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Abstract

To overcome the low implantation rate (10–20%) following IVF in humans, more than two embryos are commonly replaced, 
potentially leading to high order multiple pregnancies with associated signifi cantly elevated risks. Selecting the most viable 
embryos and transferring fewer of them could reduce this risk. Prolonged culture of embryos in vitro to the blastocyst stage 
may expose the embryo to hazards not normally encountered in the female reproductive tract. Recent studies comparing bovine 
oocyte maturation, fertilization and embryo culture in vivo and in vitro have demonstrated that the origin of the oocyte is the 
main factor affecting blastocyst yield, while the post-fertilization culture environment is crucial in determining blastocyst 
quality, measured in terms of cryotolerance and relative transcript abundance, irrespective of the origin of the oocyte. Production 
of embryos in vitro, particularly when using an extended period of in-vitro culture may predispose the embryo to phenomena 
such as ‘large offspring syndrome’, which is probably linked to altered gene expression, particularly of imprinted genes. Post-
fertilization culture environment clearly has a profound effect on the relative abundance of gene transcripts within the embryo. 
Culture under sub-optimal conditions for even one day can lead to perturbations in the pattern of expression.
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Introduction

It is now more than 25 years since the birth of the fi rst IVF 
baby, but success rates are still disappointingly low, with only 
1:5 couples going home with a child. The advent of techniques 
such as intracytoplasmic sperm injection (ICSI) and surgical 
sperm retrieval has meant that fertilization can now be achieved 
in almost all couples. However, apparently normal embryos are 
often replaced into the mother but fail to implant.

In human assisted reproduction treatment a trade-off exists 
between the risk of multiple pregnancy and the prospects for 
pregnancy itself. One way of tipping the balance against multiple 
pregnancies would be to select the most viable embryos for 
transfer and to transfer fewer of them. Two approaches towards 
this objective are: to select the fastest cleaving embryos for transfer 
at day 2 or 3 (Shoukir et alat day 2 or 3 (Shoukir et alat day 2 or 3 (Shoukir ., 1997; Lonergan et al., 1999; Sakkas
et al., 2001; Fenwick et al., 2001; Fenwick et al., 2001; Fenwick ., 2002; Salumets et al., 2003); or the 
prolonged culture of embryos in vitro for ~5 days to the blastocyst 

stage, by which time the least viable have succumbed, leaving the 
most competent for transfer (Gardner et almost competent for transfer (Gardner et almost competent for transfer (Gardner ., 1998a,b, 2000).

In humans, blastocyst culture has been reported to substantially 
increase the implantation rate per embryo transferred (Gardner
et al., 1998a; Huisman et al., 2000; Milki et al., 2000) although 
this has been questioned (Kolibianakis and Devroey, 2002). 
The safety of prolonged culture in humans has not been fi rmly 
established, especially in light of the numerous studies from 
domestic ruminants of abnormalities apparently associated with 
perturbations induced by in-vitro culture (Menezo et al., 1999; 
Sinclair et alSinclair et alSinclair ., 2000; Sinclair and Singh, 2004).

Such extended culture allows the embryos to ‘select’ themselves 
by growth to the blastocyst stage. In addition, it would help 
synchronize embryonic stage with the female tract. However, 
blastocyst formation itself does not fully refl ect the viability of 
the embryo (Tsirigotis, 1998; Jones and Trounson, 1999) and not 
all blastocysts are of equal quality (Rizos et al., 2002b,c, 2003). 340
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Indeed, blastocyst development is only one step along the road to Indeed, blastocyst development is only one step along the road to 
the production of a live offspring and, as pointed out by McEvoythe production of a live offspring and, as pointed out by McEvoy
et al. (2000), attainment of that stage is more a refl ection of past . (2000), attainment of that stage is more a refl ection of past 
achievement than a guarantee of future ability to implant and give achievement than a guarantee of future ability to implant and give 
rise to an offspring.rise to an offspring.

Embryo production in vitro

Generally, for the production of embryos in human assisted 
reproduction treatment, a matured oocyte is recovered from 
the pre-ovulatory follicle and inseminated shortly afterwards, 
and the resulting zygote is cultured for 1 or 2 days before being 
transferred back to the same donor. By contrast, production of 
domestic animal embryos in vitro is essentially a three-step 
process involving in-vitro maturation (IVM) of immature oocytes 
recovered from antral follicles, IVF, and subsequent culture of the 
in-vitro-derived zygote to the blastocyst stage, at which point they 
are transferred to surrogate recipients. In terms of effi ciency, in 
cattle approximately 90% of immature oocytes undergo nuclear 
maturation in vitro from prophase I to metaphase II (the stage at 
which they would be ovulated in vivo); and about 80% undergo 
fertilization and cleave at least once, to the 2-cell stage. However, 
only 30–40% reach the blastocyst stage. Thus, the major fall-off 
in development occurs during the last part of the process (in-vitro 

culture), between the zygote and blastocyst stages, suggesting that 
post-fertilization embryo culture is the most crucial point in the 
process in terms of determining blastocyst yield. However, it is 
known now that this is not the case; there is unequivocal evidence 
demonstrating that events further back along the developmental 
axis (i.e., the quality of the oocyte) are crucial in determining 
the proportion of immature oocytes that form blastocysts and 
that in fact the post-fertilization culture environment, within 
certain limits, does not have a major infl uence on the capacity 
of the immature oocyte to form a blastocyst (Rizos et al., 2002c, 
2003).

There is considerable evidence supporting the notion that the 
post-fertilization culture environment is crucial in determining 
the quality of the blastocyst, assessed in terms of cryotolerance 
and gene expression pattern. For example, by culturing in-
vitro-produced bovine zygotes in vivo in the ewe oviduct, it is 
possible to dramatically increase the quality of the resulting 
blastocysts, measured in terms of cryotolerance, to a level similar 
to that of totally in-vivo-produced embryos (Galli and Lazzari, 
1996; Enright et al1996; Enright et al1996; Enright ., 2000; Rizos et al., 2002c) (Figure 1a). 
Furthermore, in the reciprocal experiment, the culture in vitro
of in-vivo-produced bovine zygotes results in blastocysts of low 
cryotolerance (Rizos et al., 2002c) (Figure 1b). In other words, 
the culture of ‘poor quality’ zygotes, produced by IVM and 
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Figure 1. Development and survival after cryopreservation of bovine blastocysts produced following (a) maturation and fertilization 
in vitro and culture either in vitro or in vivo, or (b) maturation and fertilization in vivo and culture either in vivo or in vitro. Note 
that blastocyst yield following in-vitro maturation (IVM) and IVF was approximately 35% compared with approximately 80% 
following in-vivo maturation and fertilization and that this was not affected by culture environment. In addition, note that the 
survival of in-vivo (solid line) cultured blastocysts after cryopreservation was signifi cantly higher than those cultured in vitro
(dashed line), irrespective of the origin of the oocyte. Data from Rizos et al. (2002c).
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IVF, in vivo leads to the production of high quality blastocysts 
(albeit at low frequency), and, conversely, the culture of ‘high 
quality’ zygotes, produced by IVM and IVF, in vitro leads 
to the production of poor quality blastocysts (albeit at high 
frequency).

Apart from the absolute number of blastocysts produced from 
a given number of oocytes, the quality of in-vitro-produced 
bovine blastocysts continually lags behind that of blastocysts 
produced in vivo. Compared with their in-vivo counterparts, 
in-vitro-produced embryos tend to have darker cytoplasm 
and a lower buoyant density (Pollard and Leibo, 1994) as a 
consequence of their higher lipid content (Abd El Razek et 
al., 2000), a more fragile zona pellucida (Duby et al., 1997), 
reduced expression of intercellular communicative devices 
(Boni et al., 1999), differences in metabolism (Khurana and 
Niemann, 2000; Thompson, 2000) and a higher incidence of 
chromosomal abnormalities (Viuff et alchromosomal abnormalities (Viuff et alchromosomal abnormalities (Viuff ., 1999; Slimane et al., 
2000). In addition, many differences at the ultrastructural level 
have been reported (Crosier et al., 2000, 2001, 2002; Fair et 
al., 2001; Rizos et al., 2002a). There are also major differences 
in gene expression patterns, which will be discussed below.

Indicators of embryo quality

Preimplantation embryos exhibit an amazing plasticity and 
tolerance when it comes adapting to the environment in which 
they are cultured. They are capable of developing in media 
ranging in composition from simple balanced salt solutions 
to complex systems involving serum and somatic cells. At 
least a proportion of the blastocysts that develop in culture are 
developmentally competent, as evidenced by the fact that live 
offspring have resulted following transfer.

The primary criterion for embryo selection after human IVF 
is the morphological appearance based on a combination of 
cell number and fragmentation (Van Royen et al., 2001). In 
the past few years, the possibilities of viable embryo selection 
at the early cleavage stages have been improved substantially 
by the introduction of non-invasive scoring criteria applicable 
as early as the pronuclear stage and by refi ning the scoring 
criteria for cleaving embryos. Among the various approaches 
are: zygote/pronuclear morphology; kinetics of early cleavage; 
amino acid turnover; HLA-G; and gene expression profi le.

Zygote/pronuclear morphology

Pronuclear morphology has been used to predict embryo 
development and chromosomal constitution (Balaban et 
al., 2004); embryos developing from zygotes with a normal 
pronuclear pattern cleaved faster and formed embryos with 
better morphology compared with those with abnormal 
patterns. The morphological parameters for zygote quality 
include the number of nucleolar precursor bodies and their 
distribution in the pronuclei (Scott et al., 2000; Tesarik et al., 
2000; Wittemer et al., 2000).

Kinetics of early cleavage

A clear relationship between the time of fi rst cleavage post-
insemination in vitro and the developmental competence of the 

embryo has been demonstrated in many domestic species, with 
those oocytes cleaving earliest after IVF being more likely to 
reach the blastocyst stage than their later-cleaving counterparts 
(rhesus monkey: Bavister et al(rhesus monkey: Bavister et al(rhesus monkey: Bavister ., 1983; hamster: McKiernan and 
Bavister, 1994; buffalo: Totey et al., 1996; mouse: Warner et ., 1996; mouse: Warner et ., 1996; mouse: Warner
al., 1998; cattle: Lonergan et al., 1999). In humans, Edwards et 
al. (1984) reported that patients whose embryos cleaved to the 
8-cell stage by 55 h post-insemination achieved a pregnancy 
rate of nearly double that for embryos that reached the same 
stage after 56 h. Subsequently, many reports have confi rmed 
the usefulness of this phenomenon in selecting human embryos 
with improved developmental competence (Sakkas et al., 1998; 
Shoukir et alShoukir et alShoukir ., 1998; Bos-Mikich et al., 2001; Fenwick et al., 2001; Fenwick et al., 2001; Fenwick ., 
2002), where such embryos have been reported to result in 
higher pregnancy rates after multiple or single (Van Montfoort
et al., 2004) embryo transfer.

It has been shown that the timing of the fi rst cleavage division in 
cattle embryos is related to the polyadenylation status of several 
developmentally important gene transcripts (Brevini-Gandolfi 
et al., 2002). Subsequently, differences in gene expression in 
the early embryo have been demonstrated that are refl ective of 
differences in developmental competence between early- and 
late-cleaving zygotes (Lonergan et al., 2000; Fair et al., 2000; Fair et al., 2000; Fair ., 2004a). 
The factors that control the time of fi rst cleavage are unclear. 
Although culture conditions can infl uence the kinetics of early 
development (Van Langendonckt et aldevelopment (Van Langendonckt et aldevelopment (Van Langendonckt ., 1997), it is likely that 
the main factors controlling this parameter are intrinsic to the 
oocyte (Lonergan et al., 1999; Lonergan et al., 2000; Brevini-
Gandolfi  et al., 2002), the spermatozoon (Eid and Parrish, 1995; 
Comizzoli et al., 2000; Ward et al., 2001), or both.

In mice, a gene controlling the rate of preimplantation cleavage 
division and subsequent embryo survival (preimplantation 
embryo development, or Ped) has been identifi ed (Warner et alembryo development, or Ped) has been identifi ed (Warner et alembryo development, or Ped) has been identifi ed (Warner ., 
1998). The Ped gene is located at the Q region of the mouse Ped gene is located at the Q region of the mouse Ped
MHC (Warner et alMHC (Warner et alMHC (Warner ., 1987, 1991). The protein product of the 
Ped gene is the Qa-2 antigen; embryos that express Qa-2 protein Ped gene is the Qa-2 antigen; embryos that express Qa-2 protein Ped
cleave at a faster rate than those that do not.

Amino acid turnover

Non-invasive metabolic profi ling can predict the ability of human 
embryos to develop in culture (Houghton et al., 2002); embryos 
that develop from an early cleavage stage to the blastocyst stage 
exhibit a different profi le of amino acid turnover to those that 
arrest (Ala, Arg, Gln, Met, Asn). Houghton and colleagues 
subsequently applied this test retrospectively in a clinical IVF 
setting and found that the turnover of three amino acids (Asn, 
Gly, Leu) was signifi cantly correlated with pregnancy and a live 
birth (Brison et al., 2004).

Human leukocyte antigen-G

One of the potentially more exciting markers of embryo 
developmental potential is soluble human leukocyte antigen-G 
(sHLA-G). HLA-G mRNA and protein have been shown to be 
expressed in a proportion of human IVF embryos (Juriscova et expressed in a proportion of human IVF embryos (Juriscova et expressed in a proportion of human IVF embryos (Juriscova
al., 1996), and those embryos that secrete the soluble form of 
HLA-G are apparently more likely to produce pregnancies when 
transferred back into the uterus than those that do not (Menicucci
et al., 1999; Fuzzi et al., 2002; Sher et al., 2002; Sher et al., 2002; Sher ., 2004; Noci et al., 2005; 342
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Yie et al et al., 2005). This is an important new fi nding , which has 
signifi cant implications for the selection of the best embryos for signifi cant implications for the selection of the best embryos for 
transfer in IVF. The availability of a non-invasive, quantitative transfer in IVF. The availability of a non-invasive, quantitative 
assay for a marker of implantation potential (such as sHLA-G) assay for a marker of implantation potential (such as sHLA-G) 
could revolutionize IVF practice by increasing success rates could revolutionize IVF practice by increasing success rates 
and lowering the risk of multiple pregnancies by reducing the and lowering the risk of multiple pregnancies by reducing the 
number of embryos that need to be transferred.number of embryos that need to be transferred.

The present authors have investigated expression of MHC class 
I transcription in preimplantation bovine embryos (Fair et alI transcription in preimplantation bovine embryos (Fair et alI transcription in preimplantation bovine embryos (Fair ., 
2004b) using primers that amplify all forms of class I. This study 
showed that the relative abundance of class I transcripts was 
higher in early cleaving embryos, compared with late cleaving 
embryos. A comparison between in-vitro- and in-vivo-cultured 
embryos showed that the MHC transcription increase was 
signifi cantly higher in the latter. These results suggest that cattle 
may have a gene with a similar function to the mouse Ped gene Ped gene Ped
mentioned above. However, no sequence data were derived from 
the PCR-amplifi ed class I fragments, and further investigation is 
thus required to determine whether classical and/or non-classical 
class I genes are being up-regulated.

Gene expression profi le

Gene expression has a fundamental role in the co-ordination 
of homeostatic and metabolic mechanisms throughout life. 
Precise control of gene expression during the preimplantation 
phase of development is particularly important; several major 
developmental events occur during this period, including: (i) 
the fi rst cleavage division, the timing of which is important 
(Lonergan et al., 1999; see below); (ii) embryonic genome 
activation, when the embryo transfers from a reliance on 
maternal RNA derived from the oocyte to expression of its own 
genome (Memili and First, 2000); (iii) morula compaction, 
which involves the establishment of the fi rst intimate cell-to-cell 
contacts in the embryo (Boni et al., 1999); and (iv) blastocyst 
formation, involving the differentiation of two cell types, the 
trophectoderm and the inner cell mass (Watson, 1992).

The advent of reverse transcription-polymerase chain reaction 
(RT-PCR) in the late 1980s (Rappolee et al., 1988) paved the way 
for the analysis of expression patterns of individual genes during 
embryo development. However, many would argue that such a 
gene-by-gene approach provides too narrow a view of what are 
complex underlying regulatory networks. Although adequate 
for quantifi cation of single transcripts, the analysis of multiple 
genes using this technique is labour-intensive. Depending on 
their composition, microarrays potentially allow a genome-
wide perspective by profi ling the expression of thousands of 
genes simultaneously, and such global gene expression profi les 
can be used to reveal and characterize the pattern of maternal 
mRNA degradation and zygotic gene activation, and the effect 
of modifi cations to culture environment on the pattern of embryo 
gene expression (Sharov et al., 2003; Bermudez et al., 2004; 
Hamatani et al., 2004; Corcoran et al., 2005)

There has been some interest in predicting pregnancy outcome 
from granulosa cell markers of competence. Robert et alfrom granulosa cell markers of competence. Robert et alfrom granulosa cell markers of competence. Robert . (2003) 
reported that while the presence of LH-R transcripts in bovine 
granulosa cells is not a key characteristic of a follicle bearing 
a competent oocyte, a higher proportion of oocytes reach the 
blastocyst stage when LH-R mRNA is detected in the granulosa 

cells. McKenzie et al. (2004) examined the relationship between 
human cumulus granulosa cell expression of several genes and 
subsequent embryo development. Of the genes studied, the 
expression of three (PTGS2, HAS2 and GREM1) were related 
to morphological and physiological characteristics.

Due to diffi culties in obtaining material, large-scale studies on 
gene expression in human embryos are scarce (Wells et al., 2005). 
In addition, in some instances the material used (e.g. oocytes that 
failed to fertilize, retarded embryos) is compromised. Therefore, 
information derived from animal studies, where numbers of 
embryos are rarely limiting, can yield valuable information. 
Nonetheless, there is an increasing number of publications on 
gene expression in human embryos that further understanding 
of the regulatory factors involved in early development (e.g., 
Bermudez et al., 2004; Hansis et al., 2004; Lindeberg et al., 
2004).

Analysis of expression patterns of developmentally important 
genes essential in early development provides a useful tool 
to assess the normality of the produced embryos and a tool to 
optimize assisted reproduction technologies. In domestic species, 
there is a large body of evidence demonstrating that culture media 
can perturb gene expression in the developing embryo (see review 
by Wrenzycki et al., 2005). This is the case, not only when one 
compares in-vitro and in-vivo culture systems, but also different 
in-vitro culture systems (Eckert and Niemann, 1998; Wrenzycki
et al., 1999; Doherty et al., 2000; Wrenzycki et al., 2000; Lee et 
al., 2001; Lequarre et al., 2001; Natale et al., 2001; Wrenzycki et 
al., 2001; Rief et al., 2001; Rief et al., 2001; Rief ., 2002; Rizos et al., 2002b, 2003; Lonergan
et al., 2003). Rizos et al. (2002b) (Figure 2) examined the 
expression of several genes known to be involved in apoptosis 
(Bax), oxidative stress (Mn-SOD), gap junction formation (Cx43) 
and differentiation (LIF and LIF and LIF LIF-Rβ) in blastocysts derived from 
in-vitro matured and fertilized oocytes, which were cultured 
either in vitro in serum-supplemented synthetic oviduct fl uid 
(SOF) or in vivo in the ewe oviduct and compared the pattern of 
expression with that of in-vivo-derived blastocysts. Culture in 
vitro resulted in, among other differences, an elevated abundance 
of transcripts for Bax, as well as reduced expression of the gap 
junction gene, Cx43. In general, bovine blastocysts derived from 
culture in the sheep oviduct were characterized by an expression 
pattern that was nearly identical to that of their in-vivo-produced 
counterparts. Very similar fi ndings were subsequently reported 
by Lazzari et al. (2002). Furthermore, in a comparison of serum-
free and serum-supplemented SOF (Rizos et al., 2003) (Figure 
3), the presence of serum during the culture period resulted in a 
signifi cant increase in the level of expression of Mn-SOD, SOX, 
Bax, LIF and LIF and LIF LIF-Rβ and a decrease in the relative abundance β and a decrease in the relative abundance β
of transcripts for Cx43 and interferon-τ. Corcoran et al. (2005), 
using cDNA micoarrays, identifi ed previously uncharacterized, 
differentially expressed, genes involved in cell communication, 
intracellular signalling and regulation of transcription in bovine 
blastocysts cultured in vivo or in vitro; microarray analysis 
identifi ed 15 gene transcripts that were differentially expressed 
between blastocysts produced in vivo or in vitro. Studies on the 
temporal expression of some of these transcripts have shown that 
such alterations in mRNA abundance have their origins early 
during the post-fertilization culture phase (Lonergan et al., 2003) 
(Figure 4a, b).

The marked aberrations in a proportion of embryos produced 
in vitro demonstrate that current in-vitro production systems 
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Figure 3. Relative abundance of transcripts for Bos taurus apoptosis regulator box-α (Bax), connexin 43 (Cx43) and bovine 
leukaemia inhibitory factor (LIF) in bovine blastocysts produced in vitro in synthetic oviduct fl uid medium in the presence or 
absence of fetal calf serum (FCS). An asterisk indicates a signifi cant difference (P < 0.05). Data from Rizos et al. (2003).

Figure 2. Relative transcript abundance for three selected genes in bovine blastocysts produced under different conditions. For each  Relative transcript abundance for three selected genes in bovine blastocysts produced under different conditions. For each 
group, mRNA extracted from 10 embryos (lane 1) was sequentially diluted in fi vefold steps (lane 2: ×5; lane 3: ×25; lane 4: ×125) 
and subjected to reverse-transcription polymerase chain reaction. Blastocysts from three sources were used: (i) in-vitro culture in 
synthetic oviduct fl uid (SOF) of in-vitro matured (IVM)/IVF zygotes; (ii) in-vivo culture in the ewe oviduct of IVM/IVF zygotes; 
or (iii) in-vivo culture, following ovulation induction, artifi cial insemination and recovery. Bax, Bos taurus apoptosis regulator box-
α; Cx43, connexin 43; LR-β, bovine leukaemia inhibitory factor-receptor-β. Data from Rizos et al. (2002b).
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may lead to persistent alterations of gene expression patterns 
during embryonic and fetal development and may lead to fetal 
and neonatal abnormalities. The so-called ‘large offspring 
syndrome’ in domestic ruminants is characterized by a variety 
of abnormal phenotypes, including signifi cant increases in 
birthweight, polyhydramnios, hydrops fetalis, altered organ 
growth, various placental and skeletal defects, immunological 
defects and increased perinatal death (for reviews, see Walker
et al., 1996; Kruip and den Daas, 1997; Young et al., 1998; 
Niemann and Wrenzycki, 2000; Sinclair et alNiemann and Wrenzycki, 2000; Sinclair et alNiemann and Wrenzycki, 2000; Sinclair ., 2000).

Evidence for a direct link between manipulation of the early 
embryo and epigenetic modifi cations to DNA leading to 
altered imprinted gene expression (reviewed by Santos and 
Dean, 2004) has been established in mice (Doherty et al., 
2000; Khosla et al., 2001) and sheep (Young et al., 2001). The 
expression of imprinted genes appears particularly sensitive to 
culture conditions; normal maternal monoallelic expression of 
H19 is observed after culture in modifi ed simplex optimized 
medium + amino acids (KSOM/AA), whereas biallelic 
expression is found after culture in Whitten’s medium (WM) 
(Doherty et al., 2000; Khosla et al., 2001). Rinaudo and Schultz 
(2004) compared global patterns of gene expression in mouse 
blastocysts derived from culture in WM or KSOM/AA with that 
of in-vivo-derived blastocysts using the Affymetrix MOE430A 
chip. The expression of 114 genes was affected after culture 
in WM, whereas only 29 were mis-expressed after culture in 
KSOM/AA. These results are consistent with KSOM/AA 
supporting better development in vitro.

The identifi cation and characterization of the short-term 
effects of in-vitro culture raises the question about long-term 
consequences and safety of assisted reproductive technologies. 
For example, recent reports indicate that in-vitro culture of 
mouse embryos can have irreversibly long-term consequences 

of post-natal development, growth, physiology and behaviour 
in resulting offspring (Ecker et alin resulting offspring (Ecker et alin resulting offspring (Ecker ., 2004; Fernandez-Gonzalez
et al., 2004).

Apart from the culture medium used, the conditions of culture 
can also affect gene expression. Bovine in-vitro-produced 
embryos respond to changes in oxygen concentrations by 
altering the expression of glucose transporter-1 (GLUT1) 
(Harvey et al., 2004), while in mice it has been reported that 
expression of GLUT1, GLUT3 and vascular endothelial growth 
factor was signifi cantly increased in embryos cultured under 
2% versus 20% oxygen (Kind et al., 2004). In other studies, 
expression of GLUT1 has been shown to differ between in-
vivo- and in-vitro-derived embryos (Wrenzycki et al., 2001).

Conclusion

To date there have been no reports of abnormally large offspring 
in humans, despite the experiences in rodents and ruminants. 
This, as Sinclair and Singh (2004) point out, begs the question 
of whether human gametes differ so substantially that they 
are less susceptible to sub-optimal culture environment or 
whether this is merely a refl ection of the relatively slow uptake 
of techniques such as IVM or blastocyst culture in humans. 
However, it is well established that human infants conceived 
following IVF and ICSI are more likely to be born preterm, to 
be of low birthweight and to be a twin or higher order multiple 
than spontaneously conceived infants (Olivennes et al., 2002; 
Helmerhorst et alHelmerhorst et alHelmerhorst ., 2004; Jackson et al., 2004; Wennerholm 
and Bergh, 2004). The evidence relating to the risk of birth 
defects is less clear. The publication of a paper by Hansen
et al. (2002) reporting a two-fold increased risk of major 
birth defects in children from IVF and ICSI stimulated much 
debate (Barlow, 2002; Winston and Hardy, 2002). Hansen et 
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Figure 4. Relative abundance of connexin 43 (Cx43) (a) and Bos taurus apoptosis regulator box-α (Bax) (b) transcripts in bovine 
embryos cultured either in vitro, in synthetic oviduct fl uid (SOF, black bars) or in vivo, in the ewe oviduct (white bars). abcd refers 
to signifi cant differences in relative transcript abundance among in-vitro cultured embryos throughout the early preimplantation 
period; ABCD refers to signifi cant differences in relative transcript abundance among in-vivo cultured embryos throughout the early 
preimplantation period. An asterisk indicates a signifi cant difference (P < 0.05) in relative transcript abundance between in-vitro 
and in-vivo cultured embryos at a given stage of development. Z: zygote before transfer to treatment group; D1: 2-cell; D2: 4-cell; 
D3: 8-cell; D4: 16-cell; D5: early morula; D6: compact/late morula; D7: blastocyst. Data from Lonergan et al. (2003).
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al. (2005) carried out a systematic review of 25 papers with 
data relating to the prevalence of such birth defects; two-thirds 
of these showed a 25% greater increased risk of birth defects 
in assisted reproduction infants. From the pooled results the 
authors suggested that children born after assisted reproduction 
treatment are at increased risk of birth defects. While the 
causes of such defects are unclear at present, manipulations 
of the embryos in vitro are probably involved; indeed, reports 
of epigenetic modifi cations in genomic imprinting following 
assisted reproduction treatment in humans have been published 
(Edwards and Ludwig, 2003; Niemitz and Feinberg, 2004).
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