precuneus 

could predict the spatiotemporal pattern of atrophy. Both local clustering and path length 

values showed associations with subsequent grey matter atrophy, for specific parts of the 

brain (Fig. 3, see Supplementary Fig. 3 for cross-sectional relationships): Lower clustering 

values in the anterior cingulate and precuneus of both hemispheres were associated with faster 

atrophy in mostly temporal regions, including the right superior, middle temporal pole, 

hippocampus and left parahippocampal gyrus (all p<0.05; Fig. 3A-D). Higher path length 

values in the right anterior cingulate and bilateral precunei were associated with faster atrophy 

in mostly frontal regions, including the right superior, middle frontal gyrus and left middle 

cingulate (all p<0.05; Fig. 3E-H). Grey matter volumes of the anterior cingulate or precuneus 
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did not predict future hippocampal atrophy rates (all p>0.05; see Supplementary Table 2), 

indicating that network measures contain information that relate to the rate of hippocampal 

atrophy beyond volumetric measures. 

 

3.4. Prediction of atrophy rates in control individuals 

We then performed analyses in cognitively unimpaired, amyloid/tau normal, age-matched 

individuals (control) to investigate whether the observed effects were specific for preclinical 

AD individuals. At baseline, controls had more years of education (p<0.05) and slightly 

higher grey matter volume (p<0.065) compared to preclinical AD (see Supplementary Table 

3). We observed slightly higher path length values (p<0.065) and higher gamma, lambda and 

small-world coefficient values (all p<0.05) for control as compared to preclinical AD, 

suggesting that networks were more random in preclinical AD individuals. Over time, 

controls also showed cortical atrophy with the steepest rate in the left hippocampus (β±SE; -

0.1±0.01; p<0.001; see Supplementary Figure 4), albeit at a much slower rate than preclinical 

AD. We found no effects of baseline whole-brain grey matter network measures or other AD 

markers (i.e., CSF total tau, MMSE, total grey matter volume) on the rate of future 

hippocampal atrophy in control individuals (see Supplementary Table 4). On a regional level, 

higher baseline clustering and path length values of the anterior cingulate and precuneus were 

associated with faster atrophy rates in mostly frontal and temporal regions, but not the 

hippocampus (see Supplementary Fig. 5; see Supplementary Fig. 6 for cross-sectional 

relationships). 
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3.5. Effect of tau and sex on network disruptions and associations with 

hippocampal atrophy rates 

Finally, we investigated the potential influences of tau abnormality and sex on our analyses. 

Individuals with abnormal levels of total tau (n=30) were on average older, had lower levels 

of CSF amyloid beta 1-42 and had lower connectivity density and clustering values at 

baseline compared to those with normal levels of tau (n=80) (p<0.05; see Supplementary 

Table 5). There was no effect of tau abnormality on hippocampal atrophy rates over time (see 

Supplementary Table 6). When including tau abnormality as additional interaction term with 

the predictors for hippocampal atrophy we observed no significant effects, suggesting that 

individuals with abnormal and normal tau levels show similar associations between AD 

markers or grey matter network measures and hippocampal atrophy rates (all pinteraction >0.05; 

Supplementary Table 6). 

Comparing female to male individuals with preclinical AD, male individuals were on average 

older, more highly educated, had higher total intracranial volume and grey matter volume, 

while they showed lower normalized grey matter volume compared to female preclinical AD 

individuals (p<0.05; Supplementary Table 7). Male individuals further showed higher 

network size and degree and lower lambda values at baseline. Both sexes had similar 

hippocampal atrophy rates over time (pinteraction>0.05; Supplementary Table 8). Repeating 

analyses for hippocampal atrophy including sex as an additional interaction term showed 

stronger associations between connectivity density and clustering values with future 

hippocampal atrophy rates in female preclinical AD individuals as compared to males 

(interaction β±SE; both -0.05±0.02, p<0.05; Supplementary Table 8).  
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4. Discussion 

The main result of our study is that individuals with preclinical AD who had low clustering 

and high path length values in early amyloid accumulating regions (i.e., anterior cingulate and 

precuneus) showed faster rates of subsequent atrophy in distant temporal and frontal regions. 

These results suggest that grey matter network measures may have use for identifying those 

individuals with preclinical AD who will show disease progression, but before overt atrophy. 

Individuals with preclinical Alzheimer’s disease are at increased risk for cognitive decline 

(Donohue et al., 2017; Parnetti et al., 2019; Vos et al., 2013). In our sample 25% of 

individuals with preclinical Alzheimer’s disease progressed to mild cognitive impairment or 

dementia during follow-up, which is in line with previous estimates (Donohue et al., 2017; 

Parnetti et al., 2019; Vos et al., 2013). Furthermore, we observed that individuals with 

preclinical Alzheimer’s disease who later showed clinical progression had lower gamma 

values at baseline than those who remained stable, replicating our previous observations in 

another clinical cohort (Tijms et al., 2018). We further found that lower grey matter network 

measures at baseline predicted future hippocampal atrophy rates, whereas MMSE scores, CSF 

total tau or total grey matter volume were not associated with individual rates of hippocampal 

atrophy, suggesting that network measures might capture more subtle neurodegenerative 

changes in very early preclinical stages. We did not find associations between network 

measures and future hippocampal atrophy rates in cognitively-unimpaired age-matched 

individuals without amyloid or tau pathology, suggesting that these effects were specific for 

individuals with preclinical AD. A practical implication of our findings is that disrupted grey 

matter network measures may have use to identify those individuals with preclinical AD who 

will show disease progression but before the onset of irreversible atrophy and cognitive 

impairment. These results warrant further study in multiple independent datasets to 
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investigate to what extent single-subject grey matter network measures can be used for e.g. 

patient identification in clinical trials. 

One unresolved question in AD is the seeming spatiotemporal disconnect between the brain 

areas that are prone to aggregate amyloid early in the disease, and medial temporal lobe 

atrophy in later disease stages. One hypothesis is that this might be driven by network 

(dis)connections: disruption of local synaptic functioning or connectivity due to amyloid 

(Koffie et al., 2009; Shankar et al., 2008; Walsh et al., 2002) and subsequent early neuronal 

cell death might lead to the loss of neurotrophic factors and/or absence of stimulation, and 

thus atrophy of connected, but still more distant regions (Salehi et al., 2006; Seeley et al., 

2009). A previous study showed that group-based structural covariance networks were indeed 

predictive for the locations of dementia type specific atrophy patterns (Seeley et al., 2009). 

Our results further extent on that work by showing with our single-subject approach in 

preclinical AD that grey matter network measures in early amyloid accumulating regions can 

predict the rate of future atrophy and the anatomical location in individual persons. It should 

be noted, however, that grey matter networks reflect similarity in grey matter morphology, or 

atrophy patterns, which could exist in the absence of direct anatomical connections. Future 

studies should further investigate the neurobiological basis of these findings in combination 

with functional measures, such as functional MRI or EEG/MEG, or anatomical measures such 

as DTI to further investigate in what way these distant regions are connected. 

We also found that clustering coefficient and path length values were both related to 

subsequent atrophy in other distant and different regions of the brain, respectively in temporal 

and more frontal regions. This suggests that clustering and path length may reflect different 

aspects of neuronal degeneration as captured with grey matter covariance networks. 

Clustering values indicate the interconnectedness of neighboring nodes, while path length 

measures the average shortest connections between all nodes in the entire network (Rubinov 
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and Sporns, 2010). Possibly, lower clustering values (i.e., higher dissimilarity between 

neighboring nodes) reflect asynchronous atrophy of brain areas that were initially more 

similar to each other, while higher path length values (i.e., higher dissimilarity network-wide) 

potentially reflect asynchronous atrophy over the entire brain. Higher path length values were 

associated with faster future atrophy rates in predominantly frontal, but still widespread areas 

of the brain. These regions are affected relatively late in the disease by tau pathology (Braak 

& Braak, 1991). It would be of interest for future studies to investigate how network 

alterations are associated with tau PET patterns. Our analyses in age-matched individuals 

without amyloid or tau pathology, higher clustering and path length values were most 

consistently associated with faster atrophy rates in frontal and temporal regions, which are 

more associated with ‘normal’ aging processes (Fjell et al., 2014; Fjell et al., 2009). Our 

finding that higher clustering values were associated with faster atrophy rates in these 

individuals suggests that neighboring regions show uniform neurodegenerative changes, 

presumably due to causes other than amyloid aggregation. Taken together, our findings 

suggest that lower clustering values might indicate AD specific atrophy, while higher path 

length values may indicate brain alterations that might reflect ‘normal’ aging. 

Our finding that preclinical AD showed globally lower path length values than controls, but 

similar local associations of higher path length values with faster atrophy rates seems 

conflicting. Additional post hoc comparisons for local path length values showed that for 

preclinical AD, path length values were lower in mostly temporal regions compared to 

controls (Supplementary Figure 7), which explains the differences in global path length 

values. Importantly, local path length values did not differ between the groups for our a priori 

defined target regions (i.e., anterior cingulate and precuneus). These results and our findings 

of similar local associations of higher path length values with faster atrophy rates further 
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support that local path length values of the anterior cingulate and precuneus may reflect 

normal aging processes. 

We found no associations between baseline MMSE scores, CSF total tau or total grey matter 

volume with future hippocampal atrophy. Individuals with preclinical AD are still cognitively 

normal, and all had very high MMSE scores, and so the limited variability may explain the 

lack of predictive power for hippocampal atrophy. Furthermore, while changes in CSF total 

tau levels might occur relatively early in the disease process around the same time as atrophy 

in the hippocampus starts (Bateman et al., 2012), previous studies in individuals with 

preclinical AD also did not find direct associations between levels of CSF total tau and 

hippocampal (Wang et al., 2015) or entorhinal cortex atrophy (Desikan et al., 2011), which is 

in line with our findings. Additionally, the observed associations between network measures 

and hippocampal atrophy did not depend on tau abnormality, and there were no differences 

between individuals with abnormal and normal levels of total tau in grey matter network 

disruptions (when accounting for age differences). Possibly, this indicates that CSF total tau 

levels and grey matter network disruptions may reflect different aspects of neurodegeneration. 

In line with this explanation, we previously also found that when predicting clinical 

progression in predementia AD grey matter network measures contained predictive 

information in addition to CSF total tau levels (Tijms et al., 2018). Another previous study 

reported higher clustering values for individuals with abnormal levels of phosphorylated tau 

in CSF (Cantero et al., 2018). Possibly, the discrepancy with our results is that those 

individuals had normal amyloid levels, which has also been called ‘suspected non-Alzheimer 

disease pathophysiology’ or ‘SNAP’ (Jack et al., 2016) which reflects other disease causes 

than AD. Possibly, grey matter networks changes differently depending on the underlying 

pathology, and future research should further investigate grey matter network alterations in 

SNAP populations. Additionally, baseline total grey matter volume, precuneus and anterior 
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cingulate volumes were not associated with future hippocampal atrophy, suggesting 

measurable, gross atrophy had not manifested yet in these individuals. These findings are in 

line with the notion that whole-brain grey matter network measures contain more information 

than more simple volumetric measures and suggest that network measures can predict 

hippocampal atrophy before irreversible overt atrophy and cognitive impairment manifest. 

Finally, we observed that the associations of connectivity density and clustering values on 

hippocampal atrophy were stronger for female as compared to male individuals, while there 

were no significant differences between female and male individuals in baseline network 

measures or hippocampal atrophy rates over time. While to date no study has investigated the 

effect of sex specifically on grey matter disruptions in AD, this result seems to be in line with 

other studies showing that female individuals who have higher levels of amyloid show 

relatively faster hippocampal atrophy or cognitive decline as compared to male individuals, 

and as such hint at potentially higher susceptibility for AD pathology in women (Buckley et 

al., 2018; Koran et al., 2017). Future studies should further investigate potential implications 

of sex differences for individual patient-based measures on their e.g. grey matter network 

measure profile. 

A potential limitation of our study is that although this is the largest longitudinal dataset on 

preclinical AD available, with individuals followed up to nine years, the median follow-up 

duration was of 2.2 years. Therefore, we cannot exclude the possibility that more individuals 

would have shown disease progression if they would have been followed for a longer period 

of time. Still, even within this relatively short median follow-up duration we were able to 

observe a relationship between baseline grey matter network measures and subsequent 

atrophy. Another potential limitation of this study is that, while we ensured that scans of the 

same field strength were included within subjects, field strengths differed between 

individuals. To account for this we included field strength as covariate in our analyses, and 
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although we cannot exclude that this might have influenced our results, previous studies in 

ADNI have shown similar atrophy rate estimates for 1.5 Tesla and 3 Tesla scans (Dicks et al., 

2019; Ho et al., 2010). A strength of this study is the use of our method to construct 

individual participant level grey matter networks, whereas previous approaches only allowed 

to construct one network across a group of individuals. This method enabled us to investigate 

associations of grey matter network measures and atrophy rates within individuals. 

Furthermore, grey matter networks were reconstructed from structural MRI, which is 

routinely acquired in patient care and therefore has high potential to translate to daily practice. 

5. Conclusion 

In conclusion, we showed that lower grey matter network measures in early amyloid 

accumulating regions predict the rate and anatomical pattern of future atrophy in cognitively 

normal individuals with abnormal amyloid markers. These results suggest that grey matter 

network measures are a sensitive measure to detect future grey matter atrophy, and so may be 

useful as a tool to select individuals for potential prevention opportunities in the earliest 

stages of AD. 
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Tables and Figures 

Table 1. Baseline characteristics of the total sample and by clinical progression. 

  Total Stable Progression 

N 110 82 (75%) 28 (25%) 

Female 63 (57%) 51 (62%) 12 (43%) 

Age in years 74.871 (6.084) 74.05 (6.357) 77.275 (4.487)* 

MMSE 29 (29-30) 29 (29-30) 29 (28-30) 

Education in years 16 (14-18) 16 (14-18) 16 (14-18) 

CSF Aβ 1-42 in pg/ml 149.166 (25.393) 150.138 (25.626) 146.321 (24.934) 

CSF total tau in pg/ml 73.845 (38.418) 71.063 (39.216) 81.989 (35.391) 

Abnormal total tau >93 pg/ml 30 (27%) 20 (24%) 10 (36%) 

Total intracranial volume in cm3 1439.591 (144.808) 1417.037 (145.665) 1505.643 (122.185)** 

Grey matter volume in cm3 0.601 (0.067) 0.597 (0.069) 0.614 (0.064) 
aNormalized grey matter volume in cm3 0.419 (0.04) 0.423 (0.038) 0.409 (0.043) 

Number of repeated MRI 5 (4-6) 5 (4-5.8) 6 (3.8-7.2)* 

Follow-up time in years 2.2 (2-4) 2.1 (2-4) 4 (2.2-6)** 

Size 6753.082 (606.983) 6658.341 (616.29) 7030.536 (490.741)** 

Degree 1204.765 (132.373) 1191.003 (129.279) 1245.069 (135.429)† 

Connectivity density 17.845 (1.14) 17.896 (1.092) 17.697 (1.279) 

Clustering 0.49 (0.022) 0.491 (0.021) 0.485 (0.023) 

Path length 1.998 (0.021) 2 (0.021) 1.993 (0.022) 

Gamma 1.688 (0.079) 1.698 (0.076) 1.661 (0.084)* 

Lambda 1.097 (0.012) 1.098 (0.012) 1.093 (0.012)† 

Small-world coefficient 1.539 (0.058) 1.545 (0.055) 1.519 (0.064)* 

Data are presented as N (%), mean (SD) or median (IQR) where appropriate. 
aGrey matter volume was normalized to total intracranial volume. 

†p<0.065; *p<0.05; **p<0.01 
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Figure 1. Surface plots of regional atrophy rates over time. The color bar indicates standardized betas of regional 
atrophy rates and were obtained with linear mixed models. Analyses were adjusted for age, sex, education, field 
strength and total intracranial volume. Subcortical structures are plotted in ventricular areas as approximation. L, 
left hemisphere; R, right hemisphere. 
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Table 2. Effects of baseline AD markers and grey matter network measures on cross-sectional and 
longitudinal hippocampal volume. 
  Cross-sectional effects Longitudinal effects 
MMSE 0.11±0.07  -0.01±0.01  
CSF total tau 0±0.08  -0.02±0.01  
Grey matter volume 0.63±0.07*** 0±0.01  

 
Grey matter network measures 
Size 0.04±0.1  -0.02±0.01  
Degree -0.11±0.1  0.01±0.01  
Connectivity density -0.06±0.06  0.04±0.01** 
Clustering -0.04±0.07  0.04±0.01** 
Path length 0.1±0.05  -0.01±0.01  
Gamma 0.07±0.07  0.02±0.01  
Lambda 0.09±0.06  0.02±0.01  
Sigma 0.06±0.08  0.02±0.01  
Data are presented as β±SE. Linear mixed models included the terms for the baseline values of the 
respective predictor (e.g. baseline MMSE), follow-up time in years and their interaction (e.g. baseline 
MMSE × time). Cross-sectional effects represent the association between AD markers or grey matter 
network measures and hippocampal volume when time is held constant and are given by the main 
term for the respective predictor. Longitudinal effects describe the association between baseline AD 
markers or grey matter network measures on the rate of change in hippocampal volume over time and 
are given by the interaction term for the respective AD marker or network measure × time. All 
analyses were corrected for age and gender, and additionally adjusted for field strength for grey 
matter volume, and field strength and baseline grey matter volume for grey matter network measures. 
**p<0.01; ***p<0.001. P-values are adjusted with the false-discovery rate. 
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Figure 2. Association of baseline AD markers and whole-brain grey matter network measures with hippocampal atrophy rates. Predicted decline in hippocampal volume over 
time (a) and associations of baseline AD markers (b-d) and whole-brain grey matter network measures (e-h) with subject-specific annual hippocampal atrophy rates. 
Longitudinal decline in hippocampal volume over time was estimated with linear mixed models adjusted for age, sex, field strength and total grey matter volume. To aid in 
comparison of predictive performances we report standardized β±SE for (b-h) as estimated with linear regression analyses. Linear regression analyses included the terms for 
subject-specific annual hippocampal atrophy rates as outcome and baseline values of AD markers (b-d) or grey matter network measures (e-h) as the respective predictor. 
Note that standardized betas for (b-h) estimated with linear regression analyses do not correspond to the betas in Table 2, which were estimated with linear mixed models. 
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Figure 3. Longitudinal effects of baseline precuneal and anterior cingulate network measures on regional atrophy over time. The color bar indicates the effect strength as t 
ratios, which were obtained with linear mixed model analyses with longitudinal regional grey matter volume as outcome and time, baseline network measure (e.g. clustering 
in the left anterior cingulate for panel a) and their interaction (time × network measure) as predictors. Analyses were adjusted for age, sex, field strength and total grey matter 
volume. Subcortical structures are plotted in ventricular areas as approximation. L, left hemisphere; R, right hemisphere n.s., not significant. 
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