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Abstract One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying
the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally
subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest
has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work
concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of
assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a
set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was
tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning
methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an
interesting classification performance. This technique may be of particular interest in those countries where legislation restricts
embryo selection. o 8
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Introduction

The method routinely used for selecting the highest quality
embryos to transfer is still based on morphological analysis.
Many morphological embryo scoring systems have been pro-
posed and reviewed for selecting embryos to transfer
(Puissant et al., 1987; Giorgetti et al., 1995). The choice
of the most suitable embryo to transfer can be achieved
by extended culture of human embryos to the blastocyst
stage (Gardner et al., 1998). However, approaches involving
embryo selection cannot be implemented in countries with
restrictive IVF legislation, for example Switzerland, Ger-
many and ltaly (Germond and Senn, 1999; van der Ven
et al., 2002; Benagiano and Gianaroli, 2004) since these
techniques involve the loss of embryos cultured in vitro
unless oocyte selection is implemented. Several pronuclear
morphology scoring systems have been proposed to predict
derived embryo quality and implantation or pregnancy suc-
cess (Scott and Smith, 1998); also used has been a combina-
tion of pronuclei and embryo scores (De Placido et al.,
2002). Morphological oocyte assessment is still controver-
sial, although oocyte scoring systems have been proposed
to help choose the best oocytes to be fertilized (Rienzi
et al., 2008).

In most cases, embryologists select the oocytes/embryos
by a non-invasive examination based on simple observation
focused on morphology and dynamics of their development
(third day of culture or blastocyst stage). The examination
is usually performed visually and the evaluation is
subjective considering the existence of many scoring sys-
tems especially for pronuclei or embryos. Therefore, the
experience and expertise of the embryologist is of particu-
lar importance for the final success rate. In fact a consensus
conference (Balaban et al., 2011; Alpha-ESHRE consensus
grading scheme) allowed a standardized reporting of the
minimum data set required for an accurate description of
embryo development. This grading system established com-
mon criteria and terminology for grading oocytes, zygotes
and embryos for routine use in IVF laboratories. It could
be implemented with other tools that technology might
introduce in the future.

Alternative methods, including polar body diagnosis
(Verlinsky et al., 1990; Gianaroli et al., 2003), metabolo-
mics (Patrizio et al., 2007) and polarization light microscopy
(Oldenbourg, 1996; Montag et al., 2007) are at a preliminary
stage or are often time consuming in routine IVF. Many stud-
ies have investigated the relationship between the timing of
embryonic division and embryo quality (Hesters et al.,
2008). In order to decrease the subjectivity of these obser-
vations, new promising methods, such as time-lapse moni-
toring systems of embryo development, are rapidly
entering into laboratory practice (Cruz et al., 2011).
Meseguer et al. (2011) reported a wide and successful trial
for the use of morphokinetics as a predictor of embryo
implantation. Lemmen et al. (2008) found a correlation
between live birth and embryo development analysis with
a time-lapse technique.

As for other medical applications, the use of artificial
intelligence techniques may offer a possible solution to help
embryologists in their work. Other examples of applying
artificial intelligence methods to improve success rates of

IVF programmes based on embryo or oocyte scoring/selec-
tion have been described. A pattern recognition algorithm
has been presented to select embryos from images, which
classifies the objects into a number of classes (Patrizi
et al., 2004). Preliminary studies (Manna et al., 2004) corre-
lating embryo quality with embryo imaging before transfer
showed an improvement of manual selection. Morales
et al. (2008a,b) presented a novel intelligent decision sup-
port system for IVF treatment based on a detailed analysis
of human embryo morphology and clinical data of patients.

The present paper proposes the application of an
advanced machine learning system based on a combination
of classifiers for oocyte/embryo quality scoring and a
state-of-the-art method for texture representation of
images, the local binary pattern (LBP) descriptors (Ojala
et al., 2002). As far as is known for the first time, an objec-
tive methodology is used in assisted reproduction technol-
ogy to identify images of viable oocytes and embryos.

The proposed decision support system is evaluated on a
data set of oocytes and their derived embryos. The aim at
the moment is not to demonstrate that the system is able
to select the perfect oocyte and embryo that will implant
or to predict with great accuracy the chance of pregnhancy
in a routine clinical setting. The aim is to explore the possi-
bility of using this new system in larger and more structured
studies such as those with single-embryo transfer, including
a prospective randomized trial for reaching full clinical
relevance.

Materials and methods

Study design

The experiments were carried out on two data sets: one
includes of 269 photographs of oocytes and the other 269
photographs of the corresponding embryos usually at the
4-cell stage taken 40—50 h after intracytoplasmic sperm
injection (ICSI) and immediately before transfer (day 2).
The photographs were taken with an inverted microscope
(Diaphot-300; Nikon) equipped with Hoffmann interference
optics, stain-free objectives and a video camera (Digital
SIGHT DS-F (i1); Nikon). The digital photographs were made
at 20x magnificataion by one experienced embryologist who
chose the plane of the oocyte or embryo that seemed more
representative for the judgment of its quality. Each photo-
graph was a JPEG image with a resolution of 2560 x 1920
pixels.

The research was carried out in one fertility centre and
involved 104 couples (mean age 36.2 years), where the main
infertility factor was mild andrological infertility (sperm
concentration less than 5 million/ml) and other causes of
infertility were tubal or unexplained. Of the total couples,
71 underwent ICSI for the first time and 33 had one previous
implantation failure. A total number of 104 transfer cycles
after ICSI was studied. The result of the transfer cycle (sin-
gle birth/multiple births or no birth) were used to label the
embryos transferred in that cycle (and the related oocyte)
as positive (certain birth), negative (no birth) or uncertain
(when not all the transferred embryos gave rise to corre-
sponding babies born). The summary of the data set is
shown in Table 1.
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Ovarian stimulation was carried out by administering
recombinant FSH (Gonal F; Serono International, Geneva,
Switzerland) at a dosage of 150—400 IU according to the
individual response after suppression with a gonadotro-
phin-releasing hormone analogue in a 0.3 ml daily prepara-
tion (Suprefact; Hoechst Marion Roussel Deutschland, Bad
Soden, Germany) from day 21 of the previous menstrual
cycle for an average of 13 consecutive days. Oocyte
retrieval was carried out with ultrasound-guided transvagi-
nal follicular aspiration around 36 h after the administration
of human chorionic gonadotrophin (Ovitrelle; Serono
Europe, UK) and when at least two follicles >17 mm were
observed. Gametes and embryos were cultured under oil
in drops of a culture medium (IVF Scandinavia; Vitrolife
Sweden, Kungsbacka, Sweden) with an atmosphere of 5%
CO; in air. ICSI was performed according to current method-
ology (Van Steirteghem et al., 1993). Sperm preparation was
performed with the swim-up technique using gamete
medium (IVF Scandinavia). Insemination/ICSI was per-
formed in IVF-50 and the oocytes were individually placed
in 25 pl IVF-50. Oocytes were checked 18—20 h after insem-
ination/ICSI. Each embryo was cultured individually in 25 pl
IVF-50.

Artificial intelligence techniques

The artificial intelligence techniques commonly used for a
classification system of biomedical images are based on
the followings steps: (i) segmentation (the selection of the
correct region of interest in an image) and preprocessing
for reducing the presence of artefacts due to noise, blur
or varying illumination conditions; (ii) feature extraction,
which relies on the extraction of (usually numerical)
descriptors which represent in a compact way the starting
image, such as LBP (Ojala et al., 2002); and (iii) definition
of a classification system, in which the classifier is trained
using the data stored in the knowledge base (training set).
The result of the classification is a score between a test
image and each of the different classes.

A combination of different feature extractors and classi-
fication methodologies permits a higher accuracy and reli-
ability. This work proposes a multiclassifier system which
combines good texture descriptors with high performance
general purpose classifiers. The architecture of the system
is schematized in Figure 1. Complete descriptions of the
preprocessing, feature extraction and classification steps
are given in the following sections.

Segmentation and preprocessing

The first step of the preprocessing procedure is the segmen-
tation of the region of interest from the background which is
performed manually. After the segmentation, the images

Table 1 A summary of the labels of the data sets.

Data set Certain Uncertain Total
Birth No birth

Oocytes/embryos 12 150 107 269

Women 5 57 42 104

are rescaled to fixed dimensions (75 x 75 pixels) and prepro-
cessed by applying a contrast enhancement method (Fig-
ure 2), in order to deal with the inherent non-uniform
illumination problems.

Feature extraction

Good texture descriptors are invariant to image rotation and
scaling and possibly robust in terms of variations in illumina-
tion. This study used the LBP (Ojala et al., 2002), a local
texture operator with powerful discrimination, low compu-
tational complexity and low sensitivity to changes in illumi-
nation which has already been successfully applied to
bioimaging problems (Nanni et al., 2010).

Classification

This work uses an ensemble of neural network to perform
the classification task. An artificial neural network (Duda
et al., 2001) is a set of simple processing elements con-
nected together to form a network of nodes that uses a
mathematical model for information processing. Different
neural network classifiers can be obtained by varying the
network architecture and the choice of the algorithm
designed to infer the strength (weights) of the connections
in the network to produce a desired signal flow. A particular
class of networks — Levenberg—Marquardt neural networks
— is used (Hagan and Menhaj, 1994). A stand-alone classifier
is not a good choice in this classification problem, thus this
work uses a random subspace ensemble of classifiers (Nanni
and Lumini, 2008), drawing a subset of all available features
to train the classifiers within an ensemble. This system
makes it possible to partially solve the problem of low num-
ber of samples in the training set. The final score of the
ensemble is obtained by summing the scores of all classifiers
(‘sum rule’).

Statistical analysis

The accuracy of the proposed decision support system
depends on how well it separates the group of images being
tested (oocytes/embryos) into the two classes in question
(resulting/not resulting in a pregnancy). Accuracy is mea-
sured by the area under the receiver operating characteris-
tic (ROC) curve (AUC) (Fawcett, 2004). An area of 1
represents a perfect system; an area of 0.5 represents a
worthless system (the same result can be obtained by ran-
domly selecting the output class). A rough guide for evalu-
ating the accuracy of a system is the traditional academic
point system: 0.9—1 =excellent (A); 0.8—0.9 =good (B);
0.7—0.8 = fair (C); 0.6—0.7 = poor (D); 0.5—0.6 = fail (F).

IRB approval was deemed not necessary for this type of
work.

Results

The aim of this section is to validate the proposed approach
with the available data set, according to two different test-
ing protocols. The first testing protocol is the
‘leave-one-out-woman’, which uses only the
embryos/oocyte where the label is certain: the testing set
is composed of all the oocytes/embryos of a given woman
(considering only those with a label that is certain). There-
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Figure 2 Segmented images (left) and their enhanced ver-

sions (right) of an oocyte and an embryo.

fore the results are obtained by considering the perfor-
mance of 62 experiments (Table 1). The second testing pro-
tocol is the ‘leave-one-out-woman’ using all the women of
the data set. Therefore the results are obtained by consid-
ering the performance of 104 experiments (Table 1).

The delivery rate in this study was 26.5%. It was not
affected by causes of infertility or repeated implantation
failure.

Using the first test protocol, the AUC is calculated
according to the score of each embryo/oocyte of the test
set, since their label can be obtained without uncertainty.
Using the second test protocol, the classes of the images
in the test set can be assigned with certainty only when
all the n transferred embryos gave rise to no births or to n
births (in 57 out of 104 experiments); therefore the AUC is
calculated according to the scores and the labels of each
woman, which are determined in the following way: for
each woman the maximum score among her
embryos/oocytes is selected and her label is ‘birth’ only if
the woman had at least one birth.

OTT?OEWP?TE QQOETT

Proposed system for embryo and oocyte image classification.

The first test is aimed to compare different descriptors
and classifiers for the classification of both oocytes and
embryos. In particular, in Tables 2—5 two texture descrip-
tors are considered, i.e. the grey-level moments as previ-
ously proposed (Manna et al., 2004) and the LBP as
proposed in this work. Three general-purpose classifiers
are tested: the TRACE algorithm (Manna et al., 2004), a
stand-alone neural network (NN) and a random subspace
ensemble of neural networks (RSNN). The approach pro-
posed in Materials and methods corresponds to the intersec-
tion between LBP and RSNN. The results reported in Tables
2 and 3 represent the AUC obtained on the oocyte and
embryo data sets, respectively, according to the first testing
protocol and the results reported in Tables 4 and 5 repre-
sent the AUC obtained on the oocyte and embryo data sets,
respectively, according to the second testing protocol.

From the results reported in Tables 2—5, it is clear that
the best descriptor is LBP, that the best classifier is RSNN
and that both oocytes and embryos are useful. These results
prove that LBP descriptor performs better than the
grey-level moments described (Patrizi et al., 2004; Manna
et al., 2004; Morales et al., 2008a,b) even if the results
are not directly comparable since they used a different test-
ing protocol and data set.

The second test was aimed to evaluate the proposed
approach using a semi-supervised learning method. For this
second test, only the final method proposed in this paper
(LBP + RSNN) was used. The results reported in Table 6
are obtained using an ‘imperfect teacher’ to label the
uncertain training patterns (Manna et al., 2004). In brief,
certain instances of the training set are used to classify
the other training patterns, i.e. if, in a group of n
oocytes/embryos transferred to the same uterus, d births
were obtained, then the d embryos with highest similarities
to the class ‘birth’ are assigned to that class and the remain-
ing n — d are assigned to the class ‘no-birth’. This procedure
allows uncertain labels to be eliminated.

Finally in Table 7, the proposed method is evaluated
using a different semi-supervised learning system, consist-
ing of performing 150 times a 10-fold cross validation on
the training set. The 10-fold cross validation consists in ran-
domly dividing the data set into 10 equally sized subsets D;:
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Table 2 AUC obtained on the oocyte data set
according to the first testing protocol.

Descriptor Classifier

TRACE NN RSNN
Moments 0.45 0.51 0.49
LBP 0.62 0.79 0.79

LBP = local binary patterns; NN = stand-alone neural
network; RSNN =random subspace ensemble of
neural networks; TRACE =the TRACE algorithm
(Manna et al., 2004).

Table 3 AUC obtained on the embryo data set
according to the first testing protocol.

Descriptor Classifier

TRACE NN RSNN
Moments 0.60 0.60 0.71
LBP 0.71 0.75 0.83

LBP = local binary patterns; NN = stand-alone neural
network; RSNN =random subspace ensemble of
neural networks; TRACE =the TRACE algorithm
(Manna et al., 2004).

Table 4 AUC obtained on the oocyte data set
according to the second testing protocol.

Descriptor Classifier

TRACE NN RSNN
Moments 0.49 0.50 0.51
LBP 0.70 0.75 0.72

LBP = local binary patterns; NN = stand-alone neural
network; RSNN =random subspace ensemble of
neural networks; TRACE =the TRACE algorithm
(Manna et al., 2004).

nine of these subsets are used for training and one as test
set. Each time, the training patterns with an uncertain label
are assigned to a given class and the final labels are
obtained considering the major vote rule among the 150
times. In any case if a group of n embryos transferred to
the same uterus gave rise to d births, only the d embryos
with highest similarities to the class ‘birth’ are assigned to
that class.

A ROC curve for the semi-supervised learning system is
depicted in Figure 3. The AUC of this system is around 0.8
using the first testing protocol and can be considered good.
It is interesting to note that only the supervised classifica-
tion is useful to improve the classification performance,
probably because in this problem there are only a very
few patterns that have a certain label ‘birth’. Another inter-
esting result of the experiment is that the best performance
is obtained using oocytes: this is due to the fact that the

Table 5 AUC obtained on the embryo data set
according to the second testing protocol.

Descriptor Classifier

TRACE NN RSNN
Moments 0.51 0.53 0.52
LBP 0.58 0.65 0.65

LBP = local binary patterns; NN = stand-alone neural
network; RSNN =random subspace ensemble of
neural networks; TRACE =the TRACE algorithm
(Manna et al., 2004).

oocytes are more similar in texture, therefore they probably
fit better to textural information analysis.

Discussion

This paper focuses on a new method for embryo and oocyte
image classification based on a textural descriptor (local
binary pattern) and on a random subspace ensemble of
Levenberg—Marquardt neural networks. The results clearly
outperform the existing approaches (Patrizi et al., 2004;
Manna et al., 2004) and are encouraging, in particular con-
sidering that they have been obtained using a ‘small’ train-
ing set with very few positive samples (~0.8 AUC
considering the leave-one-out-woman testing protocol).
For pronucleated oocytes and embryos, it is probable that
other type of descriptors not specifically designed for
prevalent textural images might be used. In fact, the align-
ment and the number of nucleoli or the number and size of
blastomeres are not textural features.

Experience shows that embryo quality is not clearly
related to oocyte appearance. Similar clinical pregnancy
and implantation rates have been published after the trans-
fer of embryos from ‘abnormal’ or ‘normal’ appearing
oocytes (Balaban et al., 1998; Balaban and Urman, 2006).
However a score based on the morphological appearance
of the oocyte has been proposed to indicate some develop-
mental potential of the subsequent embryo (Rienzi et al.,
2008).

Features incorporated in the texture of images are not
usually perceived by the human eye and their analysis by
artificial intelligence methodology might be used in a new
tool for the recognition of viable embryos or oocytes. At
the same time, the human perception of other features (i.e.
evenness and number of blastomeres with their nuclei, frag-

Table 6 AUC obtained using local binary pat-
terns + random subspace ensemble of neural
networks and one iteration of the semi-super-
vised system.

Data set Testing protocol

First Second
Oocytes 0.73 0.68
Embryos 0.81 0.72
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Table 7 AUC obtained using local binary
pattern features and 150 iterations of the
semi-supervised system.

Data set Testing protocol

First Second
Oocytes 0.80 0.75
Embryos 0.83 0.69

mentation, number and disposition of nucleoli) is subjective
and clearly limited also because they change with time. A
possible future investigation might include pattern recogni-
tion modalities with new tools such as time-lapse monitor-
ing systems (Meseguer et al., 2011) for a comprehensive
prediction of oocyte or embryo implantation rate. With
time-lapse techniques, a very great number of images could
be offered to pattern recognition processing and artificial
intelligence methodology in a very controlled condition. In
the present work, the time of observations is that used in
the traditional score given by an experienced embryologist.
It should be noted that the analysis was performed on bidi-
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mensional images, whereas in the IVF laboratory a
three-dimensional score is applied to each element (oocyte,
pronuclei, embryo). However, pattern recognition analysis
might also be performed in several planes with automated
devices (Javidi and Tajahuerce, 2001) although even with
two dimensions the current results were reliable.

Aiduk and Zernicka-Goetz (2012) reported morphody-
namic patterns of cytoplasmic movements in human oocytes
and embryos imaged by time lapse. They could be processed
with pattern recognition and artificial intelligence method-
ologies. Certainly time lapse is a significant advantage over
a static assessment scheme but it does not necessarily rule
out the possibility of adding valuable information coming
from large databases of stored images especially when used
with new technologies such as pattern recognition and arti-
ficial intelligence techniques. The two possibilities
(dynamic and static observation) might be used together
and integrated in a more thorough analysis for practical
aims in a normal IVF clinical setting.

An important application for the selection of viable
oocytes might be the optimization of the cryopreservation
strategy and the avoidance of embryo selection in countries
where it is not permitted. In this perspective, this system

(B) ROC curve for oocytes 2TP
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(D) ROC curve for embryos 2TP

08 k

08t E

07 E

06 ]

051 E

sensiivity

04 4

03f b

02t E

01 4

0 L 1 L L L s L L L
0 01" 02 03 04 05 06 07 08B 08 1

1-specificity

Receiver operating characteristic (ROC) curves: (A) oocytes with first testing protocol (1TP), (B) oocytes with second

testing protocol (2TP), (C) embryos with 1TP, (D) embryos with 2TP. Areas under the curve are reported in Table 7.
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gave interesting performances for
assessment.

Another advantage of the system described in this work
derives from the digital format of the images and its rela-
tively simple possibility of capture, storing, displacement
and sharing. A great and growing number of image files
might be collected in large databases and shared among
IVF laboratories, also to improve pattern recognition
methodology.

The most practical and original perspective of this study
is the possibility of obtaining a reliable method to help phy-
sicians and biologists in selecting embryos or oocytes. This
study group is planning to test the proposed method on a
larger data set, using an automated segmentation proce-
dure and to combine the information coming from the
oocytes, pronuclei and embryos.

The proposed approach might become a tool shared
among several IVF laboratories for objective, automatic
and non-invasive oocyte or embryo assessment.

oocyte quality

References

Aiduk, A., Zernicka-Goetz, M., 2012. Advances in embryo selection
methods. F100. Biol. Rep. 4, 11.

Balaban, B., Urman, B., 2006. Effect of oocyte morphology on
embryo development and implantation. Reprod. Biomed. Online
12, 608—615.

Balaban, B., Urman, B., Sertac, A., Alatas, C., Aksoy, S., Mercan,
R., 1998. Oocyte morphology does not affect fertilization rate,
embryo quality and implantation rate after intracytoplasmic
sperm injection. Hum. Reprod. 13, 3431—3433.

Balaban, B. Alpha Scientists in Reproductive Medicine and Eshre
Special Interest Group, 2011. The Istanbul consensus workshop
on embryo assessment: proceedings of an expert meeting.
Embryol. Hum. Reprod. 26, 1270—1283.

Benagiano, G., Gianaroli, L., 2004. The new Italian IVF legislation.
Reprod. Biomed. Online 9, 117—125.

Cruz, M., Gadea, B., Garrido, N., See Pedersen, K., Martinez, M.,
Pérez-Cano, I., Muioz, M., Meseguer, M., 2011. Embryo quality,
blastocyst and ongoing pregnancy rates in oocyte donation
patients whose embryos were monitored by time-lapse imaging.
J. Assist. Reprod. Genet. 23, 173.

De Placido, G., Wilding, M., Strina, I., Alviggi, E., Alviggi, C., Mollo,
A., Varicchio, M.T., Tolino, A., Schiattarella, C., 2002. Dale
B.-High outcome predictability after IVF using a combined score
for zygote and embryo morphology and growth rate. Hum.
Reprod. 17, 2402—2409.

Duda, R., Hart, P., Stork, D., 2001. Pattern Classification. Wiley,
New York.

Fawcett, T., 2004. ‘ROC Graphs: Notes and Practical Considerations
for Researchers’. Technical Report. HP Laboratories, Palo Alto,
USA.

Gardner, D.K., Vella, P., Lane, M., Wagley, L., Schlenker, T.,
Schoolcraft, W.B., 1998. Culture and transfer of human blasto-
cysts increases implantation rates and reduces the need for
multiple embryo transfers. Fertil. Steril. 69, 84—88.

Germond, M., Senn, A.A., 1999. Law affecting medically assisted
procreation is on the way in Switzerland. J. Assist. Reprod.
Genet. 16, 341—-343.

Gianaroli, L., Magli, M.C., Ferraretti, A.P., Fortini, D., Grieco, N.,
2003. Pronuclear morphology and chromosomal abnormalities as
scoring criteria for embryo selection. Fertil. Steril. 80, 341—349.

Giorgetti, C., Terriou, P., Auquier, P., Hans, E., Sparch, J.L.,
Salzmann, J., Roulier, R., 1995. Embryo score to predict

implantation after in-vitro fertilization: based on 957 single
embryo transfer. Hum. Reprod. 10, 2427—-2431.

Hagan, M.T., Menhaj, M., 1994. Training feed-forward networks
with the Marquardt algorithm. IEEE Trans. Neural Netw. 5,
989—993.

Hesters, L., Prisant, N., Fanchin, R., Mendez Lozano, D.H.,
Feyereisen, E., Frydman, R., Tachdjian, G., Frydman, N., 2008.
Impact of early cleaved zigote morphology on embryo develop-
ment and in vitro fertilization-embryo transfer outcome: a
prospective study. Fertil. Steril. 89, 1677—1684.

Javidi, B., Tajahuerce, E., 2001. Three-dimensional pattern recog-
nition: algorithms and systems 251658240 In: Proceedings,
Automatic Target Recognition XI, vol. 4379. October 2001. pp.
277-288.

Lemmen, J.G., Agerholm, I., Ziebe, S., 2008. Kinetic markers of
human embryo quality using time-lapse recordings of
IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 17,
385—391.

Manna, C., Patrizi, G., Rahman, A., Sallam, H., 2004. Experimental
results on the recognition of embryos in human assisted
reproduction. Reprod. BioMed. Online 8, 460—469.

Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K.M., Ramsing,
N.B., Remohi, J., 2011. The use of morphokineticsas a predictor
of embryo implantation. Hum. Reprod. 26, 2658—2671.

Montag, M., Schimming, T., Koster, M., Zhou, C., Dorn, C., Rosing,
B., van der Ven, H., van der Ven, K., 2007. Oocyte zona
birefringence intensity is associated with embryonic implanta-
tion potential in ICSI cycles. Reprod. Biomed. Online 16,
239—-244.

Morales, D.A., Bengoetxea, E., Larrafiaga, P., Garcia, M., Franco,
Y., Fresnada, M., Merino, M., 2008a. Bayesian classification
for the selection of in vitro human embryos using morpho-
logical and clinical data. Comput. Methods Prog. Biomed. 90,
104—116.

Morales, D.A., Bengoetxea, E., Larrafhaga, P., 2008b. Selection of
human embryos for transfer by Bayesian classifiers. Comput.
Biol. Med. 38, 1177—1186.

Nanni, L., Lumini, A., 2008. A reliable method for cell phenotype
image classification. Artif. Intell. Med. 43, 87—97.

Nanni, L., Lumini, A., Brahnam, S., 2010. Local Binary Patterns
variants as texture descriptors for medical image analysis. Artif.
Intell. Med. 49, 117—125.

Ojala, T., Pietikainen, M., Maeenpaa, T., 2002. Multiresolution
Gray-Scale and Rotation Invariant Texture Classification with
Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24,
971-987.

Oldenbourg, R., 1996. A new view on polarized microscopy. Nature
381, 175—2008.

Patrizi, G., Manna, C., Moscatelli, C., Nieddu, L., 2004. Pattern
recognition methods in human-assisted reproduction. Int. Trans.
Oper. Res. 11, 365—379.

Patrizio, P., Fragouli, E., Bianchi, V., Borini, A., Wells, D., 2007.
Molecular methods for selection of the ideal oocyte. Reprod.
Biomed. Online 15, 346—353.

Puissant, F., Van Rysselberge, M., Barlow, P., Deweze, J., Leroy,
F., 1987. Embryo scoring as a prognostic tool in IVF treatment.
Hum. Reprod. 2, 705—708.

Rienzi, L., Ubaldi, F., lacobelli, M., Minasi, M.G., Romano, S.,
Ferrero, S., Sapienza, F., Baroni, E., Litwicka, K., Ermanno
Greco, E., 2008. Significance of metaphase Il human oocyte
morphology on ICSI outcome. Fertil. Steril. 90, 1692—1700.

Scott, L.A., Smith, S., 1998. The successful use of pronuclear
embryo transfers the day following oocyte retrieval. Hum.
Reprod. 13, 1003—1013.

Van der Ven, H., Montag, M., van der Ven, K., 2002. Performance of
in vitro fertilization in Germany. Z. Arztl. Fortbild. Qualitatss-
ich. 96, 369—374.



Artificial intelligence techniques for embryo and oocyte classification 49

Van Steirteghem, A.C., Nagy, Z., Joris, H., Liu, J., Staessen, C., Declaration: The authors report no financial or commercial
Smitz, J., Wisanto, A., Devroey, P., 1993. High fertilization and conflicts of interest.
implantation rates after intracytoplasmic sperm injection. Hum.
Reprod. 8, 1061—1066. Received 14 May 2012; refereed 13 September 2012; accepted 13
Verlinsky, Y., Ginsberg, N., Lifchez, A., Valle, J., Moise, J., Strom, September 2012.
C.M., 1990. Analysis of the first polar body: preconception
genetic diagnosis. Hum. Reprod. 5, 826—829.



	Artificial intelligence techniques for embryo  and oocyte classification
	Introduction
	Materials and methods
	Study design
	Artificial intelligence techniques
	Segmentation and preprocessing
	Feature extraction
	Classification

	Statistical analysis

	Results
	Discussion
	References


