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Abstract Recent studies have reported shorter sperm telomere length (STL) in men with idiopathic infertility. The aim of this study
was to measure STL in semen samples from men to evaluate whether STL variation is associated with chromosomal abnormality, DNA
fragmentation, traditional semen parameters, IVF outcome, or all four factors. A significant correlation between telomere length
and diploidy was observed (P = 0.037). Additionally, STL was found to be positively associated with sperm count (P = 0.006); oligospermic
samples had particularly short telomeres (0.9 ± 0.1 versus 1.4 ± 0.1; P = 0.0019). The results confirmed a link between sperm DNA
fragmentation and aneuploidy, previously proposed (P = 0.009). A negative relationship was demonstrated between sperm concen-
tration and aneuploidy and Sperm DNA framentation (P = 0.03, P < 0.0001, respectively). For a subset of 51 of the 73 sperm samples
used for fertilization, IVF outcomes were known. A total of 17.6% of these samples had atypical STLs. None of these samples pro-
duced an ongoing pregnancy. In contrast, the pregnancy rate for samples that had STLs in the normal range was 35.7% (P = 0.044).
In conclusion, STL has potential as a fast and inexpensive form of sperm quality assessment.
© 2016 Published by Elsevier Ltd on behalf of Reproductive Healthcare Ltd.
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Introduction

Telomeres are structures composed of non-coding tandem
repeats of a TTAGGG DNA sequence, located at the end of
each chromosome arm (Moyzis et al., 1988). Together with
numerous telomere-associated proteins, including the six-
member Shelterin complex, telomeres play a key role in the
maintenance of chromosome stability and genome integrity
(O’Sullivan and Karlseder, 2010). Additionally, telomeres serve
important functions in meiosis, helping to facilitate chromo-
somal alignment, pairing, synapsis and crossing over, which
are critical steps during gamete formation (O’Sullivan and
Karlseder, 2010).

Telomere length is maintained by telomerase, a reverse
transcriptase, that is maximally expressed in a few types of
highly proliferative cells, such as germ and neoplastic cells
(Blackburn, 1991). In normal somatic cells, telomeres shorten
with each mitotic division, eventually reaching a critical length
associated with the induction of senescence, cell cycle arrest
and apoptosis (Harley et al., 1990).

Three telomere-specific differences between somatic cells
and sperm are presently known. First, in contrast to the telo-
meres of somatic cells, those in sperm do not shorten with
age, ensuring the transmission of intact chromosomes over
generations. Indeed, several studies have reported that in-
creasing paternal age is actually associated with longer telo-
meres in sperm and in the leukocytes of offspring (Aston et al.,
2012; Eisenberg et al., 2012; Ferlin et al., 2013; Kimura et al.,
2008; Unryn et al., 2005). The length of telomeric DNA in
human spermatoza is 10–20 kb, about twice the 5–10 kb typi-
cally observed in somatic cells (Kozik et al., 1998). Second,
different telomere binding proteins have been isolated in
spermatoza, and in-vitro studies have confirmed their in-
volvement in telomere DNA recognition (Gineitis et al., 2000).
Third, during spermatogenesis, telomeres migrate towards the
nuclear membrane where they form telomere associations
(Gineitis et al., 2000).

A relationship between telomere function and aspects of
semen quality is an intriguing possibility, of potential clini-
cal importance. Studies into the relationship between telo-
mere length and different sperm parameters, however, have
yielded contradictory data. In the case of sperm DNA frag-
mentation, a marker often assessed in fertility clinics to shed
light on the genetic integrity of a sample, discordant results
have prevented a consensus being reached on the associa-
tion of telomere length and DNA damage (Moskovtsev et al.,
2010; Thilagavathi et al., 2013). It is conceivable that frag-
mentation, or other types of DNA damage, could result in de-
localization of telomeres, with consequences for chromosome
segregation and nuclear architecture. The arrangement of
chromosomes within the nucleus has been proposed to be im-
portant for fertilization, appropriate gene expression, and
early embryo development. Therefore, correct positioning of
telomeres is likely to be of significance for viability (Ward and
Zalensky, 1996).

A few studies have indicated that measurement of telo-
mere length in somatic cells may provide useful information
concerning reproductive potential. Shorter telomeres in the
leukocytes of both men and women seem to be associated with
some cases of idiopathic recurrent pregnancy loss (Thilagavathi
et al., 2013). At this time, however, little evidence sup-

ports the notion that variation in the length of sperm telo-
meres is related to reproductive capacity. Indirect data,
suggesting that sperm telomere length (STL) may be impor-
tant, comes from research showing that shorter telomeres can
be detected in some samples from men with idiopathic in-
fertility (Thilagavathi et al., 2013). Few studies have been
published on STL in relation to semen parameters, and the
small amount of information that is available is contradic-
tory. Thilagavathi et al. (2013) did not find any correlation
with conventional sperm parameters and telomere length,
whereas other studies reported a positive association between
STL and sperm count in young donors (aged 18–19 years) (Ferlin
et al., 2013) and in infertile patients (Yang et al., 2015).

The biological reasons for variation in STL in samples from
different men and its potential correlations with fertility,
outcome of assisted reproductive treatment and other clini-
cal features remain poorly understood. Moreover, no data have
been reported on STL in relation to chromosome abnormal-
ity in human sperm. Therefore, the aim of this study was to
provide a detailed assessment of STL in men at ages typi-
cally encountered at fertility centres, and to evaluate whether
telomere length variation is associated with chromosomal ab-
normality, DNA fragmentation, traditional semen param-
eters, IVF outcome, or all four factors. Additionally, this paper
provides information on the potential utility of STL assess-
ment in the evaluation of male infertility, considering the
extent to which the information can add to, complement, or
replace that conveyed by other forms of semen assessment.

Material and methods

Participants

In this study, 73 samples from men aged between 31 and 52
years, who had requested sperm DNA fragmentation and an-
euploidy analyses, were assessed. Participants were divided
in normozoospermic (total sperm count ≥15 million/ml; n =
54) and oligozoospermic (sperm count <15 million/mL; n = 19).
The study was approved in 2013 by the Institutional Ethics
Committee of the University of Naples Federico II by proto-
col No. 42/13, and a written informed consent form was signed
by all the participants involved in the study. The study was
conducted in accordance with the principles expressed in the
Declaration of Helsinki.

Sperm preparation

Standard semen analysis was carried out according to World
Health Organization protocol (World Health Organization,
D.o.R.H.a.R, 2010) after 2–4 days of sexual abstinence. An
aliquot of semen sample was assessed using the Sperm Chro-
matin Dispersion Test (SCDt) for sperm DNA fragmentation
(SDF) analysis, whreas another was used for the analysis of
chromosome numerical abnormalities. Multi-colour fluores-
cence in-situ hybridization with probes specific to chromo-
somes 13, 18, 21, X and Y was used. This has previously been
described (Enciso et al., 2013). Additionally, a maximum of
10 x 106/ml of sperm was centrifuged using Percoll gradient
(PureSperm, Nidacon International AB, Sweden) and checked
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under the microscope to confirm the absence of round cell
and contaminating somatic cells.

Telomere length measurement

Sperm DNA was extracted using the QIAamp DNA Mini Kit ac-
cording to manufacturer’s recommendations. The STL was
measured as the average telomere length from all the
spermatoza present in each sample using quantitative poly-
merase chain reaction. The average amount of telomere DNA
relative to a single copy gene (36B4) was assessed using the
StepOnePlus quantitative polymerase chain reaction (Q-
PCR) platform (Life Technologies, UK). Briefly, triplicate DNA
samples were amplified in parallel reactions that included
1.5 ng/μl per well of sample DNA, Power SYBR® Green Master
Mix (Life Technologies, UK) and 0.05 μM of specific primers
for the telomere (tel 1: 5ACACTAAGGTTTGGGTTTGGGTTT
GGGTTTGGGTTTGGGTTAGTGT3; tel2 5TGTTAGGTATC
CCTATCCCTATCCCTATCCCTATCCCTAACA3) and for the
36B4 (36B4u, 5CAGCAAGTGGGAAGGTGTAATCC3; 36B4d,
5CCCATTCTATCATCAACGGGTACAA3) (Cawthon, 2002). The
thermal cycling conditions were as follows: one cycle at 95°C
for 10 min, followed by 30 cycles at 95°C for 15 s and 60°C
for 1 min. Melting curve analysis was used to check for primer
specificity and the PCR was optimized by developing stan-
dard curves using serial dilutions from a reference DNA, carried
out in each assay. The linear correlation coefficient (r2) was
greater than 0.99 for both the telomere and 36B4 standard
curves. Each sample’s STL was calculated using the mean Ct
for telomere and the 36B4 single-copy gene according to the
formula: ΔCtsample = Cttelomere – Ctcontrol. The relative
STL was then calculated by normalizing the values against a
common reference sample run within each experiment.

Statistical analysis

Kolmogorov–Smirnov test was used for evaluating the nor-
mality of the data. Mann–Whitney U-test or chi-squared test
was used as appropriate. Spearman’s rho was calculated for
correlation analysis. P < 0.05 was considered statistically sig-

nificant. All analyses were carried out using the SPSS Statis-
tics software, version 22.0 (IBM Corps., Armonk, NY, USA).

Results

Patient characteristics and semen quality parameters are
shown in Table 1. The analysis of STL in relation to genetic
complement showed that shorter telomeres are correlated
with an elevated percentage of diploidy (determined by the
detection of two copies of each of the chromosomes as-
sessed within the same sperm nucleus) (R = −0.254; P = 0.037)
(Figure 1). No direct significant correlation was found between
STL and overall aneuploidy rate or SDF (R = −0.071 and R =
−0.105, respectively).

Analysis of the data produced during this study also showed
that samples with elevated aneuploidy rates show high levels
of spermatozoa displaying DNA fragmentation, confirming the
findings of a previous study (Enciso et al., 2013) (R = 0.312;
P = 0.009) (Figure S1). Interestingly, correlation of SDF results
with the aneuploidy data obtained for each chromosome re-
vealed a strong association between chromosome 18 abnor-
mality and DNA fragmentation (R = 0.297; P = 0.013) (Figure
S1). This relationship was not observed for other chromosomes.

Table 1 Patient characteristics and semen quality parametersa in the oligozoospermic and normozoospermic groups.

Normozoospermic group Oligozoospermic group P-valueb

Number of patients 54 19
Age (years) 39.4 ± 5.5 39.3 ± 5.3
Sperm count (x106/ml) 43.1 ± 3.4 7.2 ± 1.1 <0.001
Sperm motility (%) 60.6 ± 1.8 53.2 ± 4.9 NS
Normal sperm morphology (%) 23.7 ± 0.5 17.4 ± 2.0 0.0027
Relative STL 1.4 ± 0.1 0.9 ± 0.1 0.0024
SDF 29.7 ± 0.6 40.9 ± 1.3 0.0005
Aneuploidy rate 5 ± 0.3 6.4 ± 0.6 0.047

aAccording to World Health Organization (WHO, 2010).
bMann–Whitney test, P < 0.05.
Age values are mean ± SD. All other values are mean ± SEM.
NS, not statistically significant; SDF, sperm DNA fragmentation index; STL, sperm telomere length.

Figure 1 Correlation between relative sperm telomere length
(STL) and diploid sperm. Relative STL is a normalized measure
of the ratio of telomere copy number to the 36B4 gene. The Pear-
son’s correlation coefficient (rp) and P-value are shown.
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Results from the analysis of STL in relation to conven-
tional semen parameters revealed a significant positive cor-
relation between telomere length and sperm count (R = 0.325;
P = 0.006) (Figure 2). Additionally, sperm count had a sig-
nificant negative relationship with aneuploidy rate and SDF
participants were grouped based on sperm concentration, pa-
tients with isolated oligozoospermia, i.e. all semen param-
eters normal with the exception of concentration showed
significantly shorter STL (P = 0.0019) and higher rates of an-
euploidy and SDF compared with normozoospermic men (P =
0.048; P = 0.0005) (Figure 3).

Most of the 73 samples assessed had relative telomere
lengths that were distributed around the mean value, which
was 1.25 (84% of STL measurements fell between 0.5 and 2.0).
Sixteen per cent of samples, however, had STL that dis-

played a more obvious deviation from the average than the
other samples examined, evenly split between those with un-
usually high STL measurements, i.e. long telomeres, and those
with low values, i.e. short telomeres.

A Venn diagram was drawn, for samples with abnormal pa-
rameters only, to highlight the extent to which elevated levels
of aneuploidy, increased amounts of DNA fragmentation and
atypical telomere lengths (unusually short or long) overlap
in sperm samples. Cut-offs for these parameters, used to dis-
tinguish “normal” samples from “abnormal”, have been vali-
dated internally in our laboratory (30% for SDF, 6% for

Figure 2 Correlation between relative sperm telomere length
(STL) and sperm count (upper panel), sperm aneuploidy rate and
sperm count (middle panel) and between sperm DNA fragmen-
tation (SDF) and sperm count (bottom panel). Relative STL is a
normalized measure of the ratio of telomere copy number to the
36B4 gene. The Pearson’s correlation coefficient (rp) and P-value
are shown.

Figure 3 Relative sperm telomere length (STL) (upper panel),
aneuploidy rate (middle panel) and sperm DNA fragmentation
(SDF) (lower panel) in participants with normozoospermia (sperm
count ≥ 15x106/ml; normo; n = 54) and oligozoospermia (sperm
count ≤ 15 x 106/ml; oligo, n = 19). The Mann–Whitney test was
carried out and the P-value is shown.
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aneuploidy rate) (Figure 4). The “normal” range for rela-
tive STL (0.5–2) was based on the observed data distribu-
tion in this study. Atypical STL was less common than elevated
DNA fragmentation or increased aneuploidy and in most cases
overlapped with one or both types of anomaly. Seventy-five
per cent of samples with atypical telomere length were also
compromised for DNA fragmentation, aneuploidy, or both.

The outcomes of fertility treatments were known for 51
sperm samples used for fertilization (35 intracytoplasmic sperm
injection and 16 IVF). Forty-two of these samples had rela-
tive STLs in the normal range (0.5–2.0) and the ongoing preg-
nancy rate (more than 12 weeks) for assisted reproductive
cycles in which they had been used was 35.7% (15/42). Nine
of the samples had relative STLs outside this range (four <0.5
and five >2.0), and none of the treatments using these samples
resulted in a pregnancy (0.0% pregnancy rate). The differ-
ence in pregnancy rate between the two classes of sample,
defined by STL, was statistically significant (P = 0.04), sug-
gesting that this parameter may be predictive of the clini-
cal outcome (Figure 5).

Discussion

The results of this study indicate that unusually short telo-
meres in sperm are likely associated with chromosomal ab-
normality, specifically failed meiotic division leading to the
production of diploid sperm. Previous studies focusing on
somatic cells have demonstrated that excessive telomere
shortening results in chromosome instability (Blackburn, 2000),
but the underlying mechanism remains unclear and discor-
dant findings have been reported. A few studies, on amniocytes
and peripheral blood from newborns, have shown a higher rate
of telomere shortening in individuals with trisomy 21 (Vaziri
et al., 1993; Wenger et al., 2014). Additionally, some in-
vitro experiments have indicated that hematopoietic stem cells
under proliferative stress exhibit telomere. In another model,
a link between aneuploidy and ultra-short telomeres was not

observed, although there was a relationship with carcino-
genesis (Friis-Ottessen et al., 2014).

Analysis of the female gamete has revealed a significant
reduction in the amount of telomeric DNA associated with an-
euploidy. This has bvee shown in studies in which telomere
DNA was quantified in aneuploid polar bodies and chromo-
somally normal polar bodies from oocytes of the same patient
and within the same IVF treatment cycle (the polar bodies
mirroring the telomere lengths present in the oocytes from
which they were derived) (Treff et al., 2011). After fertil-
ization, the relationship between telomere length and an-
euploidy seems to persist, leading some researchers to
suggest that shorter telomeres predispose to chromosome
malsegregation in preimplantation embryos as well as gametes
(Simpson and Wells, 2014; Treff et al., 2011). In mosaic
cleavage-stage embryos, aneuploid cells were reported to have
shorter telomeres compared with chromosomally normal cells
from the same embryo. Additionally, shorter telomeres were
observed in the embryos of patients of advanced reproduc-
tive age who had a history of repeated spontaneous abor-
tion, hinting at a potential role for telomeres in viability at
later stages of development (after establishment of a preg-
nancy) (Mania et al., 2014).

The association of telomere length and simple aneu-
ploidy, reported in oocytes and preimplantation embryos, was
not observed in spermatoza in the present study. An asso-
ciation with diploidy, however, was detected. Although sta-
tistically significant, the effect was relatively subtle, rates
of diploidy rarely exceeding 1% even in samples with the short-
est telomeres. The increase in diploid sperm in samples in
which the average telomere length was relatively short might
be a consequence of reduced meiotic recombination and im-
paired chromosome pairing and synapsis, features previ-
ously described in the sperm of telomerase deficient mice
(Franco et al., 2002; Hemann et al., 2001; Lee et al., 1998).
Anything that disrupts the capacity of telomeres to orga-
nize homologous chromosomes in the nucleus could conceiv-
ably increase the likelihood of meiotic errors occurring,
ultimately resulting in aneuploid, and possibly diploid, sperm
(Emery and Carrell, 2006). An increased frequency of

Figure 4 Sperm telomere length (STL), aneuploidy rate and
sperm DNA fragmentation (SDF) analysis for patients with atypi-
cal sperm telomere length (STL) < 0.5 and >2, aneuploidy rate
>6% and sperm DNA fragmentation (SDF) > 30%. The cut-offs have
been validated internally.

Figure 5 Distribution of relative sperm telomere length (STL)
related to the occurrence of an ongoing pregnancy. Relative STL
is a normalized measure of the ratio of telomere copy number
to the 36B4 gene.
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diploidy has also been reported in the sperm of infertile pa-
tients with altered semen parameters such as concentra-
tion, motility andmorphology (Pang et al., 1999; Younan et al.,
2015).

In accordance with other studies using Q-PCR for the as-
sessment of telomere length, no correlation between STL and
SDF was found (Thilagavathi et al., 2013a, 2013b). A posi-
tive correlation between levels of sperm DNA-damage and an-
euploidy rates, however, was detected, in agreement with
recent published research (Enciso et al., 2013). Interest-
ingly, increased SDF was particularly apparent in samples with
elevated rates of aneuploidy involving chromosome 18, sug-
gesting that abnormal copy number of genes situated on that
chromosome may be especially likely to be associated with
DNA fragmentation or abortive apoptosis in spermatoza.

When samples were grouped according to sperm concen-
tration, those that were oligozoospermic showed signifi-
cantly shorter telomere lengths compared with samples
produced by normozoospermic men. Reduced telomere length
was recently reported in oligozoospermic samples from young
patients (aged 18–19 years) (Ferlin et al., 2013). The re-
search presented here shows that this correlation is a general
feature of sperm and is not restricted to a particular age
group.

A relationship between oligozoospermia and aneuploidy rate
was also noted. An elevated frequency of sperm chromo-
some abnormality is well known to be related to infertility
in some men (Piomboni et al., 2014; Ryu et al., 2001). Pro-
gressively higher levels of aneuploidy were seen with declin-
ing semen quality, as assessed based upon traditional
parameters (e.g. the higher the incidence of morphologi-
cally abnormal forms the greater the rate of aneuploidy)
(Carrell et al., 2004; Vegetti et al., 2000). In line with pub-
lished data, our results show a negative correlation between
sperm count and aneuploidy rate and also a higher inci-
dence of chromosome abnormality in oligozoospermic men
when compared with those with normozoospermia (Durak Aras
et al., 2012; Fes’kov et al., 2013; Omran et al., 2013). Ad-
ditionally, an inverse correlation between aneuploidy rate and
sperm motility has also been demonstrated (Levron et al.,
2013). Sperm samples with a high rate of aneuploidy have been
associated with poor IVF treatment outcome when used for
fertilization (Burrello et al., 2003; Carrell et al., 2003).

Patients with oligozoospermia also displayed elevated SDF,
in agreement with previous studies reporting significant nega-
tive correlations between sperm DNA damage and abnormal
semen parameters, including low concentration (Fei et al.,
2013; Novotny et al., 2013). The fact that patients with oli-
gozoospermia frequently display reduced STL, high SDF and
elevated aneuploidy rates suggests that diminished sperm con-
centration is symptomatic of meiotic and spermatogenic pro-
cesses that are compromised on multiple levels. Even when
spermatoza from such patients can be found and used for fer-
tilization, an increased risk that the embryos produced will
not be viable is likely. It is possible that SDF and aneuploidy
may have effects on sperm that are independent of telo-
mere length. It seems, however, that STL is predictive of
semen quality and identifies poor samples (with too long or
too short STL) that could be missed by current SDF and an-
euploidy assessment.

Interestingly, 17.6% of samples from group of 51 patients
with known outcome of fertility treatment had atypical STLs,

appearing as outliers (Figure 5), with quantities of telo-
mere DNA that were either exceptionally large or unusually
small. No pregnancies were achieved when these samples were
used during assisted reproductive treatments. This com-
pares with a pregnancy rate of 35.7% for samples with STLs
falling within the typical range, a statistically significant dif-
ference. Within that range, samples with higher STLs were
associated with higher pregnancy rates (24%, 44% and 55% for
STLs between 0.51.0, >1.0–1.5 and >1.5–2.0, respectively).
The sample size, however, was not sufficient for robust sta-
tistical analysis of so many subdivisions of the data. It should
also be noted that the “atypical” group of samples was rela-
tively small and consequently it would be valuable to confirm
these observations in a larger, independent series of samples.
Nonetheless, this is an extremely interesting and poten-
tially important finding.

In conclusion, it is clear that defects in the genetic con-
stitution of the paternal germ line can influence the course
of embryonic development and the outcome of assisted re-
productive treatments. Methods exist for the analysis of sperm
DNA integrity and aneuploidy, and such tests are already widely
used by fertility clinics. Evaluation of sperm telomere length
represents another form of genetic assessment, which can be
carried out rapidly (<4 h) and economically (a fraction of the
costs of aneuploidy testing and sperm DNA fragmentation
analysis). Substantial overlap exists between sperm samples
found to have atypical telomere lengths and those display-
ing increased aneuploidy and excessive DNA fragmentation.
Consequently, the implementation of low-cost STL measure-
ment, as a form of preliminary assessment, may assist in re-
ducing the number of more expensive tests required. For
example, 75% of samples with atypical telomere length also
displayed compromised DNA integrity (elevated SDF) and an-
euploidy. Furthermore, evidence shows that measurement of
telomere length provides additional clinical predictive infor-
mation, independent of SDF and aneuploidy. Samples with
telomere lengths that were unusually long or short were as-
sociated with greatly reduced pregnancy rates when used in
assisted reproductive treatments. Indeed, within this set of
samples, atypical STL was associated with 100% failure to es-
tablish a viable pregnancy. This suggests that STL determi-
nation may actually have far more predictive power than
measurement of either sperm DNA fragmentation or aneu-
ploidy. Clearly, this finding now needs to be verified in an in-
dependent series of sperm samples. Combined together, the
three tests (aneuploidy, SDF and STL) provide a detailed as-
sessment of paternal genome integrity, independent of tra-
ditional sperm parameters. Clinical pathways for men found
to have elevated SDF include treatment with antibiotics to
clear any urogenital tract infections, repair of varicocele if
present in the testis, administration of antioxidants, or re-
trieval of epididymal sperm. For men with increased aneu-
ploidy rates in their sperm, preimplantation genetic screening
of any embryos produced using IVF or intracytoplasmic sperm
injection can be considered, allowing the transfer of chro-
mosomally abnormal embryos to the uterus to be avoided. It
remains to be seen whether atypical STL can be addressed
by any alteration of clinical treatment. Nonetheless, if the
predictive value of STL measurement is confirmed, identifi-
cation of individuals who have abnormal sperm telomere
lengths may assist in counselling, especially in terms of man-
aging patient expectations.
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