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Abstract 

Aging is often associated with cognitive and neural decline, but how these factors 

interact is still not fully understood. Recently, functional connectivity, or the degree to 

which brain regions are concurrently active, has provided insight into age-related 

differences. However, functional connectivities during task and rest differ and few 

studies have examined how these relate to a broad range of cognitive functions. The 

present study investigated the effect of age on cognition, whole-brain functional 

connectivity during resting-state and task, and their relationships across the adult 

lifespan. Cognition was broadly assessed using a battery of cognitive assessments and 

mean network characteristics were calculated across the whole brain. Behaviorally, 

increased age was associated with worse recall, executive function, and verbal working 

memory abilities, but better language performance. Neurally, increased age was 

associated with lower overall within- and between-network functional connectivities 

during both rest and task, and these age—connectivity relationships were stronger 

during task performance. Connectivity was also related to cognition, and for all 

participants, these relationships were strongest during rest. Specifically, higher resting-

state between-network functional connectivity was associated with poorer cognition for 

all adults, and poorer language ability among older adults. Collectively, these findings 

demonstrate that while age effects were strongest during task, resting-state functional 

connectivity was most closely tied to cognition. Moreover, these results are theoretically 

consistent with dedifferentiation accounts of cognition and aging and show that less 

differentiated functional connectivities are associated with cognitive costs for both older 

and younger adults.  
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Introduction 

Older adults experience decline in many cognitive functions, including working memory, 

general processing speed (Park et al., 2002; Park and Reuter-Lorenz, 2009), language 

production (Burke and Shafto, 2008; Shafto et al., 2007), and cognitive control (Paxton 

et al., 2008; Schaie, 1996). Concurrent with age-related cognitive decline, older adults 

often experience neural decline and many studies have focused on the patterns of 

correlated activity in the human brain (i.e., functional connectivity). However, previous 

studies have largely focused on either task-based data or resting-state data. The 

difference between task-based and resting-state data may be of particular importance in 

the study of aging as age-related cognitive and neural differences may be more 

pronounced during a task (e.g., Davis et al., 2014). Moreover, aging studies most 

commonly focus on younger and older adults, leaving out middle-aged participants who 

represent a significant portion of the adult lifespan. Lastly, most previous studies have 

focused on brain–behavior relationships within a single cognitive domain (e.g., King et 

al., 2018) or a single network (e.g., Andrews-Hanna et al., 2007), instead of a whole-

brain level across multiple cognitive domains. To address these issues, we examined 

task-based and resting-state data collected from a large sample of individuals from 

across the lifespan and relate these neural measures to a broad assessment of 

cognitive abilities including executive function, recall, working memory, and language.  

Functional connectivity analyses directly measure the temporal correlation of 

functional activations across the brain, and one hypothesis is that this coordinated 

pattern of activations may reflect how functionally specialized brain regions work 

together and interact (Friston, 1994). When brain regions have coordinated patterns of 
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activation, they are said to form functional networks such as the default mode network 

(DMN) or the executive control network (ECN, Power et al., 2011), among others. 

Studies of functional connectivity are often based on “resting-state” fMRI data, which is 

collected while participants are not performing an explicit task (Biswal et al., 1995), and 

reflects a default state of overall brain organization which may be related to task 

performance (Raichle and Gusnard, 2005; Raichle et al., 2001). In such resting-state 

studies older adults often show lower within-network connectivity, and this has primarily 

been demonstrated in the DMN (Betzel et al., 2014; Cao et al., 2014; Geerligs et al., 

2015; Onoda et al., 2012; Siman-Tov et al., 2017; Song et al., 2014; Tomasi and 

Volkow, 2012). These reduced connectivities in network characteristics have often been 

associated with worse behavioral performance across different cognitive domains (King 

et al., 2018; Onoda et al., 2012; Sala-Llonch et al., 2015; Varangis et al., 2019a; Wang 

et al., 2010). 

Although there have been many functional connectivity studies during resting-

state, these typically focus on connectivity within a specific functional network in 

isolation. However, networks often interact with one another, so examining the 

relationships between networks across the whole brain is important in understanding 

overall brain functioning. Yet, only a few studies have examined how functional 

networks work together, and how this relates to age and cognition (Chan et al., 2018; 

Chan et al., 2014; Varangis et al., 2019a). In looking at network segregation, a measure 

that combines both within- and between-network connectivities to provide a measure of 

the degree to which different networks share connections, older age was associated 

with lower network segregation during resting-state (Chan et al., 2014; Varangis et al., 
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2019a). Additionally, less segregated networks, such as the DMN and dorsal attentional 

network (DAN), were associated with worse episodic memory scores (Chan et al., 2014) 

and with worse performance on speed, fluid intelligence, and memory tasks (Varangis 

et al., 2019a). Interestingly, these network segregation–cognition relationships were 

independent of age, indicating that less differentiated brain networks are associated 

with lower cognitive functioning across the lifespan.  

In addition to examining whole-brain network characteristics, the type of data one 

examines is also relevant. Studies have demonstrated that brain connectivity patterns 

are different when engaged in a task, compared to connectivity patterns observed 

during resting-state (e.g., within and between network connectivity, reorganization of 

communication hubs; Cole et al., 2014; Gonzalez-Castillo and Bandettini, 2018). This 

may be particularly relevant for aging research, as older adults often show larger age-

related differences during laboratory-based tasks compared to more naturalistic tasks 

(e.g., Davis et al., 2014). Several studies have looked at task-based connectivity and its 

relationship with age and cognition when participants were engaged in certain tasks. 

They found that increased age was associated with decreased task-based, within-

network connections in the DMN, as well as other networks such as supplementary 

motor regions, and the DAN-somatomotor network (Andrews-Hanna et al., 2007; 

Geerligs et al., 2014; Steffener et al., 2012). Additionally, reduced task-based, within-

network connectivity reported in these studies were associated with poorer cognitive 

performance in domains such as executive function, memory, and processing speed. 

Additionally, studies also reported that older adults showed different between-network 

connectivity patterns compared to younger adults (Geerligs et al., 2014; Varangis et al., 
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2019b). For instance, Varangis et al. (2019b) found that age may particularly affect 

between-network connectivity with the DMN, memory, and salience networks, however 

the age-effects were variable, with older adults showing higher between network 

connectivities between the fronto-parietal network and the salience and memory 

networks, and younger adults showing higher between-network connectivities between 

the DMN and the salience and memory networks. Collectively, these studies suggest 

that the effects of age on functional connectivities were similar between resting-state 

and task performance, such that older adults typically show weaker within-network 

connectivity, and sometimes weaker between-network connectivity.  

In sum, many existing studies have examined age-related differences in 

functional connectivity during rest or a task, consistently finding that older adults 

showed lower within-network connectivity compared to younger adults. Additionally, 

lower within-network connectivity has been associated with worse behavioral 

performance across several different cognitive domains. However, the findings for age-

related differences in between-network connectivity are less consistent. To date, very 

few studies have investigated both resting-state and task-based connectivity and their 

relationship with age and cognition (but see a study comparing adults and children, 

Hutchison and Morton, 2015). Moreover, the previous literature examining the 

relationships between age, cognition, and the brain has primarily relied on the 

differences between younger and older adults, in which significant differences in 

cognitive and brain functions are typical. Few studies have included a middle-aged 

population and investigated age-related differences in cognitive and brain functions 

across the lifespan (Chan et al., 2014; Varangis et al., 2019a). Therefore, examining 
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differences between resting-state and task-based functional connectivity within-subjects 

across the lifespan is essential to further our understanding of how brain–behavior 

relations differ with age, as well as with task demand. Additionally, individual differences 

in cognition may also play a role in these relationships, highlighting the importance of 

considering such factors. The current study used a whole-brain network approach to 

investigate the effect of age on resting-state and task-based functional connectivity and 

its relationship with cognition across the adult lifespan (i.e., 20-75 years). Additionally, 

given the potential effect of education and socioeconomic status on cognition and 

neurodevelopment (Braveman and Gottlieb, 2014; Chan et al., 2018; Hackman et al., 

2010; Hurst et al., 2013; Wang and Geng, 2019), education was controlled for in all 

analyses. We predicted that increased age would be associated with lower within-

network connectivity. However, given the inconsistent literature on age-related 

differences in between-network connectivity, either a positive or negative relationship 

between age and between-network connectivity could be possible. We were also 

interested in the relationship between these network measures and cognition to better 

understand if age-related differences in these metrics are compensatory or reflect 

decreased neural efficiency. For instance, higher between-network connectivity or lower 

within-network connectivity in older adults that relates to worse cognitive performance 

would reflect dedifferentiation, in which increases in functional connectivity are 

interpreted as decreases in neural efficiency (Ghisletta and Lindenberger, 2003; Li et al., 

2001). However, higher between-network connectivity or lower within-network 

connectivity in older adults that relates to enhanced behavioral performance can be 

interpreted as a potential compensatory mechanism for weakened efficiency (Cabeza 
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and Dennis, 2012). Furthermore, given the increased cognitive demands of engaging in 

a task, we expected task-based connectivity to be more sensitive to age and cognitive 

performance compared to resting-state connectivity (i.e., Compensation-Related 

Utilization of Neural Circuits Hypothesis, CRUNCH, Reuter-Lorenz and Cappell, 2008). 

2. Method 

2.1 Participants 

Ninety-one adults (ages: 20-75 years, mean age = 47.4 years, sd = 17.4 years, 

54 female) participated in the experiment. All participants were community-dwelling, 

right-handed, native English speakers who were not fluent in a second language. All 

participants had normal or corrected-to-normal vision, and reported no history of 

neurological, psychological, or major medical conditions (Christensen et al., 1992).  

Prior to the MRI session, each participant completed a battery of psychometric 

and neuropsychological tests to assess basic cognitive functions such as speed, 

executive function, memory, and language. First, participants completed the Mini-Mental 

State Exam to screen for mild cognitive impairment or dementia (MMSE, Folstein et al., 

1975), and the Geriatric Depression Score (GDS) short version to screen for 

depression1 (Guerin et al., 2018; Sheikh and Yesavage, 1986). Participants also 

completed several cognitive assessments that were either standardized or adapted from 

standardized neuropsychological assessments including WAIS-III vocabulary to assess 

vocabulary size (starting from item 13 “Remorse”), forward and backward digit span to 

                                                           
1 While the GDS was designed for use in an older adult population, studies have shown that it has good 
diagnostic sensitivity and specificity for adults aged 18 and older, particularly when using the short-form 
which is what we incorporated here (Guerin, Copersino, Schretlen, 2018).   
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assess working memory, and a computerized adaptation of the digit-symbol subtests to 

assess processing speed (Wechsler et al., 1997); simple (i.e., respond to a black 

square as quickly as possible) and choice (i.e., identify the direction of left/right arrows 

as quickly as possible) reaction time tests to assess processing speed; a computerized 

Stroop task to assess executive function (i.e., make a response to the color of the ink 

when it is consistent/inconsistent with the word meaning, MacLeod, 1991; Stroop, 1935); 

the California Verbal Learning Test to assess immediate and delayed memory (i.e., one 

learning trial, 16 word list in 4 categories, one immediate recall assessment, one 

delayed recall assessment, and one delayed recognition, Woods et al., 2006); a reading 

span task to assess verbal working memory (Conway et al., 2005); phonemic (F, A, S) 

and categorical (animals) verbal fluency to assess speech fluency (Patterson, 2011), 

and the author recognition test and a comparative reading habit questionnaire  to 

assess reading habits (Acheson et al., 2008). During the MRI session, participants 

completed a functional neuroimaging picture naming task to assess language 

production, which is reported elsewhere (Diaz et al., under review). In this task, 

participants were presented with pictures of objects and were asked to overtly name 

each picture as quickly and accurately as possible. Detailed descriptions of each of 

these above-mentioned tasks can be found in the Supplementary Materials. 

Demographic characteristics and assessment scores are reported in Table 1. All 

participants gave written, informed consent, and all procedures were approved by the 

Institutional Review Board at The Pennsylvania State University. 
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Table 1 Participant demographics, neuropsychological testing scores, and its correlation with 

age 

 

Demographic information Mean (SD) 

N 91 

Age (Years) 47.4 (17.4) 

Gender (M/F) 37/54 

Participant characteristics Mean (SD) Age regression 

Education (Years) 16.9 (2.5) 0.24* 

MMSE (Score out of 30) 28.9 (1.0) -0.19 

Depression (GDS) (Score out of 15) 0.8 (1.2) -0.13 

Cognitive Assessments   

Simple RT (Box, ms) 297.2 (83.5) 0.18 

Choice RT (Arrow, ms) 323.8 (55.7) 0.56*** 

Recognition RT (ms) 1262.0 (301.2) 0.29** 

Digit Symbol RT (ms) 1622.2 (385.6) 0.67*** 

Digit Span Forward (Score out of 16) 11.4 (2.2) -0.21* 

Digit Span Backward (Score out of 16) 7.3 (2.1)  -0.25* 

Stroop Effect RT (Incongruent-Congruent, ms) 69.3 (85.0) 0.38*** 

Verbal Working Memory (Score out of 1) 0.4 (0.2) -0.37*** 

Immediate Recall (Score out of 16) 11.0 (2.6) -0.25* 

Delayed Recall (Score out of 16) 9.5 (3.1) -0.26* 

Verbal Fluency (Number of correct responses) † 68.0 (14.7) -0.16 

Phonemic Fluency (F, A, S) 44.6 (11.6) -0.05 

Category Fluency (Animal) 23.4 (5.4) -0.08** 

WAIS Vocabulary (Score out of 66) 54.5 (6.6) 0.09 

Author Recognition Test (ART)† (Score out of 76) 24.7 (14.6) 0.52*** 

Comparative Reading (Score out of 35) 24.8 (5.1) 0.07 

The second column displays means, with standard deviation in parentheses. The numbers 

represent the raw scores of each test. The third column indicates its correlation coefficient with 

age. *Denotes a statistically significant difference, * p < .05; ** p < .01; *** p < .001. †ART scores 

are calculated as the number of correct identifications – the number of incorrect responses.   
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2.2 Acquisition of MRI data 

MRI scanning was completed on a 3T Siemens Prisma Fit MRI scanner with a 

64-channel head coil. Sagittal T1 weighted localizer images were collected and used to 

define a volume for data collection, higher-order shimming, and alignment to the 

anterior commissure and posterior commissure (AC-PC). Prior to the resting-state scan, 

T1 weighted anatomical images were collected using a magnetization-prepared rapid 

acquisition gradient echo (MP-RAGE) sequence (repetition time [TR] = 2300 ms; echo 

time [TE] = 2.28 ms; Inversion Time [TI] = 900 ms; flip angle = 8°; echo spacing = 7 ms; 

acceleration factor = 2; field of view [FOV] = 256 mm2; voxel size = 1 × 1 × 1 mm; 160 

contiguous slices). 

Functional resting-state images were collected using an echoplanar imaging (EPI) 

sequence (TR = 2000 ms; TE = 25.0 ms; flip angle = 90°; echo spacing = 0.49 ms; FOV 

= 240 mm2; voxel size = 3 × 3 × 4 mm; 33 contiguous slices, parallel to the AC-PC; 

phase encoding = anterior to posterior, fat saturation = on; slice acquisition = sequential, 

descending; volumes = 180; run duration = ~ 6 minutes). Two additional volumes were 

acquired and deleted at the start of the scan to reach steady state equilibrium. During 

the resting-state run, participants were instructed to relax in the scanner with their eyes 

open and to look at a fixation cross presented in the center of the screen. Four task-

based runs using the same parameters as the resting-state run were also collected after 

the resting-state run (task run duration = ~5.6 minutes). During the task runs, 

participants were presented with pictures and were asked to name each picture as 

quickly and accurately as possible. Here we focus on functional connectivity analyses of 

resting and task-based runs.  
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Finally, a field map sequence was performed with a double-echo spoiled gradient 

echo sequence (TR = 446 ms; TE= 4.92 ms; flip angle = 60°; FOV = 240 mm2; voxel 

size = 3 × 3 × 4 mm; 33 contiguous slices; phase encoding = anterior to posterior, fat 

saturation = off; duration = 1:12 minutes) that generated 2 magnitude images and 1 

phase image.  

2.3 Behavioral Data Analyses 

As mentioned earlier, participants performed a series of standardized behavioral 

tests to measure cognitive functions across different domains (See Table 1 for the list of 

Cognitive Assessments). To better capture the relationship between age and an 

individual’s cognitive ability, a factor analysis was conducted to identify shared 

components that reflect different cognitive functions. Before conducting the factor 

analysis, a data cleaning procedure was conducted as follows. First, only trials with a 

correct response and a reaction time longer than 200 ms and within 2.5 SDs of that 

participant’s mean were included in further analyses. Additionally, for individuals with 

missing data (one participant had 35.7% missing data, and 6 participants had 7.1% 

missing data), the missing values were replaced using the predictive mean matching 

(PMM) method from the mice package in the R environment (Buuren and Groothuis-

Oudshoorn, 2010). Outliers in the factor analysis were identified and removed using 

Mahalanobis Distances (Probability < .001, N = 1), leaving a final sample of 90 

individuals to be included in the factor analysis.2 We examined the residuals to confirm 

that the assumptions for a parametric test were met. Results showed that there was no 

                                                           
2 One participant was excluded after the factor analysis data cleaning procedure. Thus, any analyses that 
involved the factor analysis scores included 90 participants’ data. However, the complete sample of 91 
participants was included in the age-network connectivity analysis.  
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multi-collinearity concern among the cognitive variables (VIFs < 5) and the residuals 

were normally distributed. A Bartlett’s test was conducted to determine the correlation 

adequacy among variables from those cognitive tasks, and a Kaiser-Meyer-Olkin test 

(KMO, Kaiser, 1974) was then conducted to determine the sampling adequacy. Results 

suggested that there was a substantial correlation among the cognitive variables 

(Bartlett test p < .001) and the sample was adequate (KMO = .70 > .60, Kaiser, 1974), 

which motivated our use of factor analysis. The psych package in the R environment 

was used for the factor analysis (Revelle, 2015). Cognitive variables that were not 

normally distributed were log transformed to better approximate a normal distribution 

(mean skewness after transformation = 0.14). All cognitive variables were standardized 

using the scale function in the R environment ((score-mean)/sd). We used a parallel 

analysis (i.e., where the actual data and the simulated data intersect) to decide how 

many factors were meaningful. The oblimin rotation was used to produce oblique 

psychological factors. 

After the latent factors were identified, factor scores for each participant were 

then calculated. Then regressions were conducted on each factor while including age 

as the independent variable and years of education as a control variable. Because the 

relationship between age and cognitive functions across the lifespan may not always be 

linear, we first fit a linear regression of age on each factor, then added a quadratic age 

term to see if the model fit was significantly improved.  
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As with the behavioral factor analysis, the same normalization and 

standardization processes were conducted on all variables in the regression analyses.3 

After the transformation, there was no multi-collinearity concern among the independent 

variables (VIFs < 5). Furthermore, subject-level random effects were also included in 

the regression models to accommodate potential individual level effects.   

2.4 fMRI Data Preprocessing 

The fBIRN QA tool was used to assess data quality (Glover et al., 2012, 

https://www.nitrc.org/projects/bxh_xcede_tools/), measuring the number of potentially 

clipped voxels, mean signal fluctuation to noise ratio (SFNR), and per-slice variation. 

Additionally, the anatomical and functional images were visually inspected for artifacts 

and signal drop-out. One participant’s data was excluded from the task-based 

connectivity analysis due to missing data from one run. Preprocessing and first-level 

analyses were conducted using the CONN functional connectivity toolbox version 18.a 

(Whitfield-Gabrieli and Nieto-Castanon, 2012). First, functional realignment and 

unwarping were done to estimate and correct for participant motion. Then, a voxel-

displacement map was calculated based on the field map data and applied to the 

resting-state and task-based data for distortion correction, followed by slice-timing 

correction, which corrected for maturation of the BOLD signal over time (Huettel et al., 

2004). Functional outliers were detected with an ART (Artifact Detection Tools)-based 

identification method in which outliers were defined using a conservative threshold (i.e., 

                                                           
3 Age was not normally distributed in the current sample, because we explicitly recruited sub-samples 
from each decade (ages 20 – 79) to achieve a lifespan sample. Although the sampling was not perfectly 
balanced across decades, this recruitment approach resulted in a largely rectangular distribution (see 
Figure 1 in supplementary materials). 
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data points more extreme than the 97th percentile based on a normative sample). All 

anatomical and functional images were normalized into standard MNI space. The 

anatomical images were segmented into grey matter, white matter, and CSF tissue 

classes using SPM12 unified segmentation and normalization procedure, then these 

masks were applied to the functional images (Ashburner and Friston, 2005). During 

registration, functional images were aligned to anatomical images and both were 

normalized to standard space. A smoothing kernel of 6 mm was used to increase the 

signal to noise ratio, as well as to reduce spurious activations of single voxels. During 

denoising, the representative noise signal from WM (5 components) and CSF (5 

components) was extracted, and any signal correlated with these components was 

removed from the BOLD signal. To eliminate frequencies of less interest, a band-pass 

filter (0.008, 0.09) was used for the resting-state scan (Davey et al., 2013; Gohel and 

Biswal, 2015; Hallquist et al., 2013) and a high-pass filter (0.008, infinite) was used for 

task-based scans (Gonzalez-Castillo and Bandettini, 2018). The effects of the following 

quality assurance parameters were controlled for during data analysis: number of outlier 

and non-outlier scans (outlier threshold = 0.5 mm), max and mean motion, and max and 

mean global BOLD signal changes (outlier threshold = global-signal z-value of 3). For 

the resting-state scan, the total average number of invalid scans was 1.55 out of 180 

scans/volumes (0.9%, SD = 3.06), and there was a marginally significant positive 

correlation between number of invalid scans and age (p = .06, β = .60, 95% CI = [-.03, 

1.23], R2 = .03). The mean amount of motion was 0.20 mm (SD = 0.08 mm), and there 

was a significant positive correlation between the amount of motion and age (p < .001, β 

= .04, 95% CI = [.02, .05], R2 = .20).  
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For the task-based scans, the total average number of invalid scans across all 

runs was 24.02 out of 708 scans/volumes across four runs (3.4%, SD = 43.21), and the 

effect of age was not significant (p = .14, β = 6.75, 95% CI = [-2.30, 15.79], R2 = .01). 

The mean amount of motion during the task runs was 0.27 mm (SD = 0.10 mm), and 

there was a significant positive correlation between the amount of motion and age (p 

< .005, β = .03, 95% CI = [.01, .05], R2 = .10). The analyses removing variance 

associated with all of the variables described above occurred in a single linear 

regression step, and the residualized BOLD signal was used for further statistical 

analyses. 

2.5 Node definition 

Chan et al. (2014) identified 441 coordinates in the brain and created fixed-radius 

disks (3 mm geodesic radius) around those locations. We used the same 441 locations 

and created 4 mm non-overlapping fixed-radius disks using the MNI152, 2mm brain as 

the reference (The ROI size increased to 4 mm fixed-radius disks due to the reference 

image resolution). All nodes were further divided into 10 networks (Hand somatomotor, 

Mouth somatomotor, Visual, Salience, Auditory, Cingulo-opercular control, Fronto-

parietal control, Ventral attention, Dorsal attention, and Default) according to Power et al. 

(2011) and 108 nodes were excluded from the analysis due to poor classification fit with 

the Power networks. Therefore, the final set included 333 nonoverlapping nodes.   

2.6 fMRI Data Analysis 

For each participant, the resting-state and task-based fMRI time series of each 

node was extracted, then a cross-correlation of each node’s time course with every 
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other node’s time course was calculated, forming a 333 × 333 correlation matrix for 

each scan type. Correlation coefficients were then converted to Z-values using Fisher’s 

equation. Negative correlations were not included in further analysis due to uncertainty 

regarding the meaning of negative correlations (Hallquist and Hillary, 2018).4 The final 

matrix for each scan type for each participant was a 333 × 333 weighted Z-matrix with 

the diagonal and negative values set to zeros. 

Using the same methods as Chan et al. (2014), we also calculated within-

network connectivity, between-network connectivity for each network for each scan type. 

We did not use the segregation measure because it is derived from within- and 

between-network connectivities, making it inter-dependent with those measures. Within-

network connectivity was calculated as the mean node-to-node correlation of all nodes 

in that network. Between-network connectivity was calculated as the mean correlation 

value between each node in one network and the rest of the nodes outside of that 

network. Furthermore, for each scan type of each participant, mean within-network 

connectivity, and mean between-network connectivity were calculated by averaging 

those measurements across all networks. Since we were interested in the relationship 

between age and each network measurement, and the difference between resting-state 

and task-based status, mixed effect regression models were conducted.5 For each 

regression, one network measurement was used as the dependent variable, while age, 

                                                           
4 Negative correlations may be related to statistical artifacts and global signal regression, or N-methyl-D-
aspartate (NMDA) action in cortical inhibition. Moreover, others have also adopted a similar strategy, for 
example, Chan et al., 2014 set all negative nodes to 0. To be comparable to their findings, we adopted 
the same analysis strategy. For a full discussion about the meaning of negative correlations see Hallquist 
& Hillary, 2018. 
5 The main focus of the paper was on overall brain network characteristics. Therefore, only the mean 
network properties across all networks are reported in the main body of the paper. We also conducted 
analyses on selected individual networks, which are reported in supplementary materials.  
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scan type and their interaction were included as independent variables, and years of 

education was included as a control variable.  

Additionally, previous studies have used the partial correlation to explore the 

relationship between network measures and cognition controlling for the effect of age on 

both variables (Andrews-Hanna et al., 2007; Chan et al., 2014; Geerligs et al., 2014). 

Although this type of analysis examines the age-invariant brain–behavior relationship, it 

cannot provide information about the interaction between age and either factor. Since 

we were interested in how age affects the relationship between network measures and 

cognition, we conducted regression analyses on cognitive factor scores while including 

age, scan type, network characteristics (i.e., within- and between-network 

connectivities), and their interactions in the models while including years of education as 

a control variable. For cases where the interactions were significant, further analyses 

were conducted to investigate the direction of the interactions. Since these models were 

testing a similar hypothesis (i.e., the effect of age and network measures on cognition), 

and the dependent variables from the behavioral factor analysis of these models are not 

entirely independent from each other, multiple comparisons were corrected using the 

False Discovery Rate (FDR) method.  

In addition to the regression analyses we were also interested in testing the 

mediation effect of the network measures on the relationship between age and cognition. 

Therefore, additional mediation analyses were conducted, while controlling for the effect 

of years of education.   

3. Results 
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3.1 Behavioral Factor Analysis and Effect of Age 

We conducted an exploratory factor analysis to assess the data for latent factors. 

This gave us a four-factor model that accounted for 54% of the variance in the data (TLI: 

0.99; CFI: 1.00; RMSR: .04; RMSEA: .04).6 The first factor had high positive loadings 

from immediate recall (loading = 1.00) and delayed recall (loading = .81), therefore, we 

named it the “Recall Factor.” Higher scores on the Recall Factor suggested better 

Recall. The second factor had high positive loadings on the total verbal fluency score 

(loading = .31), WAIS vocabulary score (loading = .46), the author recognition task 

(loading = .98), and the comparative reading habit questionnaire (loading = .56). All 

these measurements were related to different aspects of language (e.g., reading, 

vocabulary), therefore, we referred to this factor as the “Language Factor.” The third 

factor loaded positively on reaction time measurements of executive functions, including 

the recognition task (loading = .50), simple speed task (loading = .56), choice speed 

task (loading = .91), digit symbol task (loading = .56), and the Stroop effect (loading 

= .38). Therefore, we named it the “Executive Factor.” Because the tasks loading on the 

Executive Factor reflect speed of response as well as amount of interference, higher 

Executive Factor scores were associated with worse executive function ability. Lastly, 

the fourth factor loaded highly on the reading span task score (loading = .69), digit span 

forwards (loading = .75) and backwards (loading = .65).7  This was referred to as the 

                                                           
6
 TLI: Tucker-Lewis Index, > .95 is considered to be excellent; CFI: Comparative Fix Index, > .95 is 

considered to be excellent; RMSR: Root Mean Square of the Residual, < .06 is considered to be excellent; 
RMSEA: Root Mean Square Error of Approximation, < .06 is considered to be excellent. 
7 Note that Verbal Fluency also loaded relatively highly on the Verbal Working Memory factor (loading 
= .41). This may be because verbal fluency taps into both language as well as memory aspects (as 
participants are asked to generate only novel items, and so must keep track of what responses they have 
already provided). Because Phonemic and Semantic verbal fluency may tap into different aspects of 
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“Verbal Working Memory Factor,” and higher factor scores were associated with better 

verbal working memory ability (i.e., more words recalled, longer working memory spans). 

Individuals’ factor scores were also calculated for each latent factor. Then 

regression analyses were conducted for each factor while including participant age as 

the independent variable and years of education as a control variable. Results showed 

that increasing age was associated with higher factor scores on the Language (p < .001, 

β = .40, 95% CI = [.22, .59], R2 = .29) and Executive Factors (p < .001, β = .27, 95% CI 

= [.21, .32], R2 = .51), and lower scores on the Recall (p < .05, β = -.27, 95% CI = [-.48, -

.06], R2 = .08), and Verbal Working Memory Factors (p < .001, β = -.40, 95% CI = [-.57, 

-.22], R2 = .18), indicating that increasing age was related to enhanced language 

abilities, and worse executive function, recall, and verbal working memory abilities. 

Higher education was only significantly associated with higher language scores (p < .01, 

β = .27, 95% CI = [.09, .46], R2 = .29). Additionally, to better capture age-related 

differences in cognitive measurements, a quadratic regression was also conducted 

between age and the latent factors. We found that adding a quadratic term of age 

significantly improved the model fit of the Language Factor (p < .05, β = -1.73, 95% CI = 

[-3.39, -.07], R2 = .31), such that although language scores increased with age, as age 

increased, increases in language ability were smaller.  

3.2 The Effect of Age and Scan Type on Network Characteristics 

                                                                                                                                                                                           

language production and cognition, we also ran a factor analysis with these measures separated. The 
results showed that the phonetic fluency loaded highly and similarly on the Language and Verbal Working 
Memory Factors, but the semantic fluency load similarly but not highly on the Language and the Verbal 
Working Memory Factors. This suggests that the loading of the total Verbal Fluency score was driven by 
phonemic (FAS) fluency. 
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The mean node-to-node correlation matrix (10 networks) during resting-state and 

task-based data can be found as Supplementary Figures 2 and 3. In order to test the 

effect of age on network characteristics and also compare resting-state and task-based 

network characteristics, analyses were conducted on each network characteristic while 

including age, scan type, and their interaction as independent variables, and years of 

education as a control variable. These effects were displayed in Figure 1.  

First, across both scan types, increased age was significantly associated with 

lower overall within-network connectivity (p < .001, β = -.01, 95% CI = [-.02, -.007], R2 

= .55, see Figure 1). The main effect of scan type on within-network connectivity was 

also significant, such that the resting-state within-network connectivity was significantly 

higher than the task-based within-network connectivity (p < .001, β = -.07, 95% CI = [-

.074, -.068], R2 = .55). Additionally, the interaction between age and scan type on 

within-network connectivity was also significant (p < .001, β = -.01, 95% CI = [-.02, -

.005], R2 = .55). To further analyze this interaction, we examined the data by scan type. 

Although the relationship between age and within-network connectivity was significant 

for both task-based and resting-state scans, the significant interaction indicated that the 

effect of age on within-network connectivity was significantly stronger in the task-based 

scan (p < .001, β = -.02, 95% CI = [-.03, -.01], R2 = .29) compared to the resting-state 

scan (p = .049, β = -.01, 95% CI = [-.02, -.00002], R2 = .04).  

For between-network connectivity, increased age was associated with lower 

connectivity (p < .05, β = -.02, 95% CI = [-.05, -.003], R2 = .66). There was also a main 

effect of scan type such that, between-network connectivity was significantly higher 

during resting-state compared to the task (p < .001, β = -.35, 95% CI = [-.38, -.31], R2 
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= .66). The interaction between age and scan type was also significant (p < .05, β = -.04, 

95% CI = [-.07, -.009], R2 = .66), indicating that the effect of age on between-network 

connectivity differed between scan types. Further analyses breaking down the data into 

different scan types showed that the effect of age on between-network connectivity was 

only significant during the task (p < .01, β = -.05, 95% CI = [-.07, -.02], R2 = .11), but not 

during the resting state (p > .1, β = -.004, 95% CI = [-.03, .02], R2 = .01).  

In summary, overall the resting-state scan had higher within- and between- 

network connectivities compared to the task-based scan. Moreover, increased age was 

associated with lower within-network connectivity and lower between-network 

connectivity in general, although the effect of age on within- and between-network 

connectivities seemed to be driven by the task-based scan.  

 

Figure 1. Effect of age and scan type on network characteristics: (a) Increased age was 
associated with lower within-network connectivity in both resting-state and task-based scans 
(i.e., main effect of age, p < .001), and this relationship was stronger during the task (i.e., 
interaction between scan type and age, p < .001; Task p < .001 vs. Rest p = .049); (b) 

Jo
urn

al 
Pre-

pro
of



  

 

 24 

Increased age was associated with lower between-network connectivity across both scan types 
(i.e., main effect of age, p < .05), and this was driven by the task, but not resting-state (i.e., 
interaction between age and scan type, p < .05; Task p < .01 vs. Rest p > .1). Red dots 
represent resting-state data points. Blue dots represent task-based data points. Higher within- 
and between-network connectivities were observed during resting-state scans compared to 
during the task (i.e., main effect of scan type, ps < .001).  

 

3.3 Contribution of Brain Network Characteristics and Age to Cognition 

To investigate how the interaction between network characteristics and age 

contribute to behavioral measurements of cognitive abilities, we performed a regression 

on each cognitive factor including the within- and between-network connectivities, age, 

scan type, and their interactions. Additionally, years of education was also included in 

the model as a control variable. An FDR correction was used to correct for multiple 

comparisons (the reported p values and 95% confidence intervals below were after 

correction).  

To summarize, consistent with our behavioral models (Section 3.1), increased 

age was significantly associated with higher Language Factor scores (i.e., better 

language performance, p < .001, β = .64, 95% CI = [.33, .95], R2 = .33), higher 

Executive Factor scores (i.e., worse executive function, p < .001, β = .35, 95% CI = 

[.26, .44], R2 = .60), and lower Verbal Working Memory scores (i.e., worse verbal 

working memory, p < .001, β = -.38, 95% CI = [-.67, -.09], R2 = .24). Unlike the 

behavioral model, the relationship between age and the Recall Factor scores was no 

longer significant (p > .1, β = -.12, 95% CI = [-.46, .22], R2 = .16) when including network 

characteristics.  

Furthermore, for the Recall Factor, higher overall between-network connectivity 

(p < .05, β = -.46, 95% CI = [-.92, -.0008], R2 = .16), and lower overall within-network 
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connectivity (p = .07, β = .36, 95% CI = [-.04, .77], R2 = .16) were associated with lower 

Recall Factor scores, independent of age (Figure 2). The interaction between scan type 

and between-network connectivity was marginally significant at all ages (p = .09, β = .76, 

95% CI = [-.16, 1.68], R2 = .16). Further analyses of the different scan types showed 

that higher between-network connectivity was only associated with worse recall during 

the resting-state scan (p < .01, β = -.84, 95% CI = [-1.35, -.35], R2 = .20), but not the 

task-based scan (p > .1, β = -.08, 95% CI = [-.58, .41], R2 = .13). Other interactions, 

including the three-way interactions among age, scan type, and within- and between- 

network connectivities, on the Recall Factor were not significant (ps > .1, 95% CIs of β 

include 0). 

 For the Executive Factor, although there were no significant main effects of 

connectivity measures on Executive Factor scores (ps > .1, 95% CIs of β include 0), the 

interaction between scan type and between-network connectivity was significant (p 

< .05, β = -.27, 95% CI = [-.50, -.03], R2 = .60, Figure 3). Further analyses of the 

different scan types showed that higher between-network connectivity was associated 

with higher (worse) Executive Factor scores during the resting-state scan (p < .05, β 

= .13, 95% CI = [.005, .25], R2 = .64), but lower (better) Executive Factor scores during 

the task scan across all ages (p < .05, β = -.14, 95% CI = [-.26, -.009], R2 = .57). In 

general, these results indicated that higher between-network connectivity during resting-

state was associated with worse executive function, consistent with the results on the 

recall ability. However, during the task, higher between-network connectivity was 

associated with better executive function. Other interactions, including the interaction 

Jo
urn

al 
Pre-

pro
of



  

 

 26 

between scan type and within-network connectivity, and the three-way interactions on 

the Executive Factor were not significant (ps > .1, 95% CIs of β include 0). 

 

Figure 2. Relationship between network measures and Recall Factor scores across both scan 
types: (a) The main effect of within-network connectivity on Recall Factor Scores was marginally 
significant (p = .07), such that lower within-network connectivity was associated with worse 
recall across both scan types, (b) The main effect of between-network connectivity (p < .05), 
and its interaction with scan type (p = .09) on Recall Factor Scores were (marginally) significant, 
such that higher between-network connectivity was associated with worse recall but this was 
driven by the resting-state (p < .01), not the task-based data (p > .1).  
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Figure 3. The interaction between scan type and between-network connectivity on Executive 
Factor scores (p < .05). Higher between-network connectivity during rest (p < .05) and lower 
between-network connectivity during task (p < .05) were associated with worse executive 
function (higher executive function factor score). The interaction between scan type and within-
network connectivity was not significant on Executive Factor scores (p > .1), therefore, was not 
plotted.  

Finally, on the Language Factor, while there were no significant main effects 

(ps > .1, 95% CIs of β include 0), there was a marginally significant three-way 

interaction among age, scan type, and between-network connectivity (p = .07, β = .72, 

95% CI = [-.10, 1.55], R2 = .33, Figure 4). Further analyses showed that the interaction 

between age and between-network connectivity was significant during the resting-state 

scan (p < .05, β = -.53, 95% CI = [-1.00, -.08], R2 = .35) but not during the task-based 

scan (p > .1, β = .19, 95% CI = [-.24, .63], R2 = .31). To better understand this 

interaction in the resting-state data, we conducted a Johnson-Neyman test to 

investigate at what age the relationship between the resting-state between-network 

connectivity and the Language Factor score became significant (Esarey and Sumner, 

2018; Johnson and Fay, 1950). Results showed that the relationship between higher 

resting-state between-network connectivity and lower Language Factor scores became 

significant at the age of 57.99 (FDR corrected p < .05, Figure 4). These results suggest 

that a less specialized functional network structure during resting-state in older adults 

was associated with worse language ability. Other interactions on the Language Factor 

were not significant (ps > .1, 95% CIs of β include 0). There were no significant effects 

of network measures on verbal working memory. 
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Figure 4. The interaction among age, scan type, and between-network connectivity on 
Language Factor scores (p = .07). Only during the resting-state scan (p < .05), but not the task-
based scan (p > .1), older adults (red, right panel), but not younger adults (red, left panel), 
showed a significant relationship between higher resting-state between-network connectivity 
and lower Language Factor score (Johnson-Neyman test, p < .05). 

 

3.4 Mediation Effect of Network Characteristics of Age and Cognition 

Mediation analyses were conducted to further investigate the effect of network 

measures on the relationship between age and cognitive factors, controlling for the 

effect of education. Results showed that the overall within-network connectivity partially 

mediated the relationship between age and the Executive Factor score (Average Causal 

Mediation Effect, ACME p < .05; Average Direct Effects, ADE p < .001). Separating 

resting-state and task-based connectivities, we found similar trends in the mediation 

results such that both the resting-state (ACME p < .05; ADE p < .001) and the task-

based (ACME p = .08; ADE p < .001) within-network connectivities partially mediated 

the relationship between age and the Executive Factor score. This result suggested that 
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although increasing age was significantly related to worse executive function ability, this 

relationship was partially explained by individual differences in within-network 

connectivity. The relationships between age and other cognitive factors were not 

significantly mediated by within-network connectivity (ACME ps > .1). 

 Because there was also a significant main effect of age on between-network 

connectivity, we conducted a mediation analysis on between-network connectivity. 

However, the between-network connectivity did not significantly mediate any 

relationships between age and cognitive factor scores (ACME ps > .1). Because the 

main effect of age on between-network connectivity was largely driven by the task-

based data, we also examined the resting-state and task-based data separately for 

mediation effects. However, there were no significant mediation effects in the individual 

data sets (ACME ps > .1), indicating that the between-network connectivity in general 

did not mediate the age-behavior relationships. 

4. Discussion 

Older adults often exhibit decline across cognitive domains, such as language 

production, memory, and executive function; however, how these age-related 

behavioral differences relate to whole-brain functional organization is not entirely 

understood. Additionally, how brain–behavior relationships can be altered by task 

demands is not clear either. In the current study, we analyzed 333 brain regions 

organized into 10 functional networks and examined within- and between-network 

functional connectivities in a lifespan sample. Both resting-state and task-based fMRI 

data were examined and directly compared. We also investigated the relationships 

between whole-brain network organization and behavior across numerous cognitive 
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domains, including recall, language, executive function, and verbal working memory. 

We expected that older individuals would exhibit worse cognitive performance on fluid 

abilities, have lower within-network connectivity, and that age-related differences in 

network connectivities may be related to cognitive performance. We also expected that 

the brain–behavior relationships may vary as a function of whether participants were 

engaged in a task and as a function of the participants’ age. 

Consistent with prior results (Park et al., 2002; Park and Reuter-Lorenz, 2009), 

we found that older individuals performed worse on recall, executive function and verbal 

working memory tasks, after controlling for years of education. On the other hand, 

language abilities, as measured by reading and vocabulary tests, were enhanced with 

age, and higher education was associated with better language performance (Kavé and 

Halamish, 2015; Verhaeghen, 2003). Interestingly, there was also a significant quadratic 

relationship between age and language, suggesting that as age increased, age-related 

performance improvements in language were smaller. This is in line with the literature 

showing crystallized intelligence increases during the lifespan through the acquisition of 

different life experiences (e.g., education, occupation) and is resistant to cognitive 

decline (Anstey and Low, 2004; Gordon et al., 2016; Park, 2002; Park et al., 2002).  

In terms of the effect of age on network measures, the fMRI results demonstrated 

that increases in age were significantly associated with overall lower within-network 

connectivity. This is consistent with the prior resting-state literature showing lower 

within-network connectivity for older adults (Betzel et al., 2014; Cao et al., 2014; Chan 

et al., 2018; Chan et al., 2014; Geerligs et al., 2015; Onoda et al., 2012; Siman-Tov et 

al., 2017; Song et al., 2014; Tomasi and Volkow, 2012). We also observed a significant 
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interaction between age and scan type on within-network connectivity, such that the age 

effect was stronger during the task-based scan compared to the resting-state scan. This 

interaction indicates that age-related neural differences are most pronounced when 

individuals were engaged in a task. There was also a significant main effect of age on 

between-network connectivity, with lower between-network connectivities associated 

with increasing age. This result appears to be consistent with some studies that showed 

lower between-network connectivity with aging (Onoda et al., 2012) but inconsistent 

with others that showed higher between-network connectivity with increased age (Chan 

et al., 2014; King et al., 2018). However, it is important to note that we also observed a 

significant interaction between age and scan type on between-network connectivity. As 

with the within-network connectivity, we found that the age effect on whole-brain 

between-network connectivity was stronger during the task scans than the resting-state 

scans. The stronger age effects on network connectivities during task scans are 

consistent with the idea that network connectivity might be affected not only by age, but 

also the specific demands of the situation (Varangis et al., 2019b). Although participants 

in this study were engaged in a picture naming task, which is a minimally demanding 

task, this increased task demand compared to resting-state highlighted age differences 

in network characteristics. The stronger age effects on network connectivities during the 

task compared to the resting-state are also consistent with prior literature showing that 

older adults’ performance declines are most pronounced when task demands are high 

(Reuter-Lorenz and Cappell, 2008).  

To determine how these age-related differences in brain functional connectivity 

relate to cognition, regression and mediation analyses were conducted on the cognitive 
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variables to examine the effects of age, and the modulation of network connectivity, 

while controlling for years of education. There are four aspects to these results. First, 

the main effects of overall within- and between- network connectivities on recall ability 

were significant (or nearly significant) across both scan types, such that higher overall 

within-network connectivity and lower overall between-network connectivity were 

associated with better recall ability. Moreover, these relationships were independent of 

age and education, suggesting that having a more optimal and separated network 

organization in general is associated with better recall ability across the lifespan. These 

results are consistent with prior studies that have demonstrated that higher within-

network connectivity and lower between-network connectivity were associated with 

better cognitive performance (Andrews-Hanna et al., 2007; Geerligs et al., 2014; 

Geerligs et al., 2015; Hampson et al., 2010; Onoda et al., 2012; Sala-Llonch et al., 2015; 

Varangis et al., 2019b; Wang et al., 2010). 

Second, there were significant or nearly significant interactions between scan 

type and between-network connectivities on the recall ability (p = .09) and executive 

function measures (p < .05), irrespective of age and education. Further analyses 

showed that higher between-network connectivity was associated with worse recall and 

executive function abilities, but only during resting-state (ps < .05) and not when 

participants were engaged in a task. Very few studies have examined the relationship 

between cognition and between-network connectivity on a whole-brain level. But among 

them, King et al. (2018) also reported that stronger age-related between-network 

resting-state connectivity was significantly related to worse motor performance. 

Although we did not find age differences, our results are consistent with increasing 
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between-network resting-state connectivity being associated with worse cognitive 

performance. The stronger cognition-brain relationships we observed during resting-

state may be because resting-state scans measure a default state of brain organization. 

As suggested by Chan et al. (2014), differences in network connectivities during resting-

state might be a marker of individual differences in cognitive ability across the lifespan. 

Having stronger between-network connectivity during resting-state might reflect a 

decline in optimal network organization across the lifespan. However, in the task-based 

data, higher between-network connectivity was unexpectedly associated with better 

executive function (p < .05), opposite to the pattern found in the resting-state data. This 

might be because the brain is in a more dynamic mode during the task, so higher 

between-network coordination was associated with better behavioral performance. 

However, the lack of significant relationships between higher task-based between-

network connectivity and the other cognitive measures indicates that this relationship 

needs to be interpreted tentatively.  

Third, although there was no significant main effect on the language measures, 

we found an interaction between age, between-network connectivity, and scan type (p 

= .07). Specifically, the interaction between age and between-network connectivity on 

the language measures was only significant during the resting-state scan (p < .05), and 

not the task-based scan (p >.1). Further analysis showed that only among older adults (> 

57.99 years), higher resting-state between-network connectivity significantly correlated 

with worse language performance. These results are consistent with the findings on the 

recall and executive function measures such that higher resting-state between-network 

connectivity was associated with worse cognitive performance. More critically, for 
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language measures, the significant interaction between age and resting-state between-

network connectivity indicated that although language abilities were well-maintained and 

even improved with age, older adults with higher between-network connectivities had 

lower language performance. This age-related difference in between-network 

connectivity and language supports a dedifferentiation account of aging, such that 

higher connectivities among different brain networks are interpreted as decreases in 

neural efficiency in older adults (Ghisletta and Lindenberger, 2003; Li et al., 2001).  

While we only found this specific age effect for language, these results are consistent 

with the overall trend of higher between-network connectivity during resting-state being 

associated with poorer cognitive function. It is also worthwhile to mention that we 

observed these relationships in the resting-state, but not in the task-based data, 

indicating that resting-state network characteristics might be better general indexes for 

cognitive function, across the lifespan.  

Finally, across both resting-state and task-based scans, the overall within-

network connectivity partially mediated the relationship between age and executive 

function. This relationship was not found with between-network connectivity. Previous 

studies have consistently found age-related differences in within-network connectivity 

during resting-state as being related to differences in cognitive performance (King et al., 

2018; Onoda et al., 2012; Sala-Llonch et al., 2015; Varangis et al., 2019a; Wang et al., 

2010). This finding reinforces the idea that within-network functional connectivity overall 

is a robust measure for examining age-related differences in cognitive abilities, perhaps 

more so for fluid intelligence measures, such as executive function, which often show 

larger declines with age. Additionally, the lack of between-network connectivity 
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mediation was surprising since resting-state between-network connectivities were linked 

to cognitive performance. However, given the conflicting results in prior studies 

regarding the relationship between between-network connectivity, age, and cognitive 

performance, our results are not inconsistent with the existing literature. These 

variabilities in between-network connectivity results may reflect variability in these 

relationships across individuals, and future studies could consider examining broader 

populations of older adults.  

5. Conclusion 

To summarize, the present study investigated the effect of age on cognition, 

whole-brain functional connectivity during resting-state and during a task, and their 

relationships across the adult lifespan. We found that increased age was associated 

with worse recall, executive function, and verbal working memory, but better language 

ability, although these improvements lessened as age increased. We also found 

consistency across both resting-state and task-based data, in that increased age was 

associated with lower within- and between- network functional connectivities, and age 

effects were stronger during the task than the resting-state. In terms of the relationships 

among age, network characteristics, and cognition, we consistently found that higher 

resting-state between-network functional connectivity was associated with poorer recall, 

executive function. Additionally, higher resting-state between-network connectivity was 

associated with worse language ability in older adults, supporting the dedifferentiation 

account of cognition and aging. We also found that within-network connectivity partially 

mediated the relationship between age and executive function, highlighting the 

importance of the integrity of within-network connectivity for cognition. Overall, these 
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findings demonstrate that although age effects on network characteristics were most 

pronounced during the task, resting-state functional connectivities may be more reliable 

indicators of cognitive function across the lifespan.  

Acknowledgements 

This publication was supported by NIH R01 AG034138 (mtd). The content is 

solely the responsibility of the authors and does not necessarily represent the official 

views of the funding agencies. The authors have no conflicts of interest. We thank the 

members in the Language and Aging Lab at Penn State for their help with data 

collection, in particular Hossein Karimi and Sara Troutman. We also thank the staff and 

scientists at the Social, Life, & Engineering Sciences Imaging Center and the Center for 

Language Science, where the experiment was conducted. Data, analysis scripts, and 

supplementary materials are available online at: 

https://osf.io/f36pj/?view_only=35ff0ba75c70458da1901f52558beff3. 

References 

Acheson, D.J., Wells, J.B., MacDonald, M.C., 2008. New and updated tests of print 
exposure and reading abilities in college students. Behavior Research Methods 40(1), 
278-289. 
Andrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M.E., 
Buckner, R.L., 2007. Disruption of large-scale brain systems in advanced aging. Neuron 
56(5), 924-935. 
Anstey, K.J., Low, L.-F., 2004. Normal cognitive changes in aging. Journal of Australian 
family physician 33(10), 783. 
Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuroimage 26(3), 839-851. 
Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., Sporns, O., 2014. Changes in 
structural and functional connectivity among resting-state networks across the human 
lifespan. Neuroimage 102, 345-357. 
Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity 
in the motor cortex of resting human brain using echo‐planar MRI. Magnetic resonance 
in medicine 34(4), 537-541. 
Braveman, P., Gottlieb, L., 2014. The social determinants of health: it's time to consider 
the causes of the causes. Public health reports 129(1_suppl2), 19-31. 

Jo
urn

al 
Pre-

pro
of



  

 

 37 

Burke, D.M., Shafto, M.A., 2008. Language and aging. Psychology Press, New York. 
Buuren, S.v., Groothuis-Oudshoorn, K., 2010. mice: Multivariate imputation by chained 
equations in R. Journal of statistical software, 1-68. 
Cabeza, R., Dennis, N.A., 2012. Frontal lobes and aging. Principles of frontal lobes 
function, 628-652. 
Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M., Song, X.-W., Xia, 
M.-R., Shu, N., Dong, Q., 2014. Topological organization of the human brain functional 
connectome across the lifespan. Developmental cognitive neuroscience 7, 76-93. 
Chan, M.Y., Na, J., Agres, P.F., Savalia, N.K., Park, D.C., Wig, G.S., 2018. 
Socioeconomic status moderates age-related differences in the brain’s functional 
network organization and anatomy across the adult lifespan. Proceedings of the 
National Academy of Sciences 115(22), E5144-E5153. 
Chan, M.Y., Park, D.C., Savalia, N.K., Petersen, S.E., Wig, G.S., 2014. Decreased 
segregation of brain systems across the healthy adult lifespan. Proceedings of the 
National Academy of Sciences 111(46), E4997-E5006. 
Christensen, K.J., Moye, J., Armson, R.R., Kern, T.M., 1992. Health screening and 
random recruitment for cognitive aging research. Psychology and Aging 7(2), 204-208. 
Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E., 2014. Intrinsic and 
task-evoked network architectures of the human brain. Neuron 83(1), 238-251. 
Conway, A.R., Kane, M.J., Bunting, M.F., Hambrick, D.Z., Wilhelm, O., Engle, R.W., 
2005. Working memory span tasks: A methodological review and user’s guide. 
Psychonomic bulletin & review 12(5), 769-786. 
Davey, C.E., Grayden, D.B., Egan, G.F., Johnston, L.A., 2013. Filtering induces 
correlation in fMRI resting state data. Neuroimage 64, 728-740. 
Davis, S.W., Zhuang, J., Wright, P., Tyler, L.K., 2014. Age-related sensitivity to task-
related modulation of language-processing networks. Neuropsychologia 63, 107-115. 
Diaz, M.T., Karimi, H., Troutman, S., Gertel, V., Cosgrove, A., Zhang, H., under review. 
Neural sensitivity to phonological characteristics is stable across the lifespan. 
https://osf.io/7bc8w. 
Esarey, J., Sumner, J.L., 2018. Marginal effects in interaction models: Determining and 
controlling the false positive rate. Comparative Political Studies 51(9), 1144-1176. 
Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”: a practical 
method for grading the cognitive state of patients for the clinician. Journal of psychiatric 
research 12(3), 189-198. 
Friston, K., 1994. Functional and effective connectivity in neuroimaging: a synthesis. 
Human brain mapping 2(1‐2), 56-78. 
Geerligs, L., Maurits, N.M., Renken, R.J., Lorist, M.M., 2014. Reduced specificity of 
functional connectivity in the aging brain during task performance. Human brain 
mapping 35(1), 319-330. 
Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist, M.M., 2015. A brain-wide 
study of age-related changes in functional connectivity. Cerebral cortex 25(7), 1987-
1999. 
Ghisletta, P., Lindenberger, U., 2003. Age-based structural dynamics between 
perceptual speed and knowledge in the Berlin Aging Study: direct evidence for ability 
dedifferentiation in old age. Psychology and Aging 18(4), 696-713. 

Jo
urn

al 
Pre-

pro
of



  

 

 38 

Glover, G.H., Mueller, B.A., Turner, J.A., Van Erp, T.G., Liu, T.T., Greve, D.N., Voyvodic, 
J.T., Rasmussen, J., Brown, G.G., Keator, D.B., 2012. Function biomedical informatics 
research network recommendations for prospective multicenter functional MRI studies. 
Journal of Magnetic Resonance Imaging 36(1), 39-54. 
Gohel, S.R., Biswal, B.B., 2015. Functional integration between brain regions at rest 
occurs in multiple-frequency bands. Brain connectivity 5(1), 23-34. 
Gonzalez-Castillo, J., Bandettini, P.A., 2018. Task-based dynamic functional 
connectivity: Recent findings and open questions. Neuroimage 180, 526-533. 
Gordon, P.C., Lowder, M.W., Hoedemaker, R.S., 2016. Reading in normally aging 
adults. Cognition, language and aging, 165-191. 
Guerin, J.M., Copersino, M.L., Schretlen, D.J., 2018. Clinical utility of the 15-item 
geriatric depression scale (GDS-15) for use with young and middle-aged adults. Journal 
of Affective Disorders 241, 59-62. 
Hackman, D.A., Farah, M.J., Meaney, M.J., 2010. Socioeconomic status and the brain: 
mechanistic insights from human and animal research. Nature Reviews Neuroscience 
11(9), 651-659. 
Hallquist, M.N., Hillary, F.G., 2018. Graph theory approaches to functional network 
organization in brain disorders: A critique for a brave new small-world. Network 
Neuroscience 3(1), 1-26. 
Hallquist, M.N., Hwang, K., Luna, B., 2013. The nuisance of nuisance regression: 
spectral misspecification in a common approach to resting-state fMRI preprocessing 
reintroduces noise and obscures functional connectivity. Neuroimage 82, 208-225. 
Hampson, M., Driesen, N., Roth, J.K., Gore, J.C., Constable, R.T., 2010. Functional 
connectivity between task-positive and task-negative brain areas and its relation to 
working memory performance. Magnetic resonance imaging 28(8), 1051-1057. 
Huettel, S.A., Song, A.W., McCarthy, G., 2004. Functional magnetic resonance imaging. 
Sinauer Associates Sunderland, MA. 
Hurst, L., Stafford, M., Cooper, R., Hardy, R., Richards, M., Kuh, D., 2013. Lifetime 
socioeconomic inequalities in physical and cognitive aging. American Journal of Public 
Health 103(9), 1641-1648. 
Hutchison, R.M., Morton, J.B., 2015. Tracking the brain's functional coupling dynamics 
over development. Journal of Neuroscience 35(17), 6849-6859. 
Johnson, P.O., Fay, L.C., 1950. The Johnson-Neyman technique, its theory and 
application. Psychometrika 15(4), 349-367. 
Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika 39(1), 31-36. 
Kavé, G., Halamish, V., 2015. Doubly blessed: Older adults know more vocabulary and 
know better what they know. Psychology and Aging 30(1), 68. 
King, B., Van Ruitenbeek, P., Leunissen, I., Cuypers, K., Heise, K.-F., Santos Monteiro, 
T., Hermans, L., Levin, O., Albouy, G., Mantini, D., 2018. Age-related declines in motor 
performance are associated with decreased segregation of large-scale resting state 
brain networks. Cerebral Cortex 28(12), 4390-4402. 
Li, S.-C., Lindenberger, U., Sikström, S., 2001. Aging cognition: from neuromodulation 
to representation. Trends in cognitive sciences 5(11), 479-486. 
MacLeod, C.M., 1991. Half a century of research on the Stroop effect: an integrative 
review. Psychological bulletin 109(2), 163-203. 

Jo
urn

al 
Pre-

pro
of



  

 

 39 

Onoda, K., Ishihara, M., Yamaguchi, S., 2012. Decreased functional connectivity by 
aging is associated with cognitive decline. Journal of cognitive neuroscience 24(11), 
2186-2198. 
Park, D.C., 2002. Aging, cognition, and culture: a neuroscientific perspective. 
Neuroscience Biobehavioral Reviews 26(7), 859-867. 
Park, D.C., Lautenschlager, G., Hedden, T., Davidson, N.S., Smith, A.D., Smith, P.K., 
2002. Models of visuospatial and verbal memory across the adult life span. Psychology 
and Aging 17(2), 299-320. 
Park, D.C., Reuter-Lorenz, P., 2009. The adaptive brain: aging and neurocognitive 
scaffolding. Annual review of psychology 60, 173-196. 
Patterson, J., 2011. Controlled oral word association test. Encyclopedia of clinical 
neuropsychology, 703-706. 
Paxton, J.L., Barch, D.M., Racine, C.A., Braver, T.S., 2008. Cognitive control, goal 
maintenance, and prefrontal function in healthy aging. Cerebral Cortex 18(5), 1010-
1028. 
Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, 
A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., 2011. Functional network 
organization of the human brain. Neuron 72(4), 665-678. 
Raichle, M.E., Gusnard, D.A., 2005. Intrinsic brain activity sets the stage for expression 
of motivated behavior. Journal of Comparative Neurology 493(1), 167-176. 
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, 
G.L., 2001. A default mode of brain function. Proceedings of the National Academy of 
Sciences 98(2), 676-682. 
Reuter-Lorenz, P.A., Cappell, K.A., 2008. Neurocognitive aging and the compensation 
hypothesis. Current directions in psychological science 17(3), 177-182. 
Revelle, W., 2015. Procedures for personality and psychological research. 
Northwestern University, Evanston, IL. 
Sala-Llonch, R., Bartrés-Faz, D., Junqué, C., 2015. Reorganization of brain networks in 
aging: a review of functional connectivity studies. Frontiers in psychology 6, 663. 
Schaie, K.W., 1996. Intellectual development in adulthood: The Seattle longitudinal 
study. Cambridge University Press. 
Shafto, M.A., Burke, D.M., Stamatakis, E.A., Tam, P.P., Tyler, L.K., 2007. On the tip-of-
the-tongue: neural correlates of increased word-finding failures in normal aging. Journal 
of cognitive neuroscience 19(12), 2060-2070. 
Sheikh, J.I., Yesavage, J.A., 1986. Geriatric Depression Scale (GDS): recent evidence 
and development of a shorter version. Clinical Gerontologist: The Journal of Aging 
Mental Health. 
Siman-Tov, T., Bosak, N., Sprecher, E., Paz, R., Eran, A., Aharon-Peretz, J., Kahn, I., 
2017. Early age-related functional connectivity decline in high-order cognitive networks. 
Frontiers in aging neuroscience 8, 330. 
Song, J., Birn, R.M., Boly, M., Meier, T.B., Nair, V.A., Meyerand, M.E., Prabhakaran, V., 
2014. Age-related reorganizational changes in modularity and functional connectivity of 
human brain networks. Brain connectivity 4(9), 662-676. 
Steffener, J., Habeck, C.G., Stern, Y., 2012. Age-related changes in task related 
functional network connectivity. PloS one 7(9). 

Jo
urn

al 
Pre-

pro
of



  

 

 40 

Stroop, J.R., 1935. Studies of interference in serial verbal reactions. Journal of 
experimental psychology 18(6), 643-662. 
Tomasi, D., Volkow, N.D., 2012. Aging and functional brain networks. Molecular 
psychiatry 17(5), 549-558. 
Varangis, E., Habeck, C., Razlighi, Q., Stern, Y., 2019a. The effect of aging on resting 
state connectivity of predefined networks in the brain. Frontiers in aging neuroscience 
11, 234. 
Varangis, E., Razlighi, Q., Habeck, C.G., Fisher, Z., Stern, Y., 2019b. Between-network 
functional connectivity is modified by age and cognitive task domain. Journal of 
cognitive neuroscience 31(4), 607-622. 
Verhaeghen, P., 2003. Aging and vocabulary score: A meta-analysis. Psychology and 
Aging 18(2), 332. 
Wang, J., Geng, L., 2019. Effects of Socioeconomic status on physical and 
psychological health: lifestyle as a mediator. International journal of environmental 
research 16(2), 281. 
Wang, L., LaViolette, P., O'Keefe, K., Putcha, D., Bakkour, A., Van Dijk, K.R., 
Pihlajamäki, M., Dickerson, B.C., Sperling, R.A., 2010. Intrinsic connectivity between 
the hippocampus and posteromedial cortex predicts memory performance in cognitively 
intact older individuals. Neuroimage 51(2), 910-917. 
Wechsler, D., Coalson, D.L., Raiford, S.E., 1997. WAIS-III: Wechsler adult intelligence 
scale. Psychological Corporation San Antonio, TX. 
Whitfield-Gabrieli, S., Nieto-Castanon, A., 2012. Conn: a functional connectivity toolbox 
for correlated and anticorrelated brain networks. Brain connectivity 2(3), 125-141. 
Woods, S.P., Delis, D.C., Scott, J.C., Kramer, J.H., Holdnack, J.A., 2006. The California 
Verbal Learning Test–second edition: test-retest reliability, practice effects, and reliable 
change indices for the standard and alternate forms. Archives of Clinical 
Neuropsychology 21(5), 413-420. 

 

Jo
urn

al 
Pre-

pro
of



Highlights 

1) Increased age related to worse recall, working memory, executive function. 

2) Increased age related to lower within- and between- network connectivities. 

3) Higher between-network connectivity at rest related to worse cognition at all 

ages. 

4)  Older adults with higher between-network at rest connectivity had worse 

language. 
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