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The p75 neurotrophin receptor (p75NTR) is associated with multiple mechanisms linked to Alzheimer’s
disease (AD); hence, modulating its function might confer therapeutic effects. In previous in vitro work,
we developed small molecule p75NTR ligands that inhibited amyloid-b-induced degenerative signaling
and prevented neurite degeneration. In the present study, a prototype p75NTR ligand, LM11A-31, was
administered orally to the Thy-1 hAPPLond/Swe (APPL/S) AD mouse model. LM11A-31 reached brain
concentrations known to inhibit degenerative signaling without toxicity or induction of hyperalgesia. It
prevented deficits in novel object recognition after 2.5 months and, in a separate cohort, deficits in
Y-maze performance after 3 months of treatment. Stereology studies found that the number and size of
basal forebrain cholinergic neurons, which are normal in APPL/S mice, were unaffected. Neuritic
dystrophy, however, was readily apparent in the basal forebrain, hippocampus and cortex, and was
significantly reduced by LM11A-31, with no effect on amyloid levels. These studies reveal that p75NTR is
an important and tractable in vivo drug target for AD, with LM11A-31 representing a novel class of
therapeutic candidates.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Although reduction of amyloid-b (Ab) levels during early disease
stages remains an important goal in the treatment of Alzheimer’s
disease (AD), effective therapies will likely require parallel
approaches for mitigating neurodegeneration (Longo and Massa,
2004). Therapeutic strategies capable of simultaneously affecting
multiple AD-induced neurodegenerative mechanisms are more
likely to be efficacious. This goal could be achieved by upstream
targeting of receptors at the apices of pertinent signaling cascades;
however, few receptors have been identified that are directly linked
to multiple nodes of signaling networks contributing to AD.

Multiple lines of evidence suggest that one such target is the p75
neurotrophin receptor (p75NTR). P75NTR binds pro-nerve growth
y and Neurological Sciences,
4-3172; fax: þ650 498-4579.

tributed equally to this work.

ll rights reserved.
factor (proNGF) and NGF together with co-receptors including Trk
and sortilin (Lee et al., 2001; Teng et al., 2010). It may promote
either degenerative or survival signaling depending on the type and
level of its ligand, the presence or absence of co-receptors, and
other factors (Barker, 2004; Dechant and Barde, 2002; Ibanez and
Simi, 2012; Underwood and Coulson, 2008). Expression of p75NTR

in cell lines allows or enhances Ab-induced toxicity, suggestive of an
enabling role in AD (Perini et al., 2002; Rabizadeh et al., 1994; Yaar
et al., 1997). P75NTR is expressed by neurons known to degenerate in
AD, including basal forebrain cholinergic, entorhinal, hippocampal,
cortical, and locus coeruleus neurons, and its expression is
increased in the AD brain (Bruns and Miller, 2007; Chakravarthy
et al., 2010; Chakravarthy et al., 2012; Dougherty and Milner,
1999; Jacobs and Miller, 1999; Longo and Massa, 2005; Mufson
and Kordower, 1992). The role of NGF signaling through p75NTR

and TrkA in regulating the trophic status of basal forebrain
cholinergic neurons (BFCNs) has been particularly well character-
ized in developing (Greferath et al., 2000; Naumann et al., 2002;
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Yeo et al., 1997), aging (Longo and Massa, 2004; Sofroniew et al.,
2001), and AD brains (Mufson et al., 2008; Schliebs and Arendt,
2011). BFCN loss occurred when Ab oligomers were infused into
the brains of wild-type, but not p75NTR �/�, mice (Sotthibundhu
et al., 2008), and removal of exon III of p75NTR (which deletes its
neurotrophin binding domain) in the Thy-1 hAPPLond/Swe (APPL/S)
mousemodel of AD prevented BFCN neurite degeneration (Knowles
et al., 2009). Given these findings in murine models, it is notable
that in mild cognitive impairment (MCI) and AD, degeneration of
BFCN neurites precedes neuron loss and correlates with loss of
cognitive function (Vana et al., 2011). An increased ratio of p75NTR

to TrkA expression is thought to contribute to degenerative
signaling in AD-affected BFCNs (Diarra et al., 2009; Ginsberg et al.,
2006). The underlying mechanisms likely involve p75NTR modula-
tion of tau phosphorylation (through cdk5 and GSK3b), synaptic
function and spine stability (through PKC/CREB and RhoA), and
neuronal degeneration (through JNK and AKT) (Coulson, 2006;
James et al., 2008; Longo and Massa, 2005; Yang et al., 2008).

Past attempts to apply NGF as an AD therapeutic were limited by
its poor stability and bioavailability, requiring intrathecal admin-
istration, and serious side effects occurred in human subjects,
including weight loss and pain (Eriksdotter Jonhagen et al., 1998).
NGF-induced weight loss and hyperalgesia has been characterized
in murine and other animal models, and signaling through TrkA
expressed on dorsal root ganglion cells is one of several potential
mechanisms contributing to hyperalgesia (Bergmann et al., 1998;
Ugolini et al., 2007). Although NGF can promote survival or enhance
trophic status in BFCN neurons (Hefti and Weiner, 1986; Kromer,
1987; Sofroniew et al., 2001; Tuszynski et al., 1990; Williams et al.,
1986), it may be toxic to other neuron populations, particularly
those expressing high p75NTR to Trk ratios (Friedman, 2000; Roux
and Barker, 2002), which are more likely to be present in the AD
brain (Mufson et al., 1996; Mufson et al., 1997; Mufson et al., 2008).

With regard to these challenges, we identified a collection of
non-peptide small molecules with selected structural and physical
chemical features of the NGF loop 1 domain (known to interact with
p75NTR) by in silico and in vitro screening of small molecule
libraries (Massa et al., 2006). These small molecules were found to
compete with NGF and proNGF binding to p75NTR but not to TrkA
(Massa et al., 2006). They activated AKT and prevented death of
cultured hippocampal neurons; both effects were entirely depen-
dent upon the expression of p75NTR, and trophic effects were
blocked by antibodies directed against the p75NTR extracellular
domain. LM11A-31, a lead small molecule emerging from that work,
is a water-soluble isoleucine derivative containing a morpholino
group (MW 243.3), the structure of which was originally published
byMassa et al. (2006) (Supplementary Fig. 1). In in vitro studies, we
found that LM11A-31 inhibited Ab-induced degeneration in
a p75NTR-dependent manner. LM11A-31 blocked Ab-induced acti-
vation of GSK3b, cdk5, and JNK; it inhibited the ability of Ab to block
activation of AKT and CREB; and it prevented excess tau phos-
phorylation (Yang et al., 2008). Interestingly, in these studies, NGF
failed to prevent Ab-induced neuronal death and activation of
GSK3b and c-Jun. This indicates that LM11A-31 modulates p75NTR

signaling in a mode distinct from that of NGF, and that it represents
a novel approach to targeting p75NTR in AD. In addition, small
molecule, non-peptide compounds such as LM11A-31 have the
potential for enhanced stability and brain bioavailability, making
them amenable to systemic administration at lower doses.

In the present study, we determined whether oral administra-
tion of LM11A-31 would lead to therapeutic brain levels without
promoting the deleterious NGF-related effects of weight loss or
lowered pain threshold. Furthermore, we determined whether
LM11A-31 could prevent cognitive impairment and neuro-
degeneration in the APPL/S mouse model of AD. In this line, amyloid
plaques are first present in the frontal cortex at 3 to 4months of age,
and mature plaques containing dystrophic neurites are present in
the frontal cortex, hippocampus, thalamus, and olfactory region by
5 to 7 months of age (Rockenstein et al., 2001). Synapse loss
parallels the spread of plaques, becoming apparent in the frontal
cortex and hippocampus by 5 to 7 months of age and progressing
thereafter (Rockenstein et al., 2001). During the 6- to 9-month age
period, p75 NTR levels in the hippocampus and basal forebrain of
APPL/S mice are unaltered (T.-V.V. Nguyen and D.A. Simmons,
unpublished data). Based on the established timeline of pathologic
changes in APPL/S mice (Rockenstein et al., 2001), our previous
studies showing that crossing APPL/S mice with p75NTR exon III �/�
mice leads to decreased neuritic degeneration at 5 to 7 months of
age (Knowles et al., 2009), and the likelihood that degeneration of
neurites is an important contributor to cognitive deficits in AD
(Knowles et al., 1999; Vana et al., 2011), we designed a trial to
determine whether treatment of APPL/S mice in early stages of
pathology can reduce disease progression. Reduction of neurite
degeneration and behavioral deficits were defined as two pre-hoc
primary endpoints to assess LM11A-31 therapeutic potential and
hence validation of p75NTR as a therapeutic target.

2. Methods

2.1. Pharmacokinetic/toxicology studies of LM11A-31

Pharmacokinetic and toxicology studies were conducted at
Absorption Systems (Exton PA) with the approval of the Institu-
tional Animal Care and Use Committee or at the Palo Alto
Veteran’s Administration Hospital with approval of the Committee
on Animal Research. CNS bioavailability of LM11A-31 was assessed
in male CD-1 mice (a standardized model for bloodebrain barrier
penetration) and female C57BL/6 mice (background strain for the
APPL/S mice used here). LM11A-31 [2-amino-3-methyl-pentanoic
acid (2-morpholin-4-yl-ethyl)-amide, structure provided in
Supplementary Fig. 1], was custom synthesized by AMRI (Albany,
NY) or Ricerca Biosciences (Painesville, OH) at greater than 97%
purity as assessed by liquid chromatography/mass spectroscopy
(LC-MS) analysis. In addition, all lots of LM11A-31 were tested for
bioactivity (increased hippocampal neuron survival) in cell culture
as characterized in previous work (Massa et al., 2006). Before
dosing, LM11A-31 was dissolved in sterile filtered water and was
administered over a range of doses by oral gavage or intraperito-
neal injection. Before sacrifice, mice were anesthetized with
a lethal dose of 2.8% chloral hydrate, and 300 to 800 mL blood was
collected by cardiac puncture with a heparin or ethyl-
enediaminetetraacetic acid (EDTA)ecoated needle. Blood samples
were centrifuged at 1000� g for 15 minutes, and plasma was
collected and stored at �80 �C before analysis. In some cases,
atenolol (Sigma, St. Louis, MO), a drug with poor CNS penetration,
served as a control for blood contamination of brain tissue and was
administered w1 hour before sacrifice by oral gavage. After blood
was obtained, the whole brain was dissected and placed imme-
diately on dry ice and stored at �80 �C until LC-MS analysis for
LM11A-31 and atenolol. Test accuracy was verified by generating
a standard curve, in which known amounts of LM11A-31 were
added to blank brain extract.

2.2. Open field test

All behavioral analyses were conducted at the Palo Alto
Veteran’s Administration Hospital with approval of the Committee
on Animal Research. A summary of the mice used in this and all
other studies in this manuscript is provided in Supplementary
Table 1. Female C57BL/6 mice underwent open field testing after
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9 days of dosing with 0, 10 or 50 mg/kg/day of LM11A-31. These
studies used a 16 � 16 � 15-inch photobeam activity box system
(San Diego Instruments, San Diego, CA). Ambulatory events were
defined as single beam breaks; fine movements, including behav-
iors such as grooming, were defined as multiple breaks in succes-
sion at the same location. Mice were habituated to the room for at
least 1 hour before testing and then placed in the open field for
10 minutes. The enclosure was thoroughly cleaned with 95%
ethanol and allowed to dry between each trial.

2.3. APPL/S mice

A well-characterized murine model of AD (Rockenstein et al.,
2001), transgenic line 41 (C57BL/6) mice overexpressing human
APP 751 containing the London (V717I) and Swedish (K670M/
N671L) mutations, under the murine Thy1 promoter was kindly
provided by Dr Eliezer Masliah at the University of CaliforniaeSan
Diego and bred in our facilities. Female APPL/S mice and their
wild-type (wt) littermates were randomized to either vehicle or
LM11A-31 treatment. LM11A-31, 50 mg/kg/day dissolved in sterile
water, was administered by oral gavage and vehicle-treated mice
received an equivalent volume per weight of sterile water on the
same schedule. Separate cohorts of mice were treated for each of
two behavioral studies, the Y maze and Novel Object Recognition
tests, as detailed below and in Supplementary Tables 1e3.

2.4. Novel object recognition test

Preliminary novel object recognition (NOR) testing showed
onset of detectable deficits beginning at approximately 5 months of
age. Beginning at 3 to 5 months of age, APPL/S mice and wt litter-
mates were treated for 2.5 months before NOR testing at 5.5 to
7.5 months, as adapted from published protocols (Bevins and
Besheer, 2006; Fernandez et al., 2007). Following test completion,
mice were treated for 2 additional weeks before sacrifice (total
treatment duration, w3 months). Treatment group characteristics
are shown in detail in Supplementary Table 2. Behavioral testing
was observed in real time and recorded with an overhead video
camera. On day 1, mice were placed with cage-mates for 15minutes
in the testing apparatus, a black acrylic enclosure (TAP Plastics)
48 cm long � 38 cmwide � 20 cm high. On day 2, each mouse was
allowed to explore the box alone for 15 minutes. On day 3 (object
exposure), each animal was placed in the box with two identical
objects located in different corners of the box w2 inches from the
walls. The objects were either two small plastic red die or two small
plastic green blocks with distinctive indentations and contours.
Baseline studies showed no innate preference between dice and
blocks (data not shown). Mice were allowed to explore objects until
4 minutes of exploration had accrued; if 4 minutes of exploration
was not reached, they were removed at 30 minutes. Object explo-
ration was defined as contact with the object by the mouse’s nose,
forepaws, or whiskers. A 15-minute object recognition test was
performed 24 hours later. Mice were placed back in the box with
a “familiar” object (FO) that they had explored on day 3 and a novel
object (NO). Objects were wiped clean with 95% ethanol after each
exposure, and allowed to aerate for at least 15 minutes before the
next exposure. The object role (novel vs. familiar) and position (left
vs. right) were balanced within each experimental group. Twomice
(1 APPL/S and 1 wt mouse treated with LM11A-31) that failed to
achieve 30 seconds total exploration time in either the object
exposure phase or the object recognition test were excluded from
analysis. All testing and quantitation was conducted in a blinded
fashion. Object recognition was quantified using a discrimination
index (DI), defined as 100 � [(NO Time � FO Time)/(NO Time þ FO
Time)] (Fernandez et al., 2007).
2.5. Y maze test

APPL/S mice exhibit deficits in the Y maze, a test of spatial
working memory (Galvan et al., 2006). In preliminary Y maze
studies, which followed the completion of NOR testing, it was found
that genotype-related deficits in APPL/S mice were not detectable
until 7 months of age; therefore, APPL/S mice and their wt litter-
mates were treated with LM11A-31 or vehicle beginning at 4 to
6 months of age for approximately 3 months. Y maze testing was
performed at 7 to 9 months of age. Treatment group characteristics
are shown in detail in Supplementary Table 3. Each mouse was
handled for w1 minute daily for 14 days before testing. Immedi-
ately before testing, mice were habituated for at least 1 hour to the
test environment, a small dimly lit room. Mice were placed in
awhite acrylic Y-shaped enclosure, with the 3 arms designated A, B,
or C (arm A,w8� 5� 3 inches; arms B and C, 6� 5� 3 inches; from
TAP Plastics, Mountain View, CA). Sequential arm choices during an
8-minute exploration period by each mouse were recorded by
a blinded observer. Percent spontaneous alternation was calculated
based on the number of times that each arm choice differed from
the previous two as 100 � [number of spontaneous alternations/
(total number of arm choices�2)] (King and Arendash, 2002).

2.6. Immunohistochemistry

After 3 months of treatment, brains of mice tested for NOR (6e8
months of age at the time of sacrifice) and Y-maze (7e9 months at
the time of sacrifice) were harvested for morphological and
biochemical studies. For the entire NOR cohort and half of the
Y-maze cohort, mice were perfused with heparinized saline, and
brainswere cut in the sagittal plane,1mm left of midline. The larger
portion of the brain, containing the BFCNs, was post-fixed in 4%
paraformaldehyde for 24 hours, then cryoprotected in 30% sucrose.
Hippocampal and cortical tissues dissected from the smaller
portion were immediately frozen on dry ice. For the remainder of
the Y-maze cohort, the whole brain was collected as fresh frozen
tissue. Fixed brain tissue was cut into 50-mm coronal sections on
a freezing microtome (Micron HM450, Thermo Scientific, Waltham,
MA). Biotinylated APP antibody 8E5 was obtained from Elan Phar-
maceuticals (South San Francisco, CA). Goat anti-ChAT antibody and
biotinylated rabbit anti-goat secondary antibodies were obtained
from Chemicon (Temecula, CA). Diaminobenzadine (DAB; Sigma, St
Louis, MO) was used in combination with the Vectastain ABC
detection kit (VectorLabs, Burlingame, CA). Biotinylated APP 8E5
antibody (1:1000) and goat anti-ChAT antibody (1:600) were used
in conjunction with an ABC kit and DAB to visualize hippocampal
(Games et al., 1995), BFCN and cortical dystrophic neurites
(Knowles et al., 2009), respectively. Amyloid plaques were labeled
with 1% thioflavin-S stain.

As detailed in themethods that follow (sections 2.7e2.10) and in
Supplementary Table 1, the following studies made use of brain
tissue from mice in the NOR cohort: BFCN stereology, BFCN neurite
quantitation, quantitation of hippocampal dystrophic neurites, and
enzyme-linked immunosorbent assay (ELISA). For studies of
cholinergic cortical dystrophic neurites (section 2.9), brain tissue
from mice in the Y maze and NOR groups was used in order verify
the protective effects of LM11A-31 in separate, independent
cohorts, and to examine the effects of LM11A-31 in an age-stratified
fashion.

2.7. BFCN stereology

Unbiased stereology was performed using the NOR cohort
by an observer blind to experimental groups using Stereo Inves-
tigator software (MicroBrightField, Williston, VT). Under �5
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magnification, the basal forebrain was outlined. The basal fore-
brain was defined as the medial septum, vertical (VDB) and hori-
zontal limbs of the diagonal band of Broca. The horizontal diagonal
bands were included until they became discontinuous with the
VDB. Every 4th section was analyzed (totaling 6e9 sections per
animal) until the anterior commissure crossed the midline,
approximately bregma 1.34 to 0.38 mm based on the mouse brain
atlas of Franklin and Paxinos 3rd edition (Franklin and Paxinos,
2008). Average section thickness was measured before counting
to determine guard zones and dissector height. We verified that
ChAT antibody staining penetrated the full thickness of sections by
examining z-stack images (taken at 0.5-mm intervals) through
representative sections from the basal forebrain region of each
treatment group for uniformity of staining (Melvin and
Sutherland, 2010) (Supplementary Fig. 2). Guard zones were set
between 2 and 2.5 mm, and dissector height was set between 6 and
11 mm. Cells were counted in a 75 � 75-mm counting frame inside
a 100 �100-mm frame using a �40 oil objective. Section thickness
was measured at every 3rd counting site to maintain accurate
measurements. To determine cell size, the Nucleator probe was
used. Every other cell counted was measured with a 4-ray nucle-
ator. Gunderson m ¼ 1 coefficient of error for cell counts was 0.05
or less. Cell size coefficient of error was 0.002 or less. Microscopy
was performed on a Zeiss AxioImager M2 microscope (Carl Zeiss
MicroImaging, Thornwood, NY).

2.8. Quantitation of BFCN neurites

Using the NOR cohort, the length of ChAT-immunostained
neurites projecting directly from BFCNs was evaluated in the VDB,
using methods adapted from previous work (Knowles et al., 2009).
The VDB was defined by the area below the anterior commissure
(anterior part) at the rostro-caudal level of the islands of Calleja and
before the emergence of the horizontal diagonal band, wbregma
0.98 mm (Franklin and Paxinos, 2008); typically this criterion was
met by only one sectionwhen every 8th sectionwas processed. The
length and area of ChAT-immunoreactive dendrites was assessed
with Neurolucida using an automated, unbiased scanning proce-
dure (Meander Scan function) that allows areas of a user-defined
contour to be viewed without overlap. In every 3rd meander
scan, all neurons and the dendrites originating from them were
manually traced while viewing tissue live with a �40 objective and
focusing up and down in the Z-plane. This method allowed accurate
discrimination of the origins of neurites emanating fromBFCNs. The
Branched Structure Analysis function was used to compute the
length, area and branching order of these neurites.

2.9. Quantitation of cholinergic dystrophic neurites in cortex

Brain sections from the NOR and Y-maze mouse cohorts were
processed for ChAT immunostaining. Staining in the motor and
primary somatosensory cortices (between wbregma 1.18 and 0.74
(Franklin and Paxinos, 2008)) was digitally imaged in 3 to 4 sections
per animal while viewing with a �10 objective (3e4 non-
overlapping images per section; area of 900 � 670 mm2 for each
image). Using Neurolucida, the perimeters of the clusters of ChAT-
stained dystrophic neurites were manually traced, and mean
cluster area was computed.

2.10. Quantitation of hippocampal dystrophic neurites

The following study used mice from the NOR cohort. Full-length
APP accumulates in dystrophic neurites. Hence, APP immuno-
staining has been established as a marker for dystrophic neurites
(Games et al., 1995; Knowles et al., 2009). APP-labeled dystrophic
neurites were visualized using a Leica DM IRE2 light/fluorescence
microscope. Percent area occupied by APP-stained dystrophic
neurites in the central region of the hippocampus comprising the
stratum lacunosum-moleculare and stratum radiatum was deter-
mined using ImageProPlus thresholding software (Mediacy-
bernetics, Bethesda, MD). Sections were taken from the entire
hippocampus at an inter-section interval of 400 mm (every 8th
section). One �10 field covering the majority of the hippocampal
area of each section was selected in a blinded fashion for analysis;
between 3 and 7 sections were analyzed per mouse.

2.11. ELISA detection of Ab

The following work used mice from the NOR cohort. Ab levels in
brain extract were determined as previously described with minor
modifications (McGowan et al., 2005). Antibodies 21F12 (Ab37e42)
and biotinylated 3D6 (Ab1e5) were obtained from Elan. Hippo-
campal or cortical tissue was sonicated in RIPA buffer [50 mmol/L
1%Tris-HCl, 150 mmol/L NaCl, 200 mmol/L sodium orthovanadate,
1% NP40 detergent, 10% sodium deoxycholate, 10% SDS, 2X protease
inhibitor cocktail (Roche Mini Tablet)] and centrifuged in a Beck-
man TL100 ultracentrifuge at 45,000 rpm, at 4 �C for 30 minutes.
The supernatant, containing soluble Ab peptide, was retained.
Plates coated with antibody 21F12 (5 mg/mL) were used to capture
Abxe42; the detection antibody was biotinylated 3D6 (2 mg/mL).
Samples were then incubated with avidin-HRP (1:4000 dilution;
Vector Laboratories) and developed using tetramethylbenzidine
(TMB) as substrate (1-step Turbo TMB ELISA; Pierce Biotechnology).
The reaction was terminated by addition of 2N sulfuric acid, and
optical density read at 450 nm. Raw data were converted to ng/g
wet tissue using a standard concentration curve of synthetic Ab.

2.12. NGF administration and hotplate testing

These analyses were conducted at UNC Chapel Hill Neuroscience
Center with the permission of the Institutional Animal Care and Use
Committee (UIACUC). Twenty 5-month-old female C57BL/6 mice
were randomly assigned to 3 groups: vehicle (n¼ 4mice); NGF (n¼
8 mice); and LM11A-31 (n ¼ 8 mice). Vehicle, NGF, and LM11A-31
were administered by intraperitoneal (IP) injection, because NGF
would not be expected to achieve bioactive plasma levels if
administered orally and the hyperalgesia effect of NGF had been
previously established in mice using IP administration (2.5 mg/kg)
(Della Seta et al., 1994). LM11A-31 was administered at a dose of
20 mg/kg with the goal of reaching a 1 hour plasma level similar to
that reached by the 50 mg/kg OG dose used for efficacy studies
(w100 ng/g; Fig. 1). Preliminary studies had demonstrated that an
IP dose of 10 mg/kg resulted in a 1-hour plasma level of w50 ng/g
and a linear dose-to-plasma level response; thus a dose of 20mg/kg
was selected for hotplate testing. Each mouse underwent pre-drug
hotplate testing to ensure that there were no significant baseline
differences between the test groups. Mice were placed on the
center of the Hotplate Analgesia Meter (Columbus Instrument,
Columbus, OH), where the temperature was maintained at 52� �
0.1� C. The latency time until first limb licking (either fore- or hind-
limb) was recorded. 4 days later, each animal group was injected
(IP) once with either vehicle (saline), NGF or LM11-31 and tested on
the hot plate at 15, 30, 60, 180, and 360 minutes after injection. The
latency to first licking (either fore- or hind-limb) was recorded by
blinded observation.

2.13. Statistical analysis

Parametric tests were used as indicated in the figure legends.
Data were determined to be normally distributed using the method



Fig. 1. LM11A-31 exhibits favorable brain bioavailability without toxicity. (A) LM11A-31 concentration was measured in brain and plasma of CD-1 mice after a single 50-mg/kg oral
dose (n ¼ 3 mice per time-point). A peak brain concentration of 262 ng/g of brain tissue, or approximately 1.08 mmol/L, well above the in vitro therapeutic dose of 100 nmol/L (Yang
et al., 2008) occurred approximately 30 minutes post dose. The brain half-life of LM11A-31 was 3 to 4 hours. (B) C57BL/6 mice were treated with LM11A-31 for 2 weeks with 10 mg/
kg/day (n ¼ 3 mice), 50 mg/kg/day (n ¼ 5 mice) or 100 mg/kg/day LM11A-31 (n ¼ 4 mice), then sacrificed 30 to 60 minutes after the last dose to assess peak brain concentration.
Brain concentration in the 50 mg/kg/day group was 463.4 ng/g or approximately 1.9 mmol/L. (C and D) After 9 days of treatment with LM11A-31 at 50 mg/kg/day (n ¼ 9 mice) or
vehicle (n ¼ 5 mice), C57BL/6 mice underwent open field testing, which revealed no differences in ambulatory activity (C) or fine movements (D). (E) No weight changes were seen
in the treatment groups depicted in C and D. Graphs represent the mean � SE.
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of Kolmogorov and Smirnov. p values are indicated in figures or
figure legends.

3. Results

3.1. LM11A-31 exhibits favorable brain bioavailability in the
absence of overt toxicity

Before treating APPL/S mice with LM11A-31, we determined
whether LM11A-31 crosses the blood brain barrier following oral
administration. CNS bioavailability of LM11A-31 was initially
assessed in CD-1mice. A summary of mice used in this and all other
analyses is provided in Supplementary Table 1. A single 50 mg/kg
dose of LM11A-31 was administered by oral gavage and mice were
sacrificed at various time points after dosing. As shown in Fig. 1A,
peak brain concentration occurred approximately 30 minutes post
dose at 262 ng/g, or approximately 1.08 mmol/L; this is above the
dose range (100 nmol/L) that fully protected neurons against Ab
in vitro (Yang et al., 2008). The brain half-life of LM11A-31was 3 to 4
hours. Interestingly, beginning at the 1-hour time point, brain-to-
plasma ratios were >1, a pharmacokinetic profile favorable for CNS
targeting and raising the possibility of active CNS uptake. The brain-
to-plasma ratio of atenololwas less than5%, indicatingno significant
contamination of brain tissue extract by blood (data not shown).

To assess peak brain concentrations of LM11A-31 after chronic
dosing in C57BL/6 mice, LM11A-31 was administered at 10, 50, or
100 mg/kg once per day by oral gavage to C57BL/6 mice for 2 weeks
and mice were sacrificed 30 to 60 minutes after the last dose. Brain
concentration in the 50 mg/kg/day group was 463.4 ng/g or
approximately 1.9 mmol/L (Fig. 1B), indicating that chronic daily
dosing of a given dose (50 mg/kg) led to higher brain levels than
after a single dose. Assuming a stable half-life of w4 hours, the 30-
to 60-minute level of 1.9 mmol/L would likely lead to brain
concentrations greater than or equal to 100 nmol/L for the majority
of the 24-hour interdose interval. The brain-to-plasma ratio of
LM11A-31 in the 50 mg/kg treatment group was found to be 3.1 �
0.9. To screen for toxic effects, mice treated with LM11A-31 at
50 mg/kg once daily for 9 days were tested in an open field,
revealing no behavioral differences (Fig. 1C and D). The weights of
these mice were monitored during the 2-week dosing period,
showing no differences between treatment groups (Fig. 1E).

3.2. Oral administration of LM11A-31 to APPL/S mice prevents
deficits in novel object recognition in APPL/S mice

Given our previous finding of reduced neuritic degeneration
in APPL/S mice expressing mutant p75NTR (p75NTR exon III �/�
� APPL/S) (Knowles et al., 2009), we selected the same APPL/S mouse
model (Rockenstein et al., 2001) to determine whether oral
administration of LM11A-31 would reduce neurite degeneration
and, in addition, behavioral deficits. In NOR testing, wt mice spent
more time exploring a novel object relative to a familiar object,
whereas vehicle-treated APPL/S mice did not recognize objects to
which they had been previously exposed (Fig. 2A). Loss of object
recognition in APPL/S mice was prevented by LM11A-31 treatment
(Fig. 2A). No significant differences in total object exploration time



Fig. 2. LM11A-31 prevents cognitive deficits. (A) LM11A-31 prevented novel object recognition (NOR) deficits in APPL/S mice. Bars depict mean � SE, p values indicated (wt-vehicle,
n ¼ 14 mice; wteLM11A-31, n ¼ 11; APPL/S-vehicle, n ¼ 7; APPL/SLM11A-31, n ¼ 6). (B) Total exploration time in the NOR test did not vary significantly between treatment groups. (C)
LM11A-31 prevented spatial working memory deficits (Y maze testing) in APPL/S mice (wt-vehicle, n ¼ 8 mice; wteLM11A-31, n ¼ 8; APPL/S-vehicle, n ¼ 8; APPL/S-LM11A-31, n ¼ 10).
Statistical significance was determined using ANOVA and post-hoc StudenteNeumaneKeuls testing. (D) The total number of arm entries in the Y maze was similar between
treatment groups.
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were observed across treatment groups (Fig. 2B), although there
was a non-significant reduction in total exploration time related to
genotype (Fig. 2B). Treatment was continued for an additional 2
weeks before sacrifice.

3.3. LM11A-31 prevents deficits in spatial working memory

To further evaluate the range of treatment effects on behavioral
deficits, we investigated the effects of LM11A-31 on spatial working
memory using the Y maze. Vehicle- and LM11A-31etreated wt
mice exhibited no difference in the rate of maze arm entries
without repetition (Fig. 2C), with spontaneous alternation of Y-arm
choice occurring approximately 65% of the time, consistent with
previously reported findings (Galvan et al., 2006). The performance
of vehicle-treated APPL/S mice approached that of chance perfor-
mance (50%, indicated by a dotted line in Fig. 2C), suggesting nearly
complete impairment of spatial working memory. Treatment with
LM11A-31 significantly improved test performance such that it was
indistinguishable from that of wt mice. The total number of arm
entries did not vary significantly between groups (Fig. 2D). A few
days after Y maze testing was complete, mice were sacrificed, and
tissue was processed for histology.

3.4. BFCN size and number are not affected in APPL/S mice treated
with LM11A-31

We previously found that the number and size of BFCNs are
unaffected in APPL/S mice in an age range similar to that used in this
study (Knowles et al., 2009). However, we reasoned that LM11A-31
might enhance BFCN structure (such as increased neuronal size)
even in the absence of a pre-existing deficit, thereby contributing to
enhanced cognitive performance. Also of concern was the possi-
bility that a small molecule ligand targeting p75NTR but not TrkA
might have a deleterious effect on BFCNs (such as atrophy).
Consistent with previous results, unbiased stereological analysis of
ChAT-immunostained brain sections from mice tested for NOR
revealed no impact of the transgene on BFCNs. Moreover, LM11A-31
administration had no effect on BFCN number (Fig. 3A) or size
(Fig. 3B).
3.5. LM11A-31 prevents BFCN neurite degeneration in APPL/S mice

Our prior work showed that the morphological status of BFCN
projection fibers is modulated by p75NTR (Yeo et al., 1997) and that
neuritic atrophy of BFCNs was prominent in APPL/S mice and absent
in APPL/S mice expressing mutant p75NTR (Knowles et al., 2009). We
used manual Neurolucida neurite tracing to analyze neurites pro-
jecting directly from BFCNs in the VDB (Fig. 4A), which contains
a proportionately larger projection to the cortex and hippocampus
than the medial septum (Lamour et al., 1982; Mesulam et al., 1983).
The mean number of neurons examined per mouse was 63 � 17
(SD). Vehicle-treated APPL/S mice exhibited atrophic cholinergic
neurites (Fig. 4A), similar to previous work (Knowles et al., 2009).
Mean dendritic length and area in vehicle-treated APPL/S mice were
significantly reduced compared to vehicle-treated wt mice (Fig. 4B
and C). Similarly, the mean length of 2nd-order branches of ChAT-
stained dendrites was significantly reduced in vehicle-treated
APPL/S compared to wt mice (Fig. 4D). Treatment of APPL/S mice
with LM11A-31 significantly prevented this loss of neurite length
and branching (Fig. 4B and D), and there was a statistically
nonsignificant increase in neurite area with treatment (95% confi-
dence interval �11.6% to 69.2%) (Fig. 4C).



Fig. 3. LM11A-31 does not affect number or size of basal forebrain cholinergic
neurons. Unbiased stereological analysis was performed on choline
acetyltransferase-immunostained basal forebrain sections from wt and APPL/S mice
treated with vehicle or LM11A-31. Consistent with previous studies, APPL/S mice
exhibited no change in cell number (A) or volume (B) relative to wt mice. We also
detected no effect of LM11A-31 administration upon cell volume or number. Statis-
tical significance was determined using ANOVA with post-hoc Studente
NeumaneKeuls testing (wt-vehicle, n ¼ 6 mice; wteLM11A-31, n ¼ 6; APPL/S-vehicle,
n ¼ 6; APPL/S-LM11A-31, n ¼ 6).
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3.6. LM11A-31 reduces cholinergic dystrophic neurites in cortex of
APPL/S mice

Neurons of the basal forebrain provide the main cholinergic
innervation to the cortex (Mesulam et al., 1983) and cholinergic
fibers often become progressively dystrophic in the vicinity of
amyloid plaques (German et al., 2003; Perez et al., 2007), potentially
contributing to functional impairment (Knowles et al., 1999). Given
previous work demonstrating increasing cortical neuritic dystrophy
with age (Perez et al., 2007), we examined the effects of LM11A-31
treatment on cortical cholinergic dystrophic neurites separately in
the NOR cohort (collected at a mean age of w7 months) and the
older Y-maze cohort (collected at amean age ofw8months). In both
groups, dystrophic ChAT-stained neurites were absent in the cortex
of wtmice (not shown) but were readily visible as clusters of dilated
neuritic processes primarily surrounding plaques in vehicle-treated
APPL/S mice, and therewas an apparent decrease in cluster sizewith
LM11A-31 treatment (Fig. 5A). As shown in Fig. 5B, quantitative
analysis showed that the mean dystrophic neurite cluster area was
higher in the 8-month group and LM11A-31 reduced the mean
cluster area, in both groups (Fig. 5B).

3.7. LM11A-31 prevents hippocampal neurite degeneration in APPL/S

mice

In our previous study (Knowles et al., 2009), hippocampal
dystrophic neurites identified with APP antibody 8E5 (an estab-
lished marker of dystrophic neurites that does not label Ab or
amyloid deposits) were diminished in APPL/S mice expressing
mutant p75NTR. We examined hippocampal neuritic dystrophy in
APPL/S mice used in the NOR cohort. In vehicle-treated APPL/S mice,
neuritic dystrophy was prominent, particularly in the vicinity of
Thioflavin Selabeled plaques (Fig. 6A). Treatment of APPL/S mice
with LM11A-31 was associated with a markedly diminished degree
of neuritic dystrophy, although qualitatively plaque size,
morphology, and density appeared to be unaffected (Fig. 6A).
Quantitative studies demonstrated that the area occupied by APP-
immunolabeled dystrophic neurites in the hippocampus was
decreased by approximately 50% in LM11A-31etreated APPL/S mice
(Fig. 6B).

3.8. Neuroprotective effects of LM11A-31 are not attributable to
lower Ab(1e42) levels

Plaque size appeared comparable between APPL/S mice treated
with vehicle and LM11A-31 (Fig. 6A); however, Thioflavin S stains
primarily fibrillar forms of Ab, and may also stain some dystrophic
neurites (Murray et al., 2011). Therefore, to more accurately deter-
mine whether the beneficial effects of LM11A-31 were related to
decreased brain amyloid levels, we quantified soluble Ab(1e42) in
brains of APPL/S mice from the NOR cohort treated with vehicle or
LM11A-31 using ELISA. Hippocampal and cortical Ab(1e42) levels
in vehicle-treated mice were not different from levels in LM11A-
31etreated animals (Fig. 6C and D). Thus, the mechanism by which
LM11A-31 exerts beneficial effects on behavior and morphology is
unlikely to involve a decrease in Ab levels.

3.9. LM11A-31 does not induce hyperalgesia

In human studies, intrathecal administration of NGF for the
treatment of AD was limited by severe pain in treated subjects
(Eriksdotter Jonhagen et al., 1998). In rodent studies, peripheral NGF
administration has been shown to induce weight loss and pain
phenomena with heat hyperalgesia being particularly well charac-
terized (Della Setaet al.,1994;Haoetal., 2000). Todeterminewhether
LM11A-31might also have this effect, vehicle, NGF, or LM11A-31was
administered to wt mice in a single IP injection followed by heat
hyperalgesia testing using a protocol previously established in NGF
studies (Della Seta et al., 1994). As described in the Methods, LM11A-
31 was administered at a dose providing high plasma concentrations
similar to those occurring with the oral gavage dose. Mice treated
with vehicle showed a heat response latency of approximately 20
seconds, whereas those treated with NGF developed significantly
decreased latencies within 30 minutes after treatment, consistent
withNGF inductionof heat hyperalgesia (Fig. 7) as inprevious studies
(Della Seta et al.,1994). Inmarked contrast, the response to LM11A-31
was indistinguishable from that of vehicle, indicating an absence of
LM11A-31 induced heat hyperalgesia.

4. Discussion

The present studies demonstrate that oral administration of
LM11A-31 to APPL/S mice leads to therapeutic brain levels and
achieves the designated endpoints of prevention of NOR and



Fig. 4. LM11A-31 prevents degeneration of basal forebrain cholinergic neurites. (A) Representative photomicrographs of choline acetyltransferase-immunostained basal forebrain
sections. Neurites (such as those indicated with arrowheads) were manually traced through 3 dimensions (x, y, z) while viewing tissue live, using Neurolucida software to derive
quantitative data (only the x and y dimensions are shown). A representative neuron (indicated by a red arrow) in each of the 4 conditions is shown in camera lucida format derived
from Neurolucida tracing. Scale bar ¼ 20 mm. Right, �40 view of cholinergic neurites clearly emanating from a BFCN cell body, allowing accurate tracing from neurite origin. Scale
bar ¼ 10 mm. Treatment of APPL/S mice with LM11A-31 was associated with increased length (B), and branching (D) of cholinergic neurites. There was a nonsignificant increase in
surface area of neurites in APPL/S mice treated with LM11A-31 (C). Statistical significance was determined using ANOVA with post-hoc StudenteNeumaneKeuls testing (wt-vehicle,
n ¼ 15 mice; wteLM11A-31, n ¼ 12; APPL/S-vehicle, n ¼ 6; APPL/S-LM11A-31, n ¼ 8).
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Y-maze behavioral deficits, accompanied by decreased BFCN,
hippocampal and cortical neurite degeneration. At the same time,
LM11A-31 did not affect amyloid levels or cause weight loss and
lowered pain threshold, two effects that had limited the application
of NGF in clinical studies.

The present findings lend substantial support to the hypothesis
that p75NTR enables and/or contributes to Ab-induced degeneration
in AD animal models (Knowles et al., 2009; Sotthibundhu et al.,
2008). Previous in vitro studies showed that LM11A-31 activates
survival signaling (AKT and NFkB) in a p75NTR-dependent fashion
(Massa et al., 2006), that it inhibits Ab-induced degenerative
signaling (including GSK3b, calpain, cdk5, and c-jun activation) as
well as as Ab-induced reduction of AKT and CREB signaling (Yang
et al., 2008). Together with those findings, the present work indi-
cates that LM11A-31 is capable of acting through p75NTR to prevent
progression of AD-related pathology and behavioral deficits in vivo.
Details of in vivo signaling pathways downstream from p75NTR

through which LM11A-31 achieves these effects will be further
elucidated in future studies. Another remaining question is
whether LM11A-31 can reverse neuritic dystrophy and other
degenerative processes once these changes are in more advanced
stages. Ongoing studies in our laboratory are addressing this
question using mice in older age groups.

As is the case for any in vivo drug application, the possibility of
other targets remains. The standard approach for evaluating target
specificity is to determine whether removal of the target, generally
through knock-out models, abolishes the therapeutic effect. A
challenge in the case of p75NTR is that its removal in the AD mouse
model used here leads to the therapeutic effect of reduced Ab-
associated degeneration (Knowles et al., 2009). To date, we have
confirmed that LM11A-31 does not bind to or have any effect on Trk
receptor signaling; it does not promote survival or AKT activation in
p75NTR�/� neurons; and LM11A-31 is functionally entirely blocked
by antibodies directed to the extracellular domain of p75NTR (Massa
et al., 2006). Screening of a CEREP panel of receptors used to
identify alternative drug targets was negative (Yang et al., 2008).
Nevertheless, future studies will continue to evaluate possible
off-target mechanisms, as occurs with already established drugs.

LM11A-31 has also been administered to mice after contusion
spinal cord injury (Tep et al., 2013). In this model, injury induces
increased levels of proNGF, which binds to p75NTR, leading to
oligodendrocyte JNK3 activation, oligodendrocyte death, and spinal
cord demyelination. LM11A-31 inhibited proNGF interaction with
p75NTR, reduced JNK3 activation, reduced oligodendrocyte death,
reduced demyelination, and improved functional outcome. In
p75NTR �/� mice, LM11A-31 failed to inhibit injury-induced JNK3
activation, further supporting a role for p75NTR in mediating its
therapeutic effect.

An important question in the AD model is whether similar
therapeutic effects of LM11A-31 could be achieved with a shorter



Fig. 5. LM11A-31 decreases cholinergic neuritic dystrophy in the cortex. (A) Representative photomicrographs of choline acetyltransferase-stained neurites in the cortex of 7-month
(NOR cohort) or 8-month (Y maze cohort) APPL/S mice treated with vehicle or LM11A-31 are shown. The area of dystrophic neurite clusters increases with age and is reduced by
LM11A-31 treatment. (B) Quantitation shows an age-related increase in dystrophic neurite area as well as the protective effect of LM11A-31 in both age groups (7-month cohort:
APPL/S veh n ¼ 8, mean age 6.9 � 0.2 months; APPL/S LM11A-31 n ¼ 8, mean age 6.9 � 0.1 months. 8-month cohort: APPL/S veh n ¼ 5, mean age 8 � 0.3 months; APPL/S LM11A-31 n ¼
4, mean age 8.1 � 0.5 months).
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treatment interval. In this initial study, we chose a 3-month treat-
ment interval based on the assumption that Ab accumulation and
the resulting structural degeneration, particularly of BFCN
populations, occur over a period of weeks to months in APPL/S mice.
However, cognitive impairment in AD also involves rapid
and sometimes transient alterations in synaptic function super-
imposed on chronic neurodegeneration. Furthermore, neuro-
trophin signaling through p75NTR has been reported to regulate
hippocampal synaptic function, specifically long-term depression
(Rosch et al., 2005; Woo et al., 2005). If LM11A-31 were positively
affecting synaptic function, effects might be seen after shorter
treatment intervals. We previously found that mouse hippocampal
slices treated with oligomeric Ab exhibit deficits in LTP, which were
corrected by administration of LM11A-31 (Yang et al., 2008).
Although the present study focused on the long-term structural
effects of LM11A-31, ongoing studies in our laboratory are exam-
ining potential acute effects of p75NTR small molecule ligands.

A key limitation of the application of NGF in AD has been the
need to target certain neuronal populations (such as BFCNs) while
avoiding NGF-induced toxicity in other populations. Indeed,
a significant body of work has targeted NGF expression to discrete
anatomic areas such as the basal forebrain, using ex vivo and in vivo
gene delivery (Tuszynski, 2007), including a Phase I human clinical
trial for the treatment of AD (Tuszynski et al., 2005). Regional
specificity may not be as critical in the administration of LM11A-
31 given that this and previous work have demonstrated that



Fig. 6. LM11A-31 reduces neuritic dystrophy within the hippocampus without affecting amyloid beta levels. (A) Representative photomicrographs of APP immunolabeling for
dystrophic neurites (left) and Thioflavin S staining for amyloid plaques (right) in hippocampi of APPL/S mice given vehicle or LM11A-31 as indicated. Scale bar ¼ 25 mm. (B) APPL/S

mice treated with LM11A-31 (n ¼ 6) had decreased neuritic dystrophy compared to vehicle-treated mice (n ¼ 5; p value indicated, 2-tailed t-test). (C) APPL/S mice treated with
LM11A-31 (n ¼ 6) and vehicle (n ¼ 6) had similar amounts of Ab(1e42) in hippocampal tissue as determined by ELISA, non-significant by 2-tailed Student t-test. (D) APPL/S mice
treated with LM11A-31 (n ¼ 8) and vehicle (n ¼ 8) had similar amounts of Ab(1e42) in cortical tissue, nonsignificant by 2-tailed student t-test.
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LM11A-31 induces pro-survival signaling through p75NTR but not
Trk (Massa et al., 2006) and, unlike NGF, does not induceweight loss
or hyperalgesia. Moreover, the lack of cognitive impairment in
LM11A-31 treated wt animals and the improved cognitive perfor-
mance in LM11A-31etreated APPL/S mice argue against neurotoxic
effects. As a ligand of the p75NTR receptor with a signaling profile
Fig. 7. NGF, but not LM11A-31, induces hyperalgesia. C57BL/6 mice were treated with
IP injections of vehicle (n ¼ 4), NGF 2.5 mg/kg (n ¼ 8) or LM11A-31 20 mg/kg (n ¼ 8),
then placed on a hotplate at various time points after administration. Latency to paw
licking behavior was significantly decreased at the time points indicated in animals
treated with NGF while no effect was detected in animals treated with vehicle or
LM11A-31. ANOVA with StudenteNewmaneKeuls multiple comparison method:
** p < 0.002; *** p < 0.001.
distinct from that of NGF, LM11A-31 and other small molecules in
its class represent a therapeutic strategy that is separate from, and
not mutually exclusive with, targeted gene delivery of NGF.

Of note, the 50-mg/kg dose of LM11A-31 used in the present
murine study predicts a human equivalent dose of approximately
280 mg using standard body surface area conversion, indicating
a dose range that is quite amenable for drug development. Future
studies will further establish effective doseeresponse ranges.

The present findings support an important role for p75NTR in
AD-related mechanisms, and provide the first report of a small
molecule targeted to p75NTR preventing AD-related cognitive defi-
cits and neurodegeneration. This work provides validation for the
further development of p75NTR ligands as a novel class of target-
specific neuroprotective compounds for the treatment of AD.
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