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Short title: Sperm DNA fragmentation for male infertility 
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Key message 

The assessment of sperm DNA fragmentation (sDF) is a promising tool to be used in 
clinical and research practice for both the diagnosis and the management of male 
infertility. 

Abstract 

Conventional semen analyses have limitations in male infertility diagnosis and 
prognosis. Assessment of sperm DNA fragmentation (sDF) has been proposed to 

discriminate fertile from infertile men and predict FSH treatment response in infertile 
men, although a comprehensive evaluation of this is not available. The aims of these 

meta-analyses were to assess the power of sDF in male infertility diagnosis and its 
role in predicting FSH therapy response in infertile men. Two literature searches were 
conducted in MEDLINE (PubMed), Embase, the Cochrane Library, Scopus and 

UpToDate. First, interventional/observational clinical trials comparing fertile to 
infertile/subfertile men were included. Second, interventional/observational clinical 

trials evaluating FSH-treated infertile men were assessed. sDF levels were significantly 
higher in infertile men considering 28 studies (P < 0.001), independently of the sDF 
method applied. Receiver operator characteristics curves identified an sDF threshold 

of 20%, with sensitivity of 79% and specificity of 86%. Six studies showed significant 
sDF improvement of 4.24% (95% confidence interval: 0.24–8.25%) after 3 months of 

FSH treatment. These meta-analyses demonstrate the sDF relevance in male 
infertility, suggesting a higher accuracy in detecting sperm function than conventional 
semen parameters. Although larger prospective trials are needed, sDF represents a 

promising tool for clinical and research practice. 

Keywords: FSH, male infertility, sperm DNA 

Introduction 

Male infertility diagnosis includes the evaluation of conventional semen analysis, 
which is guided by the World Health Organization (WHO) criteria (WHO, 2010). 
However, an increasing number of studies have highlighted many difficulties and 

challenges inherent to this methodology. First, the quality of laboratories performing 
semen analyses is variable, with a generally poor adherence to the WHO guidelines 

and a limited reliance on quality control protocols (Bjorndahl et al., 2016; Filimberti et 
al., 2013; Punjabi et al., 2016). This lack of adherence to standardized methods 
significantly reduces the potential diagnostic power of this tool (Carrell and De Jonge, 

2016). Second, conventional semen analysis applied to clinical practice does not 
evaluate all possible sperm quality parameters, impairing its diagnostic competence. 
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Moreover, several studies have found an overlap of semen analysis results between 

fertile and infertile men (Cooper et al., 2010; Guzick et al., 2001; Mac, 1950). Thus, 
the comparison of patients’ semen parameters to the normal values described for 

fertile men, which represents a major diagnostic step for male infertility assessment, 
may not clearly identify all cases of infertility (Bjorndahl, 2011). This represents the 

main challenge in the current diagnostic process of male infertility, which 
underestimates its real incidence, leaving 15% of infertile men with semen 
parameters falling within the normal ranges (Guzick et al., 1998). In addition, 

concerns about the value of conventional semen analysis also remain in the 
management of infertility, because there are no predictive, validated thresholds of 

semen parameters for assisted reproductive technology (ART) success (van der Steeg 
et al., 2011; van Weert et al., 2008). Hence, conventional semen analysis describes 
some features of sperm function, but does not fully address functional sperm 

competence. A fundamental role in determining sperm competence is currently 
attributed to DNA integrity, and new tests to evaluate sperm DNA fragmentation 

(sDF) are strongly advocated (Shamsi et al., 2011). 

Sperm DNA integrity is continuously challenged by endogenous and exogenous 
factors, although different mechanisms of repairing and protecting against this 

damage are active in human cells (Hoeijmakers, 2009). This is particularly relevant in 
germ cells, which have to preserve DNA integrity to pass the genome to the next 

generation. In these cells, DNA double-strand breaks are physiologically induced 
during spermatogenesis and spermiogenesis to facilitate meiotic crossover and 
histone–protamine substitution, respectively (Rathke et al., 2014). Apart from this 

first ‘physiological’ DNA damage, other exogenous and endogenous factors could 
affect DNA integrity during sperm maturation and storage in the epididymis (Moustafa 

et al., 2004; Ramos et al., 2004; Sakkas et al., 2002). Thus, DNA integrity is 
constantly at risk and its assessment could be a fundamental step in the evaluation of 
sperm functional competence (Lewis et al., 2008). Hence, sperm DNA damage 

evaluation could be crucial for both infertility diagnosis and prediction of ART success. 
In the setting of IVF this evaluation plays a peculiar role because the natural selection 

barriers of conception are bypassed, increasing the possibility of spermatozoa with 
significant DNA damage transmitting the genetic aberrations to the newborn (Host et 
al., 2000). Thus, several trials have evaluated the predictive role of sperm DNA 

damage for either ART outcome or sperm selection. 

Different assays have so far been developed and applied in research laboratories to 

evaluate sperm DNA damage but, despite their clinical relevance, only few 
laboratories have implemented them in routine semen analysis. Up to now, four 

methodologies have been employed: sperm chromatin structure assay (SCSA) (Larson 
et al., 2000), sperm chromatin dispersion (SCD) test (Fernandez et al., 2003), 
terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end 

labelling (TUNEL) (Gorczyca et al., 1993) and the single cell gel electrophoresis 
(Comet) assay (Sakkas et al., 2002). Using these tests, several trials have 

demonstrated that the percentage of spermatozoa with fragmented DNA is higher in 
infertile compared with fertile men (Host et al., 2000; Saleh et al., 2002). Moreover, 
these studies found a similar percentage of spermatozoa with fragmented DNA in 

subfertile men with normal sperm parameters and in subfertile men with abnormal 
sperm parameters (Host et al., 2000; Saleh et al., 2002). These results suggest the 

possible role of sDF assessment in the diagnostic workup of male infertility, although a 
comprehensive demonstration of its clinical usefulness has not so far been achieved. 
On the contrary, there is extensive literature on the possible role of sDF in ART, 

claiming the necessity of introducing this evaluation for sperm selection (Zhao et al., 
2014). Indeed, several meta-analyses have been designed to collect these results; 
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however, a definitive statement has yet to be confirmed (Li et al., 2006). Indeed, 

Cissen et al. (2016) demonstrated only a limited capacity for sDF to predict ART 
outcome, evaluating 30 clinical trials. On the contrary, Robinson et al. (2012) 

highlighted a role for sDF in the miscarriage rate prediction during ART, considering 
16 studies. Thus, sDF evaluation seems to be useful in ART, but a clear consensus is 

still to be reached. 

In the setting of male infertility, sDF evaluation has been proposed to evaluate the 
efficacy of treatment with FSH. The empirical FSH administration to infertile men with 

endogenous FSH serum levels in the normal range (<8 IU/l) has been reported in the 
literature since 1991, and this therapy is available in some countries (Acosta et al., 

1991). Two recent meta-analyses estimated an overall beneficial effect of FSH 
treatment of the man in couples receiving ART treatment in terms of pregnancy rate 
(Attia et al., 2013b; Santi et al., 2015). This meta-analysis in this study demonstrated 

that FSH administration improves some sperm parameters, such as total sperm 
number, and not only pregnancy rate (Santi et al., 2015). Many studies are limited by 

an important oversight when dealing with infertility treatment efficacy. In fact, if the 
aim of a clinical trial is the evaluation of FSH action on the gonads, the primary 
endpoint must be the first measurable, surely FSH-dependent outcome, i.e. sperm 

parameter improvement in men and oocyte number and quality in women. On the 
contrary, the choice of using pregnancy rate as primary endpoint is weakened by an 

increasing number of biases and variables, from gamete quality to the fertility status 
of the partner. Thus, many inconclusive studies have so far been published, mixing up 
male, female and couple outcomes. 

The available trials dealing with sDF in male infertility are limited by the low sample 
size, which prevents the exportability of sDF in clinical practice. A meta-analytic 

approach could be useful to overcome this limit, increasing the number of patients 
evaluated. Indeed, this meta-analysis is designed to address both the sDF diagnostic 
power for the male infertility diagnosis, and the sDF predictive role in the assessment 

of FSH treatment response in infertile men. 

Materials and methods 

A meta-analysis was performed according to the Cochrane Collaboration and PRISMA 

statement. The meta-analysis was accepted in the International Prospective Register 
of Systematic Reviews (PROSPERO; registration ID 82172) prior to commencing the 

study, ensuring transparency and originality of the review process. 

A comprehensive literature search was conductive up to December 2017 for English 
language articles in MEDLINE (PubMed), Embase, the Cochrane Library, Scopus and 

UpToDate. The literature search was performed in two steps. First, the following 
search was performed: (((((((((((((sperm DNA fragmentation index) OR sperm DNA 

fragmentation) OR sDF) OR DNA fragmentation index) OR DNA fragmentation) OR 
DFI) and male infertility) OR oligozoospermia) OR azoospermia) OR asthenospermia) 
OR teratospermia) OR asthenozoospermia) OR teratozoospermia) (Meta-analysis 1). 

Second, the following search was performed: (((((((((sperm DNA fragmentation 
index) OR sperm DNA fragmentation) OR sDF) OR DNA fragmentation index) OR DNA 

fragmentation) OR DFI) and FSH treatment) OR FSH administration) OR FSH therapy) 
(Meta-analysis 2). 
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Study selection and inclusion criteria 

Meta-analysis 1 

The first literature search evaluated all clinical trials in which fertile men were 

compared with either infertile or subfertile men. The diagnosis of infertility or 
subfertility includes all degrees of semen parameter alteration, from azoospermia to 
mild oligozoospermia (when total sperm count was between 10 and 20 million per 

ejaculate). Thus, in this first selection, both interventional and observational studies 
were searched and collected, without specific inclusion or exclusion criteria for the 

study design. Randomization and presence of controls were not considered as 
inclusion criteria. 

Meta-analysis 2 

In the second literature search, all clinical trials in which FSH was administered to 
infertile men, either interventional or observational, were searched. Randomization 

and presence of controls were not considered as inclusion criteria. Considering the 
type of participants, all men with a diagnosis of infertility or subfertility were 

considered, from mild oligozoospermia (when total sperm count was between 10 and 
20 million per ejaculate) to severe oligo-astheno-teratospermia (when total sperm 
count was below 10 million per ejaculate, associated with alteration in sperm motility 

and morphology). Azoospermic men were not considered eligible. No inclusion criteria 
were applied for the female partner of the infertile couple. Considering the type of 

intervention, all studies in which the male partner was treated with any type of FSH 
(e.g. either recombinant or urinary-derived) and dosage were considered. 

Data collection process and quality 

For both literature searches, two authors (DS and GS) extracted the abstracts of all 

studies detected. All abstracts were evaluated for inclusion criteria and data were 
extracted from each study considered eligible, with regard to study design, year of 

publication, and number of included/excluded subjects. Moreover, DS and GS 
extracted study subjects’ demographics and underlying diseases, with particular 
attention to the inclusion criteria and the method used for sDF measurement. DS, GS 

and MS performed quality control checks on extracted data. 

For both literature searches, the primary endpoint was the sDF evaluation. In 

particular, for Meta-analysis 1, the comparison of sDF between fertile and 
infertile/subfertile men was performed. In Meta-analysis 2 the sDF changes from 
baseline and after FSH administration were considered. 

The investigators (DS and GS) independently assessed the risk of bias for all trials 
using a Cochrane risk-of-bias algorithm. The following quality criteria and 

methodological details were evaluated for each trial included in the meta-analysis: (i) 
method of randomization, even if the randomization was not an inclusion criterion, (ii) 
concealment of allocation, (iii) presence or absence of blinding to treatment allocation, 

(iv) duration and type of treatment and follow-up phases, (v) number of participants 
recruited, analysed or lost to follow-up, (vi) timing of trial, (vii) whether an intention 

to treat analysis was performed, (viii) whether a power calculation was performed, 
(ix) source of funding, and (x) criteria for including participants and assessing 

outcomes. 
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Data synthesis and analysis 

The meta-analysis was conducted using Review Manager (RevMan) 5.3 software 

(Version 5.3.1 Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 
2014). Data were combined using the fixed-effects model. The random-effects model 

was used when a high heterogeneity rate was discovered. Heterogeneity among the 
results of different studies was examined by inspecting both the scatter in the data 

points and the overlap in their confidence intervals (CI), and by performing I2 
statistics. The I2 statistic answers the question: What proportion of the observed 
variance reflects real differences in effect size? It is a measure of inconsistency across 

the findings of the studies, not a measure of the real variation across the underlying 
true effects. A high heterogeneity rate was considered for I2 > 50%. 

Weighted mean differences (WMD) and 95% CI were estimated for the first literature 
search. Here, the mean sDF difference between fertile and infertile/subfertile men was 
reported. This analysis was further performed by subgrouping patients according to 

the methodology used to detect sDF. Mean difference and 95% CI were used in the 
second search. Here, the mean sDF difference before and after FSH treatment was 

reported. Moreover, the sDF difference between fertile and infertile men was 
evaluated both before and after FSH treatment. 

Finally, the sDF diagnostic accuracy for male infertility was investigated using receiver 

operator characteristics (ROC) curves, considering studies found by the first literature 
search. Thus, in order to define the sDF threshold, which better identifies infertile 

men, mean sDF values were considered together with standard deviations (SD) and 
sample sizes. ROC cut-offs were calculated by the Youden’s index through the 
identification of the best pair of sensitivity and specificity. 

Values of P < 0.05 were considered statistically significant. 

Results 

Meta-analysis 1 

The first literature search found 11,387 papers (Figure 1). Forty-two potentially 

relevant studies were identified by considering the information given in the abstract. 
All trials were thoroughly appraised for eligibility in the meta-analysis and 

methodological quality. Fourteen studies were excluded from the final analysis 
because they did not fulfil the inclusion criteria (Avendano et al., 2009; Binsaleh et 
al., 2015; Garcia-Peiro et al., 2011; Jurewicz et al., 2016; Manente et al., 2015; 

Omran et al., 2013; Ramzan et al., 2015; Sergerie et al., 2005; Sharma et al., 2010, 
2016; Varghese et al., 2009; Wdowiak et al., 2014; Zalata et al., 2015; Zribi et al., 

2011). In particular, eight studies did not compare fertile with infertile men, four 
papers did not report sDF and two papers had been withdrawn. Finally, 28 studies met 
the inclusion criteria and were included in the final analysis (Figure 1) (Alkhayal et 

al., 2013; Atig et al., 2017; Bareh et al., 2016; Brahem et al., 2011a, 2011b; Carlini 
et al., 2017; Dorostghoal et al., 2017; Chenlo et al., 2014; de Paula et al., 2006; 

Evgeni et al., 2015a, 2015b; Garolla et al., 2015; Khalili et al., 2006; Liu et al., 2016; 
Malić Vončina et al., 2016; Mangiarini et al., 2013; Mehdi et al., 2009; Muratori et al., 
2015; Ni et al., 2016; Nicopoullos et al., 2008; Plastira et al., 2007; Saleh et al., 

2002, 2003; Venkatesh et al., 2011; Winkle et al., 2009; Wiweko and Utami, 2017; 
Zandieh et al., 2017; Zini et al., 2001). 

Overall, 2883 infertile men (mean age 35.22  4.31 years) were compared with 1294 

fertile men (mean age 34.24  3.03 years). Among fertile controls, 14 studies enrolled 
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men of proven fertility (Atig et al., 2017; Bareh et al., 2016; Brahem et al., 2011b; 

Carlini et al., 2017; Garolla et al., 2015; Khalili et al., 2006; Malić Vončina et al., 
2016; Mehdi et al., 2009; Muratori et al., 2015; Venkatesh et al., 2011; Winkle et al., 

2009; Wiweko and Utami, 2017; Zandieh et al., 2017; Zini et al., 2001), eight studies 
healthy donors (Brahem et al., 2011a; Chenlo et al., 2014; Evgeni et al., 2015a; Ni et 

al., 2016; Nicopoullos et al., 2008; Plastira et al., 2007; Saleh et al., 2002, 2003), 
two studies volunteers (Alkhayal et al., 2013; Dorostghoal et al., 2017) and four 
studies included men with normal semen analysis (de Paula et al., 2006; Evgeni et al., 

2015b; Liu et al., 2016; Mangiarini et al., 2013) (Table 1). Concerning infertile men, 
15 studies considered patients with unexplained couple infertility (Alkhayal et al., 

2013; Brahem et al., 2011a; Carlini et al., 2017; Chenlo et al., 2014; Evgeni et al., 
2015a; Garolla et al., 2015; Khalili et al., 2006; Malić Vončina et al., 2016; Muratori 
et al., 2015; Nicopoullos et al., 2008; Plastira et al., 2007; Saleh et al., 2003; 

Venkatesh et al., 2011; Winkle et al., 2009; Zandieh et al., 2017) and 12 studies 
considered men with abnormal semen analyses (Atig et al., 2017; Brahem et al., 

2011b; de Paula et al., 2006; Dorostghoal et al., 2017; Evgeni et al., 2015b; Liu et 
al., 2016; Mangiarini et al., 2013; Mehdi et al., 2009; Ni et al., 2016; Saleh et al., 
2002; Wiweko and Utami, 2017; Zini et al., 2001). 

Fertile controls showed significantly higher sperm number (WMD 1.41; 95% CI: 1.01–
1.80, P < 0.001) and sperm motility (WMD 1.50; 95% CI: 1.07–1.93, P < 0.001) 

compared with infertile men (Supplementary Figures 1 and 2, respectively). The 
sDF index was significantly higher in infertile men than fertile controls (P < 0.001) 
(Figure 2). This difference remained statistically significant, also subgrouping 

patients according to the sDF method used, such as SCD (P = 0.004) 
(Supplementary Figure 3A), SCSA (P < 0.001) (Supplementary Figure 3B) and 

TUNEL (P < 0.001) (Supplementary Figure 3C). Moreover, the result remained 
significantly different when eight studies comparing men with proven fertility to men 
with unexplained couple infertility were considered (P = 0.003) (Supplementary 

Figure 4). 

ROC curve analysis, performed considering all datasets and all four sDF assays (area 

under the curve [AUC] 0.844, P < 0.001), identified a sDF threshold of 20%, indicated 
by the best pair of values for the sensitivity and specificity (Figure 3). With this cut-
off, the sDF diagnostic power showed a sensitivity of 79% and a specificity of 86% 

(Figure 3). Considering the heterogeneity of sDF assays, a ROC curve was designed 
considering one methodology alone. In particular, TUNEL was used in 15 studies. The 

ROC curve built on this subgroup of studies confirmed the overall analysis (AUC 
0.831, P = 0.002) (Supplementary Figure 5). 

Meta-analysis 2 

Sixteen potentially relevant studies were identified among the total 14,083 found by 

the literature search. Ten studies were excluded after evaluation of the entire 
manuscript, because they did not report sDF (Ben-Rafael et al., 2000; Caroppo et al., 

2003; Casamonti et al., 2017; Ding and Zhang, 2014; Efesoy et al., 2009; Foresta et 
al., 2002, 2005; Paradisi et al., 2006, 2014; Selice et al., 2011). Finally, six studies 

were included in the analysis (Colacurci et al., 2012; Garolla et al., 2014, 2017; 
Palomba et al., 2011; Ruvolo et al., 2013; Simoni et al., 2016) (Figure 1). 

Overall, 383 men with idiopathic infertility or with abnormal semen analyses were 

treated with FSH for a maximum of 3 months (Table 2). Recombinant FSH (rFSH) 
was used in three studies and urinary-derived FSH (uFSH) (Colacurci et al., 2012; 
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Ruvolo et al., 2013; Simoni et al., 2016) in the other three (Garolla et al., 2014, 

2017; Palomba et al. 2011) (Table 2). 

FSH administration significantly improved sDF in infertile men by 4.24% (95% CI: 

0.24–8.25%; P = 0.04) after 3 months of treatment (Figure 4), although no sDF 
differences were observed between study and control groups both before and after 

FSH administration (Supplementary Figures 6A and 6B). Finally, despite this 
significant sperm quality improvement, FSH administration did not significantly 
increase total sperm count after treatment (Supplementary Figure 7). 

Supplementary Figure 8 reports the risk of biases registered across studies, 
showing an overall low risk of bias, except for the high risk of selection bias. 

Discussion 

This is thought to be the first comprehensive demonstration of the clinical utility of 
sDF measurement for diagnosis and treatment of male infertility. In particular, the 

study confirms that infertile men show higher sDF levels compared with fertile men. 
This result suggests that sDF could be evaluated as a new marker in the male 
infertility workup, adding additional information to conventional semen analyses. The 

sDF threshold of 20% indicates the presence of infertility with high sensitivity and 
specificity. Alongside this, sDF seems to be a useful pharmacodynamic marker of FSH 

treatment efficacy in infertile men. Thus, in spite of the controversies concerning its 
predictive value in ART, sDF seems to be a promising tool, at least in research 
practice, where more evidence should be sought to expand its utility in clinical 

practice. 

Sperm DNA damage can result from five different pathogenic mechanisms (Perrin et 

al., 2011; Sakkas and Alvarez, 2010). First, DNA damage could be the result of 
increasing apoptosis during spermatogenesis (Burrello et al., 2004). Second, DNA 
breaks could be induced by chromatin remodelling during the process of 

spermiogenesis (McPherson and Longo, 1993). Third, oxygen radicals could lead to 
sperm DNA fragmentation during transport through the seminiferous tubules and the 

epididymis (Ollero et al., 2001). Fourth, endogenous caspases and endonucleases 
could cause DNA damage (Banks et al., 2005). Fifth, exogenous factors, such as 
radiotherapy, chemotherapy and environmental toxicants, could lead to sperm DNA 

damage (O’Flaherty et al., 2008; Rubes et al., 2007). This latter mechanism has been 
widely evaluated recently, resulting in increasing evidence of a negative effect of air 

pollutants on sperm quality (Santi et al., 2016). All these factors lead to DNA damage 
characterized by single- or double-strand breaks, which can be detected using 
different methodologies. Four assays are commonly employed in the literature, 

differing in the first phase of the procedure. In particular, SCSA, SCD and Comet 
methodologies are based on an initial denaturation step to detect DNA breaks, by 

creating acidic or alkaline conditions (Singh et al., 1989), whereas TUNEL directly 
measures DNA breaks without denaturation (Gorczyca et al., 1993). Several authors 
have suggested that this different initial phase could be responsible for the 

heterogeneity of the results obtained by these assays (Borini et al., 2006; Bungum et 
al., 2007). This study demonstrates for the first time a substantial overlap among 

available sDF assays in the comparison between fertile and infertile men. However, 
this comparison considered different numbers of patients included for each method. 
Thus, no conclusion can be drawn in favour or against any particular methodology of 

sDF measurement. 
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The different characteristics of sDF could influence its predictive capacity, e.g. (i) type 

of DNA damage (single- or double-strand breaks), (ii) percentage of spermatozoa with 
DNA damage, (iii) extent of DNA damage in each sperm, (iv) whether DNA damage 

affects introns or exons, and (v) ability of the oocyte to repair sperm DNA damage 
during fertilization (Sakkas and Alvarez, 2010). These aspects leave some 

uncertainties on the real predictive role of sDF measurement in clinical practice. 
Several authors recently demonstrated that the high DNA damage rate in in-vivo and 
in-vitro generated embryos leads to embryo development blockage, suggesting that 

sDF could be a relevant factor related to late paternal age in couple infertility (Borini 
et al., 2006). Despite the fact that embryo DNA damage could similarly arise from 

oocyte DNA, sperm DNA damage is thought to be involved in impeding blastocyst 
development (Seli et al., 2004) and losing preimplantation embryos (Shoukir et al., 
1998). Hence, the evaluation of sperm DNA integrity might be very important in 

predicting pregnancy rate and guiding IVF. However, clinical trials and meta-analyses 
in the setting of ART do not provide conclusive evidence about the predictive role of 

sDF for IVF outcomes. However, this meta-analysis suggests that sDF measurement is 
at least useful to predict male fertility, using a threshold of 20%. It should be 
stressed, however, that differences among sDF assays limit the utility of this threshold 

in clinical practice. Therefore, the value of the proposed cut-off of 20% sDF in the 
definition of infertility must be confirmed by appropriate prospective studies. Given 

that, Evenson and Wixon (2006) suggested that fecundity starts to decrease when 
sDF is higher than 15%. Similarly, Spanò et al. (2000) suggested that the chances of 
fertilization are close to zero when sDF is higher than 30%. However, these trials 

evaluated sDF as a predictive tool for infertility management, using ART outcomes. On 
the contrary, this study is the first designed to detect a role for sDF in the male 

fertility setting, confirming a promising application for the diagnosis and management 
of infertile men. 

In the literature, a limited number of uncontrolled trials examined potential 

treatments to reduce sperm DNA damage, although no therapies have been validated 
to manage and reduce sDF. Here, considering each study detected by the second 

literature search individually, a beneficial effect of FSH administration in infertile men 
is suggested and supported. Taking these studies together, it is clear that FSH 
administration did not increase the total sperm number after 3 months of treatment. 

This result could be explained by different mechanisms. First, the studies considered 
here are extremely heterogeneous in inclusion criteria. Second, the treatment scheme 

(i.e. FSH dosage and therapy length) is highly variable and not standardized. 
Moreover, it is important to highlight that the genetic pattern also seems to play a 

relevant role in the management of FSH treatment in male infertility. In particular, 
specific genotypes, regarding FSH receptor and FSHβ genes, were suggested to be 
possible predictors of response to FSH administration in terms of semen parameters in 

male infertility (Simoni et al., 2016). However, the stratification of patients based on 
genetics is not currently possible in this meta-analytic approach because only one 

study assessed this factor. Here, the evaluation of sDF before and after FSH 
administration clearly highlights the beneficial effect of FSH, with an overall reduction 
of about 4.24% in sDF after treatment. This is the first comprehensive demonstration 

of a beneficial effect of FSH on sperm DNA integrity. A positive FSH influence on 
sperm DNA integrity was first suggested in 1998 (Kamischke et al., 1998) and there is 

some evidence of this effect on couple infertility (Attia et al., 2013a; Santi et al., 
2015). It is worth noting that these results were obtained considering pregnancy rate 
as the primary endpoint. Here, it is shown that sDF improves after 3 months of FSH 

administration, suggesting that this assay could be a promising tool in the clinical 
evaluation of treatment response. This result needs to be confirmed by larger and 

properly designed clinical prospective trials, but it opens up new horizons for 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

monitoring male infertility treatment. For instance, if exogenous antioxidant agents 

show a beneficial effect on sperm quality at conventional semen analysis (Kefer et al., 
2009), some trials could be based on the combined administration of FSH and 

antioxidants in infertile men. In this setting, the evaluation of sDF could be useful to 
detect the possible beneficial role of the combined therapy. 

Despite the wide implication of these results, the study shows several limitations. 
First, the meta-analytic approach to a clinical problem evaluates data obtained in 
different clinical contexts. Indeed, a high heterogeneity among studies has been 

detected, suggesting wide differences among patients enrolled in each study. This 
represents the main difficulty in collecting this data, although it is related to the 

intrinsic variability of this condition. The weight of study heterogeneity on the final 
result could be reduced by the random-effects model, but properly designed and 
powered trials are needed to better understand these issues, in which homogeneous 

patient inclusion criteria should be used. Second, a sDF threshold was detected using 
ROC curves. This statistical method is validated and useful in clinical trials, although 

its validity remains unclear in meta-analyses. Moreover, the sDF threshold was 
determined by considering all studies together, irrespective of the sDF assay used. 
This heterogeneity in the sDF determination could limit the predictive strength of this 

threshold, although it is confirmed at least in the subgroup of studies using the TUNEL 
method, which is the most frequent approach. However, no conclusion can be drawn 

about the specific sDF cut-off to be used, but this threshold can be suggested for the 
time being, pending the need to identify a more accurate value. 

In conclusion, this study suggests that sDF could be a useful tool for male infertility 

diagnosis and management, using a threshold of 20%. Despite the need for 
confirmation in future clinical trials, this result represents a starting point for the 

application of sDF in clinical and research practice. 
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Table 1 – Characteristics of studies included in the analysis after Meta-analysis 1. 

    sDF Fertile men (CONTROL 
GROUP) 

Infertile men (STUDY GROUP) 

Author Year Meth
od 

N Age 
(years) 

Inclusion 
criteria 

N Age 
(years) 

Inclusion criteria 

Zini 200
1 

TUNE
L 

7 38.3  1
.6 

Proven 
fertility 

33 33.1  
0.8 

Abnormal semen 
analysis and varicocele 

Saleh 200
2 

SCSA 16 31.5  4
.7 

Healthy 
donors 

71 33.5  
10.6 

Abnormal semen 
analysis 

Saleh 200

3 

SCSA 16   Healthy 

donors 

23   Unexplained couple 

infertility 

Khalili 200

6 

SCSA 30   Proven 

fertility 

30   Unexplained couple 

infertility 

de 

Paula 

200

6 

TUNE

L 

30 33.1  6

.3 

Normozoos

permia 

47 32.7  

9.8 

Oligo-astheno-

teratozoospermia 

Plastira 200

7 

TUNE

L 

49 34.6  5

.4 

Healthy 

donors 

61 36.8  

6.4 

Unexplained couple 

infertility 

Nicopou
llos 

200
8 

SCSA 28   Healthy 
donors 

56   Unexplained couple 
infertility 

Winkle 200
9 

SCSA 27 33.0 Proven 
fertility 

70 32.8 Unexplained couple 
infertility 

Mehdi 200
9 

TUNE
L 

30 35.3  5
.5 

Proven 
fertility 

30 37.0  
6.5 

Teratozoospermia 

Venkate
sh 

201
1 

SCSA 50 29.4  4
.1 

Proven 
fertility 

10
0 

30.7  
4.4 

Unexplained couple 
infertility 

Brahem 201
1a 

TUNE
L 

16 35.0 Healthy 
donors 

79 34.6 Unexplained couple 
infertility 

Brahem 201
1b 

TUNE
L 

30 36.8  5
.6 

Proven 
fertility 

70 37.0  
6.6 

Abnormal semen 
analysis 

Alkhaya
l 

201
3 

SCSA 15   Volunteers 10
2 

  Unexplained couple 
infertility 

Mangiar
ini 

201
3 

TUNE
L 

18 37.0  3
.5 

Normozoos
permia 

14 38.0  
6.0 

Teratozoospermia 

Chenlo 201

4 

TUNE

L 

31 29.5  1

2.3 

Healthy 

donors 

77 37.4  

16.0 

Unexplained couple 

infertility 

Evgeni 201

5a 

SCD 78 28.0  5

.0 

Healthy 

donors 

53

9 
38.0  

6.0 

Unexplained couple 

infertility 

Evgeni 201

5b 

SCD 18

4 
38.0  5

.0 

Normozoos

permia 

48

5 
42.0  

6.0 

Abnormal semen 

analysis 

Garolla 201

5 

TUNE

L 

61 36.3  6
.3 

Proven 

fertility 

10

0 
37.3  
6.2 

Unexplained couple 

infertility 

Murator
i 

201
5 

TUNE
L 

86 35.6  1
2.4 

Proven 
fertility 

34
8 

40.0  
28.4 

Unexplained couple 
infertility 

Ni 201
6 

SCSA 25 28.9  3
.9 

Healthy 
donors 

15 31.3  
3.9 

Abnormal semen 
analysis and varicocele 

Bareh 201
6 

TUNE
L 

31 35.0  4
.3 

Proven 
fertility 

26 35.1  
4.5 

Unexplained recurrent 
pregnancy loss 
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Liu 201

6 

TUNE

L 

50 Range 

26–38 

Normozoos

permia 

50 Range 

26–38 

Asthenozoospermia 

Malić 

Vončina 

201

6 

TUNE

L 

51 36.0  3

9.1 

Proven 

fertility 

85 34.0  

41.7 

Unexplained couple 

infertility 

Dorostg

hoal 

201

7 

Com

et 

10

5 
35.7  1

9.4 

Volunteers 11

2 
36.5  

18.7 

Abnormal semen 

analysis 

Wiweko 

and 
Utami 

201

7 

SCD 36 34.0  3

.2 

Proven 

fertility 

78 37.0  

3.5 

Abnormal semen 

analysis 

Zandieh 201
7 

SCD 30 Range 
25–35 

Proven 
fertility 

28 Range 
25–35 

Unexplained couple 
infertility 

Atig 201
7 

TUNE
L 

50 34.8  5
.4 

Proven 
fertility 

40 39.4  
5.2 

Oligo-astheno-
teratozoospermia 

Carlini 201

7 

TUNE

L 

11

4 
37.4  4

.6 

Proven 

fertility 

11

4 
20.8  

8.9 

Unexplained couple 

infertility 
Comet = the single cell gel electrophoresis assay; SCD = sperm chromatin dispersion test; SCSA = sperm chromatin structure assay; 

TUNEL = terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling. 
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Table 2 – Characteristics of studies included in the analysis after Meta-analysis 2. 

   Untreated men (CONTROL 
GROUP) 

FSH-treated men (STUDY GROUP) 

    sDF       Baseli
ne 

After 3 
month

s 

            Baseli
ne 

After 3 
month

s of 
treatm

ent 

Aut

hor 

Ye

ar 

Met

hod 

N Ag

e 
(y
ea

rs) 

Incl

usio
n 
crite

ria 

s

D
F 
(

%
) 

Tot

al 
sp
er

m 
co

un
t x 
10
6/
ml 

s

D
F 
(

%
) 

Tot

al 
sp
er

m 
co

un
t x 
10
6/
ml 

N Ag

e 
(y
ea

rs) 

Incl

usio
n 
crite

ria 

F

S
H 

Dos

age 

Dur

atio
n 

s

D
F 
(

%
) 

Tot

al 
sp
er

m 
co

un
t x 
10
6/
ml 

s

D
F 
(

%
) 

Tot

al 
sp
er

m 
co

un
t x 
10
6/
ml 

Sim
oni 

2
0

1
6 

TU
NEL 

/       5
5 

34
.5 

 4
0.
49 

Idio
path

ic 
infer
tility 

rF
S

H 

150
 UI 

on 
alte
rna

te 
day

s 

90 
day

s 

5
7.

8 

 
1

7.
3 

82
.1 

 1
01
.9 

5
2.

9 

 
1

8.
2 

74
.1 

 9
6.
9 

Gar

olla 

2

0
1
7 

TU

NEL 

8

2 

Ra

ng
e 
25

–
45 

OS 2

5.
5 

 

7.
4 

10

.9 

 8
.9 

2

6.
1 

 

6.
3 

11

.3 

 9
.3 

8

4 

Ra

ng
e 
25

–
45 

OS uF

S
H 

150

 UI 
3 
tim

es 
a 

wee
k 

90 

day
s 

2

6.
7 

 

7.
9 

8.

5 
 7.
5 

2

3.
4 

 

7.
4 

19

.9 

 1
6.

1 

Gar
olla 

2
0

1
4 

TU
NEL 

8
2 

Ra
ng

e 
25
–

45 

OS 
with 

mat
urati
ve 

dist
urba

nce 
or 
nor

mal 
sper

mat
oge
nesi

s 

2
2.

9 

 
9.

4 

13
.9 

 7
.1 

2
3.

5 

 
9.

1 

14
.3 

 9
.3 

9
2 

Ra
ng

e 
25
–

45 

OS 
with 

hyp
o-
sper

mat
oge

nesi
s 

uF
S

H 

150
 UI 

3 
tim
es 

a 
wee

k 

90 
day

s 

2
4.

4 

 
9.

5 

13
.8 

 7
.6 

2
4.

1 

 
8.

2 

28
.2 

 1
5.
9 

Ruv

olo 

2

0

TU

NEL 

/       5

3 

33

.6 

OA rF

S

150

 UI 

90 

day

1

0.

8.

2 

1

1.

7.

5 
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1
3 

 5
.4 

H 3 
tim
es 

a 
wee

k 

s 5 

 
4.

2 

 1.
2 

4 

 
4.

5 

 2.
3 

Col

acu
rci 

2

0
1
2 

TU

NEL 

6

4 

33

.6 

 3
.5 

OA 2

2.
3 

 

9.
3 

21

.6 

 5
.8 

2

3.
9 

 

1
0.

2 

21

.2 

 5
.3 

6

5 

31

.6 

 3
.1 

OA rF

S
H 

150

 UI 
on 
alte

rna
te 

day
s 

90 

day
s 

2

3.
7 

 

9.
4 

19

.8 

 7
.5 

1

2.
6 

 

7 

30

.4 

 8
.9 

Pal
om
ba 

2
0
1

1 

SC
D 

/       3
6 

34

  
7.

3 

Sub
nor
mal 

sem
en 

para
met

ers 

uF
S
H 

150
 UI 
on 

alte
rna

te 
day

s 

90 
day
s 

2
4.
6 

 
1

2.
7 

17
.1 

 3

.2 

1
6.
7 

 
7.

8 

22
.9 

 5

.3 

OA = oligo-asthenozoospermia; OS = oligozoospermia; rFSH = recombinant FSH; sDF = sperm DNA fragmentation; uFSH = urinary-

derived FSH. 

 
Figure 1 – Study flow chart showing the search results for the studies 

included in Meta-analysis 1 comparing sperm DNA fragmentation index (sDF) 
in fertile and infertile men (Search 1) and in Meta-analysis 2 comparing sDF 

in infertile men before and after FSH administration (Search 2). 
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Figure 2 – Forest plot comparing sDF in fertile with infertile men (Meta-
analysis 1). 
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Figure 3 – Receiver operator characteristics (ROC) curve for the 

identification of the best sDF threshold for the male infertility diagnosis. Area 
under the curve = 0.844, P < 0.001. 

 

Figure 4 – Forest plot comparing sDF in infertile men before and after FSH 

administration (Meta-analysis 2). 

 


