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ABSTRACT 22 

Knowledge about the molecular mechanisms driving Alzheimer’s disease (AD) is still limited. In order to learn 23 

more about AD biology, we performed whole transcriptome sequencing on the hippocampus of 20 AD cases 24 

and 10 age- and sex-matched cognitively healthy controls. We observed 2,716 differentially expressed genes, 25 

of which 48% replicated in a second dataset of 84 AD cases and 33 controls. We used an integrative network-26 

based approach for combining transcriptomic and protein-protein interaction (PPI) data to find differentially 27 

expressed gene modules that may reflect key processes in AD biology. A total of 735 differentially expressed 28 

genes were clustered into 33 modules, of which 82% replicated in a second dataset, highlighting the robustness 29 

of this approach. These 27 modules were enriched for signal transduction, transport, response to stimulus and 30 

several organic and cellular metabolic pathways. Ten modules interacted with previously described AD disease 31 

genes. Our study indicates that analyzing RNA-expression data based on annotated gene modules is more 32 

robust than on individual genes. We provide a comprehensive overview of the biological processes involved in 33 

AD, and the detected differentially expressed gene modules may provide a molecular basis for future research 34 

into mechanisms underlying AD.  35 
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1. INTRODUCTION 36 

Alzheimer's Disease (AD) is a neurodegenerative disorder hallmarked by progressive loss of memory, currently 37 

affecting over 40 million individuals worldwide (Prince, et al., 2013,Scheltens, et al., 2016). Previous studies 38 

have shown neurodegenerative changes in the hippocampus 15-20 years before symptom onset (Boyle, et al., 39 

2013,Karran, et al., 2011,Murray, et al., 2011). The main pathological features are amyloid plaques and tau 40 

tangles throughout the brain (Braak and Braak, 1995,Holtzman, et al., 2016,Jellinger, 2008,Selkoe and Hardy, 41 

2016,Thal, et al., 2014,Tomiyama, 2010). Multiple AD associated genetic loci have been identified, although 42 

their pathophysiological mechanisms remain largely unknown (Bekris, et al., 2010,Lambert, et al., 2013,Van 43 

Cauwenberghe, et al., 2016). 44 

 45 

Transcriptomic studies on post-mortem AD brain tissue have been performed to further our understanding of 46 

AD biology (Kavanagh, et al., 2013,Sutherland, et al., 2011). Most of these studies report differentially 47 

expressed genes and pathways in brain tissue of AD cases compared to controls (Ashburner, et al., 2000,Gene 48 

Ontology, 2015,Ogata, et al., 1999). Most of these studies report a decrease in synaptic transmission, 49 

mitochondrial function and cytoskeleton biology. In contrast, an increase is often reported in immune 50 

response, inflammation and apoptosis in AD cases (Liang, et al., 2008,Ray and Zhang, 2010,Sekar, et al., 51 

2015,Twine, et al., 2011). Recently, network-based analysis are utilized to provide more extensive and robust 52 

insights in these data, for example based on protein-protein interaction (PPI) data (Chi, et al., 2016,C. 53 

Humphries, et al., 2015,C.E. Humphries, et al., 2015,Kong, et al., 2015,Kong, et al., 2014). The largest amongst 54 

these studies investigated gene expression (measured with RNA arrays) in more than a thousand brain 55 

samples, spread across 19 regions in 125 individuals (Wang, et al., 2016). By performing gene co-expression 56 

analysis on AD cases of varying severity and non-demented controls they identified dysregulated gene modules 57 

and pathways. The study concluded that some of those originated from early disease stages and might reflect 58 

causal mechanisms, but also highlighted to use of gene modules rather than individual genes. In this study 59 

these modules are based on only co-expression type PPI data. 60 
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 61 

The goal of our study was to compare whole transcriptome sequencing of 20 AD cases with 10 age- and sex-62 

matched cognitively healthy controls. We aim to identify differentially expressed genes and cluster these into 63 

functional gene modules using PPI data. We aim to replicate these differentially expressed genes, gene 64 

modules and functions in a second independent RNA sequencing dataset (van der Brug H, 2017) to determine 65 

the robustness of replication based on gene modules compared to individual genes.  66 
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2. MATERIAL AND METHODS 67 

2.1. Data generation 68 

Hippocampus samples were selected from the Netherlands Brain Bank for 20 AD cases (Braak and Braak, 69 

1995,Mirra, et al., 1991) and matched for age and gender with brains from 10 non-demented cognitively 70 

healthy controls (Table 1). The dentate gyrus and cornu amonis were macro-dissected from the hippocampus 71 

tissue and total RNA was isolated using the manufacturer's protocol (Qiagen AllPrep RNA isolation, Cat No. 72 

80224). Sequencing was performed after poly-A selection and TruSeq library prep at the Human Genomics 73 

facility (HUGE-F, www.glimdna.org) on a HiSeq2000 at 2x50bp. Data was processed per sample using trim-o-74 

matic (v0.33), STAR (v2.3.0) (Bolger, et al., 2014,Dobin, et al., 2013), picard (v1.90) and fastQC (v0.11.3). 75 

Transcript quantification was performed using featurecounts (v1.4.3) against all 57,820 gene features in 76 

GENCODE (version date; 2013-12-05) (Harrow, et al., 2012,Liao, et al., 2014). For replication, dataset GSE95587 77 

was downloaded from the Gene Expression Omnibus (GEO). This dataset contained raw RNA-seq counts of the 78 

fusiform gyrus for 84 AD cases and 33 controls and was processed in parallel to the discovery dataset in all 79 

subsequent steps (van der Brug H, 2017). 80 

 81 

2.2. Data analysis 82 

Counts were normalized using the edgeR (v3.8.6) trimmed mean of M-values (TMM) method to counts per 83 

million (CPM) values, and all low-abundant features were omitted (<1 CPM in 75% of samples). Principal 84 

components (PCs) were calculated using “prcomp” in R, and then plotted to visually identify sample outliers. 85 

Statistical analysis was performed per gene using the exacTest function in edgeR, correcting for age, gender 86 

and the first 2 principal components (McCarthy, et al., 2012,Robinson, et al., 2010). We combined FDR-87 

corrected p-values and log fold changes to calculate a differential expression score; 
−log���(	
�)


�
∗ ������∗�����

�
. 88 

Genes with a DE score ≥ 0.10 are considered differentially expressed genes (DE-genes) and retained for further 89 

analysis. All steps were performed identically and separately for the discovery and replication datasets. 90 
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 91 

2.3. Protein-protein interaction (PPI) clustering 92 

For all DE-genes, we extracted experimental, co-expression and database interactions scored ≥ 500 from 93 

STRING v10 (von Mering, et al., 2003). This network was imported to Cytoscape (v3.4.0) and subjected to the 94 

Markov Clustering Algorithm (MCL) in order to identify gene modules (Morris, et al., 2011,Smoot, et al., 2011). 95 

In short; MCL clusters graphical data to determine groups of genes (modules) with more interactions within the 96 

module than to the rest of the network (Enright, et al., 2002). This clustering method revolves around one main 97 

parameter which determines the module sizes; the inflation factor. We optimized the inflation factor to retain 98 

modules between 10-100 genes to allow for subsequent gene set enrichment analysis (Subramanian, et al., 99 

2005). Each gene can only be assigned to a single module. Modules smaller than 10 genes are excluded. All 100 

steps are performed separately for the discovery and replication dataset. 101 

 102 

2.4. Functional annotation of modules 103 

For each identified gene module, enrichments for gene ontology biological processes (GOBP) were performed 104 

using Webgestalt (v27-1-17) (Gene Ontology, 2001,Ogata, et al., 1999). For GOBP enrichment the 105 

“noRedundant” terms were used. All enrichments were FDR (Benjamini-Hochberg) corrected, using a threshold 106 

of p<0.05 for statistical significance. Only the first three enriched GOBP-terms were extracted for each gene 107 

module. All three GOBP-terms for all gene modules were then pooled, and divided into shared common 108 

ancestor terms, denoted as GOBP-branches (Ashburner, et al., 2000,Carbon, et al., 2009). Therefore, each gene 109 

module can be annotated with three GOBP-terms, and their respective GOBP-branch. Modules from discovery 110 

and replication are divided in to the same GOBP-branches. They can thus be enriched for the same GOBP-term, 111 

or enriched for different GOBP-terms that are closely related by sharing a common ancestor term. 112 

 113 

2.5. Replication of DE genes and modules 114 

DE-genes and gene modules were generated separately for the discovery and replication datasets using the 115 
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exact same methodology. Replication of discovery modules is assessed by the number of overlapping genes 116 

and overlapping GOBP-terms within the replication modules. Different degrees of robustness of overlap 117 

between our data and the replication dataset were classified. Category 1) a gene module overlaps in genes and 118 

in GOBP-term(s) with a gene module from the replication dataset. Category 2) a gene module overlaps in 119 

GOBP-term(s), but not in genes with a replication module. Category 3) a gene module overlaps in genes with a 120 

replication module, but not in GOBP-term(s). When a module from discovery shares a parent GOBP-term with 121 

a replication module this was also considered replication. 122 

 123 

2.6. Mapping known AD genes 124 

We selected a list of 27 known AD risk genes, compiled from known AD GWAS loci and Mendelian causal genes 125 

(Lambert, et al., 2013,Van Cauwenberghe, et al., 2016). All experimental and database interactions between 126 

these 27 AD genes and the genes in discovery modules were extracted from STRING, using a cutoff of ≥500. An 127 

AD gene was considered to interact with a discovery module when it interacted with at least two of the genes 128 

in that module.  129 
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3. RESULTS 130 

3.1. Study sample characteristics 131 

The demographic data of the AD group did not differ from the control group, as shown in Table 1. As expected, 132 

mean brain weight, Braak and CERAD stages and post mortem delay differed significantly between AD cases 133 

and controls. On average 48,772,000 reads were sequenced per sample. All sequencing quality and alignment 134 

QC metrics were similar between groups. Two outliers were identified by principal components, driven by high 135 

expression of TTR. This gene is specifically expressed in the choroid plexus, which was confirmed using routine 136 

staining and both cases were excluded. The replication dataset GSE95587 consisted of fusiform gyrus from 84 137 

AD cases and 33 controls and is described elsewhere (van der Brug H, 2017). 138 

 139 

3.2. Differentially expressed genes and modules 140 

A total of 2,716 genes was differentially expressed in the discovery dataset (DE score ≥ 0.1), as shown in Figure 141 

1. Examination of known interactions between these DE-genes showed that 1,610 DE-genes shared one or 142 

more interaction(s). Using this interaction network, we clustered 735 discovery DE-genes into 33 discovery 143 

gene modules. The expression table and gene-module assignments can be found in supplemental Table 1. In 144 

the replication dataset, 2,490 DE genes were identified. A total of 1,311 DE-genes from the discovery dataset 145 

(48%) replicated in the replication dataset, as shown in Figure 2. From the interaction network of replication 146 

DE-genes, 653 DE-genes were clustered into 37 replication modules. 147 

 148 

3.3. Functional annotation and replication of modules 149 

Gene set enrichment analysis of each module resulted in three significantly enriched gene ontology biological 150 

processes per module in discovery and replication. These enriched GOBP-terms were pooled across all 151 

discovery and replication modules and assigned to eight main GOBP-branches; “Organic substance metabolic 152 

process”, “Signal Transduction”, “Transport”, “Regulation of biological process”, “Cellular metabolic process”, 153 

“Cellular component organization”, “Other metabolic processes” and “Response to stimulus”. The remaining 154 
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terms are grouped under a 9th branch; “Other biological processes”. Table 2 shows the three GOBP-terms for 155 

all discovery modules, their respective branches and category of overlap with the replication modules. Further 156 

details about these branches and overlap can be found in supplementary Figure 2. 157 

 158 

Combined across all 33 differentially expressed gene modules in the discovery dataset, we identified 84 GOBP-159 

terms (at maximum three per gene module, see Table 2). For 19 of the 33 discovery modules, the discovery 160 

module overlaps both in genes and GOBP-term with a replication module (overlap category 1), as shown in 161 

Figure 3. Another eight gene modules overlap a GOBP-term with a replication module, but do not overlap in 162 

genes (overlap category 2).  Five modules overlapped in genes but did not overlap in GOBP-term with the same 163 

replication module (overlap category 3). A single module did not overlap in either genes or GOBP-term with the 164 

replication modules. This result brings the replication results of gene modules with the replication dataset at 165 

73% when based on overlapping genes (category 1 and 3) compared with 82% based on overlapping GOBP-166 

term(s) (category 1 and 2). 167 

 168 

3.4. Interaction with AD genes 169 

Of 27 known AD risk genes, 25 were expressed in the brain tissue that was studied. Three genes (11%) showed 170 

a DE-score of ≥ 0.1; CD2AP (score 0.18), MEF2C (-0.29) and PTK2B (-0.50), none of these were assigned to a 171 

module. Only MEF2C and PTK2B are replicated with a DE-score of -0.39 and -0.13, respectively. Ten AD genes 172 

interacted at least twice with a discovery module; ABCA7, APP, BIN1, CELF1, CLU, HLA-DRB1, HLA-DRB5, MAPT, 173 

PICALM and PTK2B, as shown in Table 2. Six AD genes interacted only once with a discovery module; APOE, 174 

CD2AP, INPP5D, MEF2C, PSEN1 and PSEN2. Nine AD genes did not interact with any discovery module; CASS4, 175 

CD33, CR1, FERMT2, MS4A6A, RIN3, SLC24A4, SORL1 and ZCWPW1.  176 
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4. DISCUSSION 177 

Our study identified 2,716 differentially expressed genes (DE-genes) in hippocampus of 18 AD cases compared 178 

to 10 age- and sex-matched non-demented controls. Of these 2,716 DE-genes, 735 were clustered in 33 gene 179 

modules based on protein-protein interaction data. These 33 gene modules were assigned 84 gene ontology 180 

biological processes (GOBP-terms, at maximum three for each gene module) which together comprise nine 181 

main GOBP-branches. All nine branches were frequently observed in previous AD studies. 182 

 183 

4.1. Replication by gene modules and GOBP-terms is more robust and identifies the most central AD changes 184 

Replication of our results in an independent dataset (GSE95587, fusiform gyrus of 84 AD cases and 33 controls, 185 

(van der Brug H, 2017)) was based on different categories of overlap, reflecting the robustness of these 186 

overlapping processes in the underlying pathophysiology of AD. The finding that the majority of our gene 187 

modules falls into category 1 (n=19) indicates that the combined approach of GOBP annotated and PPI 188 

clustered gene modules identifies the most robust changes in AD gene expression. The gene modules in 189 

category 2 (n=8) and category 3 (n=5) might reflect some variability of gene expression between hippocampus 190 

in our study and fusiform gyrus of AD brains in the replication study.  191 

 The current comparative study supports the idea that the overlapping datasets based on gene modules or 192 

GOBP-term per module is more robust than based on overlapping genes only, as the overlap of all DE-genes 193 

(48%) can be improved by categorization into gene modules (72%), and even more by overlap based on GOBP-194 

terms (82%).  195 

 196 

4.2. GOBP branches represent common AD pathways  197 

The nine main GOBP-branches are previously observed in literature of AD expression studies (Chi, et al., 198 

2016,C.E. Humphries, et al., 2015,Liang, et al., 2008,Ray and Zhang, 2010,Sekar, et al., 2015,Twine, et al., 199 

2011,Wang, et al., 2016). These GOBP-branches can be found in detail, containing all module annotations in 200 

supplemental Table 2. 201 
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GOBP-Branch 1, named “organic substance metabolic process”, consists of metabolic processes such as DNA 202 

replication and repair, RNA translation and post-translational modifications. These metabolic processes 203 

underlie many other biological processes and are dysregulated in AD cases as a response to the various 204 

disease-related changes in the AD hippocampus (C.E. Humphries, et al., 2015,Liang, et al., 2008,Sekar, et al., 205 

2015,Twine, et al., 2011,Wang, et al., 2016). The second GOBP-Branch, called “signal transduction”, consists of 206 

six gene modules that represent the same distinct neurotransmitter signaling pathways in both the discovery 207 

and replication datasets (all six gene module are in overlap category 1). These results indicate a broad 208 

dysfunction of synaptic transmission in the AD brain. These are likely the result of neuronal degeneration in AD 209 

hippocampus and are often found dysregulated in AD literature (Chi, et al., 2016,C.E. Humphries, et al., 210 

2015,Liang, et al., 2008,Ray and Zhang, 2010,Sekar, et al., 2015,Wang, et al., 2016). GOBP-Branch 3, enriched 211 

for “transport”, mostly represents ion transport GOBP-terms, as shown in supplemental Figure 2. Many 212 

modules in this GOBP-branch are involved in energy production, which is often described as dysfunctional in 213 

previous AD studies (C.E. Humphries, et al., 2015,Wang, et al., 2016). These results are likely caused by 214 

neuronal degradation, and thus reduced energy consumption, although activation of glial cells might also 215 

influence this process (Sekar, et al., 2015). GOBP-Branch 4; “regulation of biological processes” is largely 216 

complementary to the other GOBP-branches. It contains modules annotated to both an executive biological 217 

process, e.g. “transmembrane transport” and its regulative process; “regulation of transmembrane transport”. 218 

Six of its seven gene modules fall into overlap category 1, indicating a robust dysfunction in this GOBP-Branch.  219 

These first four GOBP-Branches are the largest and therefore underlie changes in AD pathophysiology that 220 

stand out the most in our study. Of the 33 identified gene modules in our study, 23 are involved in these four 221 

GOBP-Branches. With 17 gene modules in overlap category 1, this indicates that these four GOBP-Branches are 222 

amongst the most robust changes in AD pathophysiology. Given the functions of these central GOBP-Branches 223 

we conclude that organic substance metabolic processes, neurotransmitter signaling, energy transport and 224 

regulation of biological processes are main dysfunctional pathways in AD pathophysiology. 225 
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Of the remaining GOBP-Branch 5 (including  RNA splicing and dephosphorylation) , Branch 6 (incl axon 226 

development) and Branch 7 (other metabolic processes), gene modules overlap mostly  on in  category 2 and 227 

category 3  with the replication dataset. These three GOBP-Branches do not contain any unique gene modules 228 

and are likely not as robustly involved in AD as the other GOBP-Branches. GOBP-Branch 8; “response to 229 

stimulus” is the smallest GOBP-Branch, indicating a response to neurodegeneration resulting in inflammation 230 

and glial cell activation which has often been observed in previous studies (C.E. Humphries, et al., 2015,Sekar, 231 

et al., 2015,Wang, et al., 2016). All three gene modules in GOBP-Branch 8 overlapped in category 1 with the 232 

replication dataset, suggesting that this small GOBP-Branch represents a robust change to AD pathophysiology. 233 

The biological processes of GOBP-Branch 9, including neuromuscular process”, “actin-filament based 234 

movement” and “neuron projection guidance  might also be robust changes in AD, but are represented by only 235 

a small number of gene modules in our data, possibly due to the late stage of the disease in our samples. 236 

 237 

4.3. Interactions with AD genes 238 

Of 27 AD genetic risk factor genes, only three were differentially expressed in our dataset, and two replicated 239 

(MEF2C and PTK2B). Several discovery modules interacted with these AD genes, suggesting a degree of overlap 240 

in biological function. HLA-DRB1, HLA-DRB5, BIN1 and PICALM interact with M9 and might be involved in 241 

endocytosis and/or microtubule-based movement (Baig, et al., 2010,Zhou, et al., 2014). ABCA7 and MAPT 242 

interact with a gene module involved in ion transport and signaling (M2). APP interacts with M1 and is involved 243 

in signal transduction (Cheng, et al., 2014,Cirrito, et al., 2008). PTK2B is differentially expressed in both 244 

discovery and replication and interacts with modules involved in receptor signaling and protein modification 245 

(M7, M10 and M25) (Beecham, et al., 2014,Han, et al., 2017). .CELF1 interacts with genes involved in RNA 246 

processing and protein modification (M8) and CLU interacts genes involved in exocytosis and actin-based 247 

filament organization (M14). These interactions suggest roles of these genes also in later stages of AD, and do 248 

not represent the typical associations of these genes in a causal inference (Lambert, et al., 2013,Van 249 

Cauwenberghe, et al., 2016). 250 
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 251 

 4.4. Limitations of this study 252 

This study holds several limitations. Firstly, PPI networks are comprised of existing databases, which generate 253 

bias to well-known genes and biological processes (Gillis, et al., 2014,Schaefer, et al., 2015,von Mering, et al., 254 

2003). Indeed, of the 2,716 DE-genes identified in discovery, only 1,610 held an interaction in the STRING 255 

database, and some relevant genes might have been excluded as a result.  256 

An important issue in using PPI-data for your network analysis is that there are no clear guidelines on what to 257 

use for the interaction score cutoff, Markov clustering inflation factor threshold, or on the proper functional 258 

annotation of modules. Nevertheless some consensus is emerging and these most commonly used parameters 259 

were also applied in this study. These parameters are: 1. prioritizing or limiting to experimental interactions 260 

types, or not using text-mining based types, since this minimizes bias of the results (Szklarczyk, et al., 2017,von 261 

Mering, et al., 2003); 2. Optimizing the MCL inflation factor to generate modules of 10-100 genes 262 

(Subramanian, et al., 2005,van Dongen and Abreu-Goodger, 2012); 3. Replication, preferably on a functional 263 

annotation level as Gene Ontology (Ashburner, et al., 2000,Gene Ontology, 2015).  264 

To optimize clustering of the gene modules, additional metrics of the generated PPI-network could be included, 265 

for example the direction of effect, or weighting PPI interactions. This study was designed as a cross-sectional 266 

case-control analysis, and many of the observed differences might be caused by neurodegeneration. Our 267 

sample size of 18 cases and 10 controls is not optimal to robustly detect all deviations in AD, and some 268 

genes/GOBP terms might have been missed. 269 

 270 

4.5. Conclusions 271 

Our method provide an comprehensive and complete overview of dysregulation based on GOBPs in AD. We 272 

show that the PPI and MCL clustering approach identifies functional gene modules which replicate in other 273 

datasets. Where individual genes might differ between studies, overall GOBP terms are preserved and can be 274 
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identified in this manner. Replication based on gene module GOBP terms was more robust than based on 275 

individual genes (82% versus 48%).  276 
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FIGURES AND TABLES 509 

Figure 1; flowchart of data analysis. Discovery and replication dataset are analyzed and differentially expressed 510 

genes are determined. A interaction network is constructed for each dataset, which is then clustered in gene 511 

modules. These modules are compared directly on overlapping genes and on enriched gene ontology biological 512 

processes. Interactions of modules identified in discovery with known AD disease genes are also investigated. 513 

Figure 2; Volcano plot of 14,564 analyzed protein-coding genes. Each dot is a gene, those dark-grey pass the 514 

0.1 DE score threshold. Upper score limits (set to maximum of 1) are displayed by dotted lines. The solid line 515 

displays the default FDR corrected ≥0.05 threshold. The Venn diagram displays the number of overlapping DE 516 

genes between the discovery and replication cohorts. 517 

Figure 3; overlap between discovery and replication modules. Each module of discovery is shown horizontally, 518 

the replication modules are vertically. The numbers shown indicate the overlapping number of genes between 519 

two modules. Intersections marked in black indicate modules that share a gene ontology biological process. 520 

The last column indicates the category of overlap for each discovery module (1: overlap in genes and GOBP-521 

term, 2: overlap in GOBP-term, but not in genes, 3: overlap in genes, but not in GOBP-term). 522 

Table 1; Study sample characteristics. An asterisk denotes statistically significant difference compared to 523 

controls. All values represent means with standard deviations unless otherwise indicated. “Cases_QC” indicates 524 

metrics after removing two outlier cases. 525 

Table 2; Overview of all three gene ontology biological processes of the discovery modules. Per module, the 526 

number of genes is shown. For each term, the name and respective GOBP branch is shown. The column 527 

“replication module” indicates which replication module also had this GOBP-term. The last column indicates 528 

interaction of discovery module with known AD disease genes. 529 

Supplementary Figure 1; PC plot of discovery cohort, PC1 vs PC2. 530 

Supplementary Figure 2; Overview tree of Gene Ontology Biological Processes per branch. 531 

Supplemental Table 1; Expression matrix (14,564 genes, including test statistics, PPI statistics and module). 532 

 533 
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Figure 1 534 
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Figure 2 537 

 538 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

Figure 3 539 
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Table 1 541 

  Controls Cases Cases_QC 

Number 10 20 18 

Gender (%Male) 50% 30% 44% 

Age (±SD) 76 ± 12 75 ± 7 75 ± 7 

Braak 1.5 ± 1.3 5.5 ± 0.5* 5.6 ± 0.5* 

amyloid 0.9 ± 1.1 2.9 ± 0.3* 2.9 ± 0.3* 

pmd 551 ± 297 348 ± 108* 329 ± 98* 

pH 6.6 ± 0.3 6.3 ± 0.3* 6.3 ± 0.3* 

brain weight 1319 ± 240 1045 ± 119* 
1035 ± 

113* 

apoe (32/33/44)  4/6/0  1/9/10* 1/8/9* 
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Table 2 

Discovery 

Module 

Number 

of 

Genes 

GOBP 

Branch 
GOBP Term 

Replication 

Module 
AD genes 

M1 90 

2 
G-protein coupled receptor signaling pathway, coupled to cyclic 

nucleotide second messenger 
R1 

APP 2 
phospholipase C-activating G-protein coupled receptor signaling 

pathway 
R1 

2 neuropeptide signaling pathway R1, R7, R35 

M2 52 

9 multicellular organismal signaling R10 

MAPT, ABCA7 3 divalent inorganic cation transport R10 

4 regulation of transmembrane transport R10, R18 

M3 39 

1 DNA-templated transcription, initiation R2 

  8 response to type I interferon - 

8 response to interferon-gamma - 

M4 35 

1 macromolecule deacylation R3 

  1 histone modification R3 

4 regulation of chromatin organization - 

M5 32 

4 potassium ion transport R18 

  4 regulation of transmembrane transport R10, R18 

6 protein oligomerization R18 

M6 31 

4 regulation of small GTPase mediated signal transduction R5 

  2 Ras protein signal transduction R5 

4 regulation of cell morphogenesis - 

M7 30 

2 glutamate receptor signaling pathway R35 

PTK2B 4 modulation of synaptic transmission - 

9 neuromuscular process - 

M8 29 

5 mRNA processing R17 

CELF1 1 peptidyl-threonine modification R15 

5 RNA splicing R17 

M9 27 

3 receptor-mediated endocytosis - 
BIN1, HLA-

DRB1, HLA-

DRB5, PICALM 

9 microtubule-based movement - 

4 regulation of response to biotic stimulus R12 

M10 26 

2 integrin-mediated signaling pathway R4 

  6 extracellular structure organization R4 

9 cell-substrate adhesion - 

M11 21 

1 peptidyl-tyrosine modification R19, R25 

  6 axon development - 

1 ephrin receptor signaling pathway R25 

M12 22 

1 DNA replication R36 

  1 DNA repair R22, R36 

1 DNA recombination R22, R36 

M13 20 
- - - 

  
- - - 
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26 
 

- - - 

M14 19 

3 exocytosis R27 

CLU 9 actin filament-based movement R34 

6 actin filament organization R37 

M15 19 

5 dephosphorylation - 

  5 RNA splicing R17 

9 meiotic cell cycle - 

M16 18 

3 synaptic vesicle cycle - 

  3 exocytosis R27 

3 neurotransmitter transport - 

M17 17 

8 stress-activated protein kinase signaling cascade - 

  4 positive regulation of MAPK cascade - 

4 positive regulation of kinase activity R9 

M18 18 

2 I-kappaB kinase/NF-kappaB signaling R12, R23 

  8 cellular response to biotic stimulus R23 

9 type I interferon production - 

M19 17 

1 translational elongation - 

  1 mitochondrial translation - 

6 macromolecular complex disassembly - 

M20 17 

3 inorganic anion transport R7 

  3 anion transmembrane transport R7 

2 gamma-aminobutyric acid signaling pathway R7 

M21 15 

3 transition metal ion transport R24 

  3 hydrogen transport R18 

7 autophagy - 

M22 15 

6 NADH dehydrogenase complex assembly - 

  6 mitochondrial respiratory chain complex assembly - 

9 mitochondrial respiratory chain complex I biogenesis - 

M23 14 

7 multicellular organism metabolic process R4 

  6 extracellular structure organization R4 

- - - 

M24 13 

7 glycerolipid metabolic process - 

  7 lipid modification - 

5 phospholipid metabolic process - 

M25 13 

1 peptidyl-serine modification 
R15, R19, 

R25 

  - - - 

- - - 

M26 12 

1 
protein ubiquitination involved in ubiquitin-dependent protein 

catabolic process 
- 

  1 protein polyubiquitination - 

7 amine metabolic process R20 

M27 12 
9 neuron projection guidance R34 

  
- - - 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 
 

- - - 

M28 11 

5 organophosphate catabolic process - 

  1 carbohydrate derivative catabolic process R13 

5 aromatic compound catabolic process - 

M29 11 

- - - 

  - - - 

- - - 

M30 10 

5 pyruvate metabolic process R32 

  7 small molecule catabolic process - 

7 carbohydrate catabolic process - 

M31 10 

- - - 

  - - - 

- - - 

M32 10 

3 mitochondrial transport R8 

  5 nucleoside monophosphate metabolic process R13 

3 hydrogen transport R18 

M33 10 

6 chromatin remodeling R3 

  9 protein acylation R3 

- - - 
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Highlights (Mandatory, submitted as separate file, max 85 characters per bullet, 3-5 bullets) 

• 2,716 differentially expressed genes in 18 AD hippocampus compared to 10 controls 

• 33 differentially expressed gene modules identified by PPI network clustering 

• 48% of genes replicate vs 82% of annotated GOBP-terms 

• Gene modules represent specific subsets of enriched biological processes 

 


