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We evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and
temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting
irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV
plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple
interpolation between sensor locations. We investigate spatio-temporal models with separable and

nonseparable covariance structures and find no evidence to support assuming a separable covariance
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structure. Our results indicate a promising approach for modeling irradiance at high spatial resolution
consistent with available ground-based measurements. Such modeling may find application in design,
valuation, and operation of fleets of utility-scale photovoltaic power systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate modeling of power output from photovoltaic (PV)
power plants requires accurate estimates of the plane-of-array
(POA) irradiance over each plant's footprint. For single, spatially
contiguous plants, power correlates reasonably well with the
aggregate irradiance over the plant [1]. Currently plant aggregate
irradiance is estimated by either 1) averaging measurements from
many irradiance sensors [2] or 2) transforming data from a single
measurement point [3]. Various transformations of single mea-
surements to plant-aggregate irradiance are proposed [4—6] all of
which attempt to produce a time series of values representative of a
spatial average over an area of interest by smoothing, in some
fashion, a time series of measurements at a single point. However,
these smoothing transformations are themselves calibrated by a set
of spatially diverse measurements and are not inherently capable of
estimating the spatial variability of irradiance within the area of
interest at each point in time. Areal average irradiance can also be
estimated from satellite data (e.g., [7]) albeit with somewhat coarse
spatial and temporal resolution on the order of 1 km? and 30 min.

Past research efforts [summarized in Ref. [2] have focused on
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accurate representation of the temporal variability in spatially-
averaged irradiance. Increasing concerns about the effects of large
numbers of PV systems connected to an electrical grid have led to
significant interest in better understanding of the spatial variability
of irradiance as well as the temporal variability of the spatial
average. For example, spatial variability of irradiance, and hence PV
power, over a utility's service area, or over the service area of a
distribution feeder circuit, causes variable levels of power to be
injected at different locations which may require mitigation efforts
to maintain circuit voltages within acceptable limits. Contracts for
purchase of power from large PV plants often require after-the-fact
estimation of the potential energy production (in addition to
measurement of actual production) over short time periods to
accurately compensate for utility-directed limits on power and for
equipment outages; these estimates would benefit from irradiance
data with high spatial and temporal resolution. To better under-
stand spatial variability and to more accurately determine potential
production from large plants, utilities have deployed networks of
irradiance sensors across service territories [e.g. Ref. [8] or are
requiring deployment of many sensors at large plants [e.g. Ref. [9].
Suppliers of satellite-based irradiance estimates are upscaling in
time by simulating cloud movements [10] or running numerical
weather simulations [11], although spatial coarseness remains.
Statistical simulations have been employed to create representative
irradiance data at high time resolution over large areas [12] but
with coarse spatial resolution. Here, we explore statistical modeling
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of global horizontal irradiance (GHI) at high resolution spatial and
temporal scales, i.e., on the order of 100 m? and 1 min.

A challenge in modeling irradiance data is incorporating the
interaction between time and space. Especially in the presence of
advecting clouds, the irradiance observed at one location is likely to
also be observed at other locations but with a time shift. Thus we
anticipate that irradiance will exhibit a spatial autocorrelation that
varies with time. Spatio-temporal models explicitly account for this
autocorrelation and thus may predict aggregate irradiance more
accurately than does a simple spatial average.

In spatio-temporal modeling, the time and spatial covariances
structures are classified as either separable or nonseparable.
Assuming separability allows for simpler methods for estimating
the model but this assumption is not realistic for the complex in-
teractions between the space and time components of irradiance
data. We propose a spatio-temporal model that does not assume a
separable covariance structure to the data. Our model incorporates
a semiparametric method for modeling the time series component
and a lattice structure for the spatial component.

The remainder of this paper is organized as follows. In Section 2,
we present a survey of the literature on time series and spatio-
temporal approaches for irradiance data. In Section 3, we discuss
how the time series structure is modeled via a semiparametric
model fitted with a method known as spline-backfitted kernel
(SBK) estimation. In Section 3.3, we introduce the spatio-temporal
model, and compare the model's performance assuming either a
separable or a nonseparable covariance structure to evaluate
whether separability can be assumed. In Section 4, we apply the
model to irradiance data from the La Ola photovoltaic plant in
Lanai, HI. Finally, we provide discussion and conclusions in Section
5.

2. Literature survey

Literature reports several efforts at modeling time-series of
irradiance at individual locations, and substantially fewer attempts
to construct spatio-temporal models of irradiance considering
several proximal locations. The literature on individual time-series
modeling includes approaches based on autoregressive integrated
moving average (ARIMA) analysis [e.g. [13], non-linear autore-
gressive analysis [14], regression analysis [15], artificial neural
networks analysis [16], k-Nearest Neighbors algorithm [16] and
Bayesian inference [16]. These approaches focus on forecasting
irradiance considering only the measurements at a selected loca-
tion separately from measurements at other locations. Paoli et al.
[16] considers a type of artificial neural network known as Multi-
Layer Perceptron (MLP) network and finds their method performs
as well or better than other methods such as ARIMA analysis,
Bayesian inference, and k-Nearest Neighbors. Yang et al. [13]
introduce an ARIMA model that incorporates low-resolution,
ground-based cloud cover data to obtain next hour solar irradi-
ance. The authors state that their ARIMA model outperforms all
other time series forecasting methods in four of the six stations
they tested. In both the MLP and ARIMA methods, the model does
not incorporate a spatial component but only models irradiance in
time.

The literature on spatio-temporal modeling of solar irradiance
and/or power from PV systems comprise three general types: 1)
lattice and geo-statistical models, which may predict irradiance at
individual spatial locations; 2) variability models which estimate
statistics for the time series of power from a large PV system or
from a fleet of PV system; and 3) models to estimate the aggregate
output of a collection of PV systems from measurements at a single
location. We discuss each category in turn.

Among lattice models [17], model irradiance data from ten

sensors roughly at 5 km spacing using a spatio-temporal autore-
gressive moving average (STARMA) model. The STARMA model
incorporates the Euclidean distances between two points in order
to model the spatial structure of the data. However, the STARMA
model used in Ref. [17] assumes a separable covariance structure,
an assumption which we find to be questionable at the scale of a
single PV plant. Glasbey et al. [18] model irradiance with a non-
separable spatio-temporal covariance structure for data taken at 22
sites in the city of Edinburgh, Scotland, with distances between
sites ranging from 0.1 to 20 Km. They found the nonseparable
model performed marginally better with a mean square difference
between estimated and fitted covariances of 0.0032 as compared to
0.0033 for the separable model. Spatio-temporal covariance
structures were explored in Refs. [19,20]. In both papers, a
geographical plane transformation by multidimensional scaling is
used to make the process isotropic. After the transformation, a
separable or nonseparable covariance model is used for time-
forward kriging in Ref. [19] and an empirical covariance structure
is used to describe the correlation between sites based on distance
in Ref. [20]. The methods used are then applied to data taken over
Singapore (an area of about 700 km?).

Literature reports many studies intended to quantify and/or
model the variability in the output of a large PV plant or the
aggregate output of a fleet of PV plants. Typically, variability is
quantified by computing statistics for the time series of changes in
irradiance over a fixed time interval. Generally, variability models
either estimate the variance of the time series of aggregate output
from a fleet of PV systems, or the correlation between time series of
changes in irradiance, or PV output power as a function of distance
between the sites. Both types of results are of great importance for
managing and balancing energy on an electrical grid with con-
nected PV systems. However, most of these variability models do
not allow for prediction of the time series of irradiance at a location
of interest from measurements at nearby locations.

A model for maximum output variability was presented in
Ref. [10] with changes assumed to be uncorrelated. Hoff and Perez
[21] extended this model by incorporating correlation coefficients
between the variability of individual plants of a PV fleet based on
site distance and implied cloud speed. Perez et al. [22] used time-
shifted data from a single location to examine the potential vari-
ability of clearness index by examining site pair correlation for
distances ranging from 100 m to 100 km and for time intervals of
1 min, 5 min, and 15 min. Smaller site pair distances are examined
in Ref. [23] in which coherence spectra and wavelet analysis are
used for quantifying geographic smoothing. Using the coherence
spectra approach they found that strong correlations exist for sta-
tion pairs within 3 km at time intervals as short as 10 min. For
longer time intervals, they found the correlation decreases with
distance, although not uniformly in all directions. After applying
the wavelet transform to one station and comparing to the average
of six stations, the authors found that at time intervals shorter than
about 5 min, the six stations are independent, resulting in reduced
variability. For longer time intervals the reduction in variability
lessens with almost no reduction at about 68 min.

Moving beyond isotropic models for correlation, i.e., based only
on time interval and distance between locations [24], presented an
anisotropic model which describes correlation for power produc-
tion and for changes in power production as a function of spatial
location in an X,Y plane and time interval. They consider forecasting
in time for a fleet of PV systems spread over a 50 km x 50 km area. A
mathematical model for the spatio-temporal correlations between
changes in irradiance is presented in Ref. [25]. This model is based
on a spatial Poisson process that is used to simulate the probability
that advecting clouds cover two sites. This correlation model is
inherently anisotropic since it takes into account the cross-wind
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distance, the along-wind distance, and the length of the motion
path of the clouds.

Finally, aggregate power from a large system or fleet of systems
over a defined area is estimated from measurements at a single
point by transforming the time series of measurements [6]: de-
scribes a moving average technique [5]; proposes a low-pass filter;
and [4] uses wavelet decomposition. The wavelet method uses a
variability model for correlation among locations as described
above to moderate each wavelet model's amplitude to estimate the
time series of aggregate power. The authors validate their simula-
tion method at two plants, one of which is a 1 km x 1 km
distributed generation plant and the other is a 3 km x 2 km utility
scale PV plant. The wavelet method permits estimation of the
aggregate output but not of the contribution to the aggregate from
individual systems.

The spatio-temporal model that we propose improves upon the
works of [13] and [14] because we do not assume a parametric form
for the time component of the model, and improves on [ 17] through
the nonseparable covariance structure. While the works of [23] and
[4] examined correlation as a function of distance between sites, we
incorporate a lattice structure and utilize the simultaneous autor-
egressive spatial (SAR) model in which the sites are connected
through a “neighborhood.” Our model explains the correlation
through this neighborhood structure and does not take as inputs
the wind distance and cloud motion paths as in Ref. [25]. The use of
the SAR model is based on viewing the sites within a utility scale PV
plant as fixed locations instead of geostatistical points such as in
Refs. [19,20].

3. Modeling irradiance

Let Qs represent an observable process, e.g., measured GHI, at
time t and location s for t = 1,2,...,Tand s = 1,2,...,S. If there is no
interaction in time and space, the covariance function of Qs can be
written as a product of two functions where one function is
dependent on time only, and the other on location alone. Such a
covariance function is called “separable.” However, when in-
teractions in space and time are present, the covariance function is
“nonseparable; ” i.e., it cannot be factored into two separate func-
tions. Spatio-temporal models with separable covariance are much
easier to implement. But in the presence of space-time interaction,
separable models do not perform well, and can lead to misleading
or incorrect conclusions.

For modeling Qs , consider

QS,t:RS,t+ZS,t7 t:17-“7T7 5:17“'757 (1)
where, at time t and location s,R;; represents the true irradiance
signal and Z ¢ is a noise process. Furthermore, decompose the noise

process into a sum of three terms,
Zst = X5t + Yst + &5, (2)

where X, is a time series process at location s, Ys; is a spatial
process at time t, and & is @ multivariate error process with mean
zero and TS x TS covariance matrix =(s,t). If the process is separable,
then the covariance matrix can be written as =(s,t) = A(t)®I'(s),
where A(t)is a T x T temporal covariance matrix, I'(s)isan S x S
spatial covariance matrix, and ® is the Kronecker product [26].
There are a variety of methods for fitting separable spatio-
temporal models to space-time data. A review of space-time anal-
ysis methods and their computational counterparts can be found in
Ref. [27] or [28]. We consider three approaches to fitting model (2).
The first approach fits a spatial model at each time. Then spatial
residuals are computed, and for each location a time series model is

fitted to the spatial residuals at each location. The second approach
models the time series at each location, computes time residuals,
and then fits a spatial model at each time to the residuals. Both of
these approaches carry the assumption that the covariance struc-
ture is separable in space and time. The third approach removes the
separability assumption, jointly modeling time and space using the
spatio-temporal model introduced in Section 3.4.

3.1. Modeling the time series component

For modeling time series data arising from a dynamic process,
such as solar irradiance, nonlinear models often out-perform linear
models [29]. Although the class of nonlinear time series models is
infinitely large, there are many popular parametric nonlinear
models including the bilinear model [30], the exponential autore-
gressive model [31], and a variety of threshold autoregressive
models [32,33]. When one of these parametric models is known to
be appropriate for analyzing the time series, it should be used for
analyzing the series. However in the analysis of solar irradiance, no
specific class of parametric nonlinear model has been shown to be
generally applicable, and therefore we pursue a semiparametric
approach. In this section, we examine only the time component of
the model. So to ease notation, for the remainder of this section, we
consider the location fixed, and suppress the s subscript; that is
Xsr = X; for a fixed value of s.

A highly versatile semiparametric model is the functional co-
efficient autoregressive model of order p (FCAR(p)), first introduced
by Ref. [34]. The FCAR(p) model has an additive autoregressive
structure, but with coefficients that vary as a function of some
variable, u say, which can be exogenous to the series X;. In the pure
time series context, u is a lagged value of the series, and we write
uy = X;_g. In this paper, we restrict the FCAR(p) models to those with
uy = X¢_g, and so define the FCAR(p) model as

p
Xe=mp(ue) + > mi(ue)Xej+or, t=p+1,...,T (3)
j=1

where uy = X;_g,d < p, mj(-),j=0,1,2,...,p are measurable functions
of u, and {w¢ is a sequence of independent and identically
distributed (IID) random variables with mean zero and constant
variance.

Reasonable use of the FCAR(p) model requires only that the
model is additive, and places few restrictions on the functional
coefficients. To illustrate the versatility of the FCAR(p) model, note
that if mo(u¢) = 0, and mj(u¢) = j, j = 1,2,....,p are constants, then the
FCAR(p) reduces to a linear autoregressive model of order p,
Xe = nXe—1 + -+ + apXep + o Another example is, for each
j = 1..p, the coefficients are of the form
m;(X;_q) = aj + 6; exp{—0X2 ;}. Then the FCAR(p) model reduces
to the exponential autoregressive model of [31]. Moreover, the
FCAR(p) formulation allows for a mixture of models; for example,
mi(Xe_q) = a1 and my(X;_4) = an + B2 exp{—éthid}. For applica-
tions, the versatility of the FCAR(p) model is shown in
Refs. [34—36]. In Ref. [34], an FCAR(2) model is fit to the monthly
records of cases of chickenpox in New York City and an FCAR(8)
model is applied to Wolf's annual sunspot numbers data set. An
ecological application can be found in Ref. [35] in which an FCAR(2)
model is fit to the annual Canadian lynx fur auction sales. The
estimated coefficient functions in this application have a nice
interpretation of predator—prey interaction. An economic applica-
tion can be found in Ref. [36] in which a bivariate FCAR(p) model is
fit to U.S. GNP and unemployment rate.

Fan and Yao [37] contains a review of methods for fitting the
FCAR(p) model, and related inferential procedures. In the following
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section, we propose a more recent, improved method for fitting the
FCAR(p) model.

3.2. Spline-backfitting kernel estimation

With no presupposed form for the functional coefficients, we
propose a semiparametric method for finding pointwise estimates
of the functions mj(u), j = 0,1,2,...,p. A number of methods are
proposed in the statistics literature. Chen and Liu [38] and [35]
propose a kernel regression approach to fitting the model. Harvill
and Ray [39] extend the procedure to the case when the series is a
vector process. More recently, spline-backfitted kernel (SBK) esti-
mation has been proposed as a means for fitting semiparametric
models like the FCAR(p) model. SBK estimation is an adaptation of
the backfitting algorithm of [40]. By using backfitting, we take
advantage of the additive structure of the model to reduce the
dimensionality. Instead of estimating the p coefficient functions
simultaneously, we pre-estimate the functions, backfit, and then
estimate the functions separately.

The SBK method uses an under-smoothed centered standard
spline procedure to pre-estimate the m;(u), j = 0,1,2,...,p. These pre-
estimates, also called “oracle” estimates, are used to find pseudo-
responses. Then the pseudo-responses are used to estimate the
mj(u) through a kernel estimator; e.g., the Nadaraya—Watson esti-
mator. The SBK method was first proposed by Ref. [41] for esti-
mating nonlinear additive autoregressive models. Wang and Yang
[42] adapt the SBK method for IID data [43], adapt it to general-
ized additive models, and [44] to partially linear additive models.
Liu and Yang [45] propose the SBK method for additive coefficient
models.

The ability to estimate mj(u), j = 0,1,2,...,p relies on the good
approximation properties of spline estimators. Forany j =0,1,2,...,p,
assume my(-) is sufficiently smooth. Without loss of generality, u
can be defined on the compact interval [0,1]. Define the integer
N = T*PlogT, and let H = (N + 1)~ ! [see Ref. [41], Appendix]. Let
0=%p<&1 < <&y<ény1=1denote a sequence of equally spaced
knots. There is a set of basis functions bo(u), b1(u),...bn,1(u) and a
set of constants g, A1, ..., Ay 41 such that the spline estimator of
the j-th coefficient is

m;(u) =mm;(u) = Y Ajbr(u). (4)

k=0

For the basis functions, we choose the linear B-spline basis,
defined by

|u — & (N+Du—k+1, & 1 <u<g,
bk(u): (1—Tk) = k+‘l*(N+‘l)u §k<u§5k+17
* 0, otherwise.

The coefficients 1gj,A1,...,An.1; are estimated via least

squares; that is, the ikj,k: 0,1,...,.N+1,j=0,1,2,...,p are the
values of A; that minimize the sum of squares

T N+1 p N+1 2
> lxt = Aobi(u) - Z{ > Al<jbl<(u)}xtj:| : (5)
k=0

t=p+1 j=1 U k=0

The spline-estimated functional coefficients are then used to
compute “pseudo-responses.” Specifically, for each j=0,1,2,...,p,
j'#]j, the pseudo-responses are defined by

- p
Weyp=Xe— >

==

mjuXej, t=p+1,p+2,...T

For each j=0,12,...,p, let W; = (W1, ---, Wr )’ represent the
vector of pseudo-responses, and define the matrix

M = diag{Ki (Xp1-0 — 1), .. Kn(Xr_q — 1)}

where Kp(-) = h™1K(-/h), K(-) is a kernel function, and h > 0 is a
bandwidth. Then the SBK estimator of m; (u) is

-1
iy (1) = (é) GC’MC) %C'ij,7 (6)
where

C’ Xpi1 Xpi2 Xr
| Xpa (Xp+17d - u) Xpi2 <Xp+2—d - U) o Xr(Xr_g—u)

The idea behind SBK estimation is to under-smooth in the pre-
estimates in order to reduce the bias. This under-smoothing leads
to a larger variance which is reduced in the kernel estimation step.
The use of splines for the pre-estimates is computationally fast
while using kernel smoothing provides convenient asymptotic re-
sults [45].

To illustrate, consider a series of T = 500 observations from the
exponential autoregressive model of order p = 2 (EXPAR(2)) given
by

Xe — {0.5 —1.1e75%, }XH + {0.3 — 0.5e759%X¢ }xt,z
+ 020, (7)

where the w; are standard normal errors. A time plot of a mean-
centered realization of length 500 of such a series is given in
Fig. 1. Since X; 1 is the functional variable, and is one of the
autoregressive lags, the model in (7) must be rewritten and treated
as

Xe =mq(Xe—1) + Ma(Xe1)Xe2 + 0.20.

Consequently the functional coefficients of the autoregressive
terms are

my(ue) = 0.5u; — 1.1ue ™% and  my(u;) = 0.3 — 0.5 504 |

where u; = X;_1.

To estimate the functional coefficients, begin by accounting for
the variability in the response due to the term m;(u;). Remove that
variability, and use the pseudo-responses to estimate my(uy).
Noting that the maximum lag is 2, we have.

1. Forj= 1,2 in Eq. (4), fit a spline to the mean-centered data. Note
that there is no mo(u;) in this example. The result is an estimate
my (ur) of mq(ur) and my(ur) of my(u).

2. Compute pseudo-responses W, ,,t = 3,...,T using

Wep =X —my(ue), t=3,4,..T

These pseudo-responses are a proxy for the original realization,
but with the effect of the m;(u;) removed.

3. Fit a kernel regression to the pseudo-responses to get the SBK
estimate i, (u¢) of my(uy).

Repeat steps 2 and 3, reversing the roles of m; and m,.
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Time Plot of Mean Centered Exponential Autoregressive Series

0.5

Xy
0.0
I

0 100 200

300 400 500

t

Fig. 1. Mean-centered realization of length T = 500 from an EXPAR(2) model given in Eq. (7).

Fig. 2 shows the estimation results of a simulated series from the
exponential autoregressive model in Eq. (7) with IID standard
normal w; and 500 samples. The dark curves of dots are the esti-
mated functions, and the solid (thin) lines are the true functions.
The dashed lines are the 95% pointwise confidence bands.

3.3. Spatial modeling for lattice data

For a fixed time t, consider a lattice process Y, s = 1,2,...S. In this
section, to ease notation, the time index t is suppressed. Let .7’
represent a neighborhood around location s. The simultaneous
autoregressive (SAR) model is defined as

Ys= > BsjYj+ds,

jers

where (; is a set of coefficients that induces the spatial

0.1

0.0

mq(u ¢)

-0.4 -0.2 0.0 0.2
Ut

autocorrelation between locations j' and s in ./, and 65 are inde-
pendent, zero-mean, constant variance errors. The SAR model was
first introduced by Ref. [46]. The adjective “simultaneous” describes
the S autoregressions that occur simultaneously at each data loca-
tion in the formulation. To fit this model in Section 4, we will
employ a two nearest neighbor structure to define.7’s. The model is
fitted using maximum likelihood estimators which are obtained
using the R package spdep [47].

3.4. Spatio-temporal modeling

We now introduce two spatio-temporal models both of the form
in (1). The first model we consider uses the noise process defined in
(2) and assumes a separable covariance structure for this process.
The time series structure, Xs;, is modeled as an FCAR model using
the SBK method. Values of p and d in (3) are allowed to vary

0.4

0.2

ma(Uu )

-0.4 -0.2 0.0 0.2

Ut

Fig. 2. Spline-backfitted kernel estimates of the coefficients mo(u) = 0.5u — 1.1uexp{—50u?} (left panel) and m;(u) = 0.3 — 0.5exp{—50u?} (right panel). Heavy curves are the
estimates fig(u) and mq(u); thinner lines are the true functions mo(u) and my(u); dashed lines are 95% confidence bands.
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Fig. 3. Top graph is the time plot of 1-min averages (solid black) of irradiance measurements for March 10 with the local polynomial kernel estimate (dashed red) superimposed.
The bottom plot is transformed irradiance (residuals after using local polynomial kernel regression to remove the diurnal trend). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

between locations, and the spatial structure, Y, is modeled sepa-
rately using a SAR model at each time. By modeling the time and
space components separately, we are implicitly assuming separa-
bility. If this assumption is appropriate, then the order in which the
two models are fit (time-then-space, or space-then-time) should
not matter.

The second spatio-temporal model does not assume separa-
bility. Combining the FCAR(p) model with a generalized version of
the SAR model, we define the space-time functional coefficient
simultaneous autoregressive (FCSAR) model as

ZSf*Z Z Bs.owlat— W+kas St dS)Zst Kkt &st, (8)

w=1 e/

where b is the spatial time order for the spatial component in the
model, s is the spatial autocorrelation between locations s and 2
atatime lag of w, Zs;_4s is a delay variable, and e are IID with mean
zero and constant variance ¢2. We allow the values of ps and ds to
vary among locations. The FCSAR model is based on the space-time
simultaneously specified autoregressive model of [26].
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Fig. 4. Time plot of 10-min time averaged GHI for March 8—11, 2010. These days
illustrate the three cloud cover categories we used for the Lanai data. March 8 is clear,
March 10 is partly cloudy, and March 11 is mostly cloudy.

In Ref. [26], the model in (8) has a linear autoregressive structure
to the time series term for which a Bayesian approach is used for
estimation. For our model, we estimate the f,,/s using maximum
likelihood. Define IseRS*S as an identity matrix, DERS*S as a
matrix of weights with elements d;; = 1/(25) if the jth sensor is one
of the two nearest neighbors of sensor i and 4;; = 0 otherwise, and p
as a spatial autocorrelation parameter. Let Z; = (Z1,22¢,....Zs, t) and
Z =D (Z; 1,....Z:_p). The log-likelihood function is

Table 1

Root mean squared error (RMSE, in W/m?) for the four spatio-temporal models of
the days with clear, partly cloudy, and mostly cloudy conditions. Columns S-T and T-
S contain the RMSE for the separable spatio-temporal models. Column S-T contains
RMSE for data with the spatial component fit first, then time; Column T-S contains
RMSE with the time component fit first, then space. The last two columns contain
RMSE for the nonseparable FCSAR model with spatial time orders b =1 and b = 2,
respectively. The values in parentheses are the percentages of the mean GHI for that
day that the RMSE represents.

Date Separable FCSAR
S-T T-S b=1 b=2
Clear Feb. 3 0.64 (0.1) 2.32(0.5) 0.38(0.1) 0.16(0.1)
Feb. 16 3.58(0.8) 15.03(3.2) 2.28 (0.5) 1.36(0.3)
Mar. 8 0.62 (0.1) 1.99 (0.4) 0.37 (0.1) 0.22(0.1)
Mar. 19  0.60 (0.1) 6.33(1.1) 0.36 (0.1) 0.22(0.1)
Oct. 21 0.94 (0.2) 4.01 (0.9) 0.65 (0.1) 0.42(0.1)
Dec.16  1.13(0.2) 6.17 (1.2) 0.87 (0.2) 0.44(0.1)
Partly cloudy  Mar. 7 8.26 (2.6) 63.68(19.8) 6.79(2.1) 3.35(1.0)
Apr. 1 7.88(2.2) 99.53(27.3) 6.96(1.9) 4.51(1.2)
May 10  6.18 (2.1) 56.02(19.1) 5.84(2.0) 3.72(1.3)
Jun. 4 9.69 (2.8) 5091 (14.7) 6.34(1.8) 3.36(1.0)
Jun. 28 4.07 (14) 55.00(18.8) 2.78(1.0) 1.76 (0.6)
Nov. 15 10.70 (3.0) 58.14(16.3) 9.07 (2.5) 6.00(1.7)
Mostly cloudy Feb. 1 8.61(2.4) 62.60(17.7) 7.80(2.2) 4.88(14)
Mar. 15 13.26 (4.0) 116.71(35.0) 10.65(3.2) 5.50(1.6)
Apr. 6 6.00 (1.9) 48.16(15.0) 3.93(1.2) 2.43(0.8)
May 31 11.23(22) 91.11(17.8) 8.53(1.7) 5.08(1.0)
Aug. 3 6.05(2.0) 64.36(21.0) 5.10(1.7) 2.82(1.0)
Oct. 27 454 (1.2) 93.69(254) 3.23(0.9) 1.89(0.5)
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T
InL=C+> In
=1

Is — pD| — ZT: (g)ln(e’e) (9)

t=1

where C represents a constant not involving the parameters,
e=e;—pDZ +Z(Z'Z)'ZDZ;,

ez =272 — 2,

8 = (Z2)'2z,,

and (s = (ﬁsvgv],...,ﬁsygz’b),. Note that the weight matrix we use forces
each neighboring parameter to be the same, i.e., 51w = fs2w in the
two nearest neighbors structure. We maximize (9) with respect to
Bs for each location s. For more detail on estimating a SAR model
using maximum likelihood see Ref. [48]. The functional coefficients
My s(Zsr—as) are estimated using the SBK method defined in Section
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3.2. The values of ps and ds are chosen for each site s by minimizing
the mean square error of the fit to the observed time series at s. The
value of the bandwidth h for the kernel smoothing in the SBK
method is chosen via a modified, multifold cross-validation pro-
cedure at each site s [see Ref. 39]

4. Application and discussion

To illustrate the utility and compare the performance of the
proposed models, we model GHI data at the 1.2 MV La Ola PV plant
on the island of Lanai, Hawaii. The La Ola PV plant contains a grid of
12 single-axis tracked arrays arranged in three columns and four
rows covering a total area of approximately 250 m by 250 m. The La
Ola plant is located at 20.7669N 156.9229W, near the southern end
of the island of Lanai, atop the plateau in a subtropical dry forest
climate [49]. Lanai lies in the rainfall shadow of Maui and thus is
relatively dry, yet measured irradiance shows that variable irradi-
ance due to cloud movement are the dominant pattern [50]. We
chose to model GHI rather than POA irradiance to illustrate a more
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Fig. 5. Time plots of 1-min time averaged irradiance and of transformed irradiance with predicted values superimposed in red for a clear day, October 21. Forecasting was conducted
using the (a) time-then-space fitting (b) space-then-time fitting (c) nonseparable model. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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general application of our method. However, the La Ola data are
POA irradiance rather than GHI. Sandia National Laboratories and
SunPower Corporation designed an irradiance measurement sys-
tem in part to study the effects of the movement of cloud shadows
across the PV arrays on the power output of the plant [1]. Plane-of-
array (POA) irradiance (in W/m?) is measured at the midpoint of
each tracking array using LiCor-200 pyranometers.

Before fitting the models it is necessary to remove the diurnal
trend, a step which we found somewhat difficult. Clear sky models
are available for removing trends from measured GHI data; a re-
view of some of these models can be found in Ref. [51]. We set out
to use clear sky models to remove the diurnal trend, which would
present no great difficulty for measured GHI. We know of no
equivalent “clear-sky” model for POA irradiance (although, if the
tracking algorithm is known with sufficient precision, such a model
could be assembled by applying a GHI-to-POA translation model,
e.g., the DISC model of [52] to the output of a clear-sky model). We
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translated POA irradiance to GHI by assuming the isotropic sky
model for the sky diffuse irradiance and using concurrent mea-
surements of diffuse horizontal irradiance (DHI) and direct normal
irradiance (DNI) from a nearby rotating shadowband radiometer
(RSR) operated by the National Renewable Energy Laboratory.
Because tracker rotations are not measured we estimated the angle
of incidence on the modules using a generic algorithm for single-
axis tracking [53]. Even with the use of measured DHI and DNI,
the estimated GHI profiles were not well-matched with the output
of available clear-sky models, and the clear sky models performed
poorly in removing the trend. Consequently, we removed the
diurnal trend in the estimated GHI by using a local polynomial
kernel regression implemented in the KernSmooth package [54] in
the R programming software.

We selected one year (i.e., January 1, 2010 to December 31, 2010)
of POA irradiance measurements, which are recorded every second.
We observed little to no variability from one irradiance
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Fig. 6. Time plots of 1-min time averaged irradiance and of transformed irradiance with predicted values superimposed in red for a partly cloudy day, April 1. Forecasting was
conducted using the (a) time-then-space fitting (b) space-then-time fitting (c) nonseparable model. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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measurement to the next at 1 s intervals and consequently reduced
the data by time averaging. We investigated time-averages of
lengths of 30 s, 1 min, 5 min, and 10 min. Longer time averages (e.g.,
15 and 20 min) were also considered but did not appear to be
significantly different from the 10 min averages. We chose to use 1-
min average data for our exploratory work.

The top time plot in Fig. 3 contains the 1-min time averages of
estimated GHI in solid black superimposed with the local poly-
nomial kernel regression estimate in dashed red for March 10. The
bottom time plot contains the residuals, hereafter referred to as
“transformed irradiance,” obtained after removing the diurnal
trend by subtracting the kernel fit.

We examined a large number of time plots of GHI to find days
with different variability characteristics. For each day, the weather
condition was classified visually as being in one of three categories:
clear, partly cloudy, and mostly cloudy, by the variability and
magnitude of GHIL Fig. 4 shows an example of how the different
categories looked visually. We show the measured GHI for March
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8—11 for which March 8 is considered a clear day due to its
smoothly changing irradiance similar in magnitude to that pre-
dicted a clear sky model. March 9 and 10 are considered as partly
cloudy. These days show variation in GHI due to moving clouds
with a general trend that is similar to a clear sky day (e.g., March 8).
March 11 is considered a mostly cloudy day because the general
trend is much lower than the magnitude of irradiance during a
clear sky day. Days with irradiance that changed among these
categories were not considered in this paper. In Section 5 we
discuss future work in which a weather covariate can be used to
allow the model to be fitted to days with varying weather
conditions.

For 2010, in Lanai, HI, only six days could be classified as “clear”
throughout the entire day. For partly cloudy and mostly cloudy
conditions, we found many days. For both of these weather con-
ditions, six days in 2010 were randomly selected.

For each selected day, we explored whether assuming space-
time covariance separability in (1) would be justified. Using the
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Fig. 7. Time plots of 1-min time averaged irradiance and of transformed irradiance with predicted values superimposed in red for a mostly cloudy day, August 3. Forecasting was
conducted using the (a) time-then-space fitting (b) space-then-time fitting (c) nonseparable model. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Table 2

Root mean squared error (RMSE, W/m?) for the nonseparable spatio-temporal models with b = 2 of the days with clear, partly cloudy, and mostly cloudy conditions. The
columns are the RMSE for data at 30-s, 1-min, 5-min, and 10-min averages. The values in parenthesis are the R2.

Condition Date 30-sec 1-min 5-min 10-min
Clear Feb. 3 0.38 (0.990) 0.30 (0.993) 0.19 (0.999) 0.16 (0.999)
Feb. 16 4.98 (0.952) 3.68 (0.970) 1.82 (0.988) 1.36 (0.963)
Mar. 18 1.79 (0.970) 0.99 (0.989) 0.42 (0.999) 0.22 (0.992)
Mar. 19 0.81 (0.999) 0.63 (0.998) 0.32(0.952) 0.22 (0.993)
Oct. 21 3.94 (0.846) 2.21(0.926) 0.67 (0.991) 0.42 (0.983)
Dec. 16 0.67 (0.998) 0.61 (0.998) 0.49 (0.952) 0.44 (0.993)
Partly cloudy Mar. 7 25.66 (0.920) 17.68 (0.960) 5.42 (0.991) 3.35(0.997)
Apr. 1 31.75 (0.932) 24.65 (0.960) 6.99 (0.996) 4.51 (0.998)
May 10 25.91 (0.927) 19.68 (0.954) 7.70 (0.987) 3.72 (0.999)
June 4 22.05 (0.907) 20.60 (0.920) 7.21 (0.986) 3.36 (0.995)
June 28 13.85 (0.935) 10.12 (0.966) 3.88(0.994) 1.76 (0.999)
Nov. 15 27.69 (0.908) 22.56 (0.935) 9.24 (0.979) 6.00 (0.987)
Mostly cloudy Feb. 1 26.46 (0.899) 2412 (0.917) 9.27 (0.982) 4.88 (0.993)
Mar. 15 27.85 (0.938) 20.29 (0.968) 6.05 (0.996) 5.50 (0.997)
Apr. 6 24.22 (0.883) 19.44 (0.930) 4.01 (0.997) 2.43 (0.997)
May 31 42.26 (0.899) 30.26 (0.943) 9.60 (0.988) 5.08 (0.997)
Aug. 3 25.92 (0.948) 20.59 (0.966) 6.15 (0.995) 2.82(0.998)
Oct. 27 7.29 (0.980) 5.89 (0.985) 2.77 (0.996) 1.89 (0.999)

separable models we fit the data in two ways: space-then-time and
time-then-space. If the separability assumption is appropriate, then
the two models are equivalent and should yield similar results. For
the space-then-time approach, we first fit the SAR model to the 16
sensors for each time, t. We obtain the residuals from the fitted SAR
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model, and then apply the FCAR model to each sensor separately.
For the time-then-space model, we first fit the FCAR model to the
detrended irradiance for each of the 16 sensors, and then the re-
siduals from the fitted FCAR model are fit with the SAR model at
each time point. For each approach the root mean square errors
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Fig. 9. Plots of the detrended observed irradiance and the fit of the FCSAR model for sensor 1 from 11:00 to 13:00 on October 21 (a clear day). The different plots are for different

averages: (a) 10 min, (b) 5 min, (c) 1 min, and (d) 30 s.
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(RMSEs) (over all sensor locations and times) for eighteen days with
three different weather conditions are found in the first two col-
umns of Table 1. For all days considered in this study, the RMSE for
the model that fit space first is considerably smaller than when
time was fit first. This is a strong indication that the assumption of
separable covariance structures is not supported and that non-
separable models should be employed.

For a fixed time t, because the sensors are at fixed locations, the
spatial structure can properly be considered a lattice. Consequently,
for the nonseparable model we fit the FCSAR model in (8) for spatial
time orders b = 1,2. The last two columns in Table 1 contain values
of RMSE for these two fits. The FCSAR model with b = 2 has the
smallest RMSE for all 18 days, indicating the best fit among the
models considered. For cloudy and partly cloudy conditions RMSE
decreases substantially from b = 1 to b = 2 indicating that a lagged
model is needed for greater prediction accuracy. For comparing
accuracy between days with different irradiance levels, we provide
the percentage of GHI that the RMSE represents. These are shown
in the parentheses in Table 1.

Figs. 5—7 contain six plots, grouped in three pairs. Each figure
displays one sensor location for one day: a clear day (October 21,
Fig. 5); a cloudy day (April 1, Fig. 6); and a partly cloudy day (August
3, Fig. 7). For any one pair of plots, the top graph contains the GHI
data represented by a solid black line, and the modeled GHI rep-
resented by a red dashed line. The bottom graph contains the
detrended GHI data (solid black line) and the detrended modeled
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GHI (red dashed line). For all three days, the set of two plots labeled
(a) were fit using a separable time-then-space approach; the two
sets of plots labeled (b) were fit using a separable space-then-time
approach; and the plots labeled (c) were fit using the nonseparable
FCSAR model with b = 2. The collection of figures illustrates the
nonseparable approach yields the best fit, regardless of the weather
conditions, which is in agreement with minimum RMSE in Table 1.
However, where RMSE is an aggregate measure of goodness-of-fit,
the plots illustrate that at individual time points, the goodness-of-
fit is uniformly better for the nonseparable model.

Forecasting the FCSAR model in time is largely dependent on
using the SBK method for forecasting the FCAR term in (8). In
Ref. [55], methodology is presented for forecasting a FCAR model
using the SBK method. In this paper, we examine the performance
of forecasting (8) in space for unobserved locations by using cross-
validation. We simulated unobserved locations by omitting one or
several sensors from our data set, and compared FSCAR model
performance with a commonly used interpolation technique to
judge the potential improvement offered by the FCSAR model.

Unobserved data are often estimated by interpolating between
nearby sensors; one such technique is natural neighbor interpola-
tion which comprises a weighted average with weights determined
by a Voronoi partition [56]. A Voronoi partition divides the space
that contains the sensors into regions. Each sensor will have a
corresponding region consisting of all points closer to that sensor
than to any other. We constructed a Voronoi partition on the set of
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Fig. 10. Plots of the detrended observed irradiance and the fit of the FCSAR model for sensor 1 from 11:00 to 13:00 on April 1 (a partly cloudy day). The different plots are for

different averages: (a) 10 min, (b) 5 min, (c) 1 min, and (d) 30 s.
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training sensors along with the location of the missing sensor. For
cross-validation, we took the weighted average of the training
sensors where the weights are determined by the size of the re-
gions. This weighted average is used for the prediction for the
missing sensors.

We fit the FCSAR model to the training set of sensors with b = 2
and using a two nearest neighbor structure for./’s. For each missing
sensor, we determined the two nearest neighbors and predicted the
irradiance by using the estimated ('s for those neighbors.

For our set of 16 sensors, we calculated the predictions with
k = 1,2,3,4 missing sensor locations. For k > 1, we predicted for each
missing location one at a time. We calculated the root mean pre-
diction error (RMPE) as

T
RMPEg, = % 3 (Z (Zse - Zs<t>2>7

seQ; \ t=1

where Q; is the ith set of k missing sensors, Zs is the predicted
irradiance for the sth sensor at time t, and Z; is {E observed
irradiance. The RMPE, is calculated for all K = ( possible
combinations of k missing sensors. The mean RMPE is calculated as

1K
RMPE; = ; RMPE,, .
To compare the FCSAR model to the interpolation method, we
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The ratios for all 18 days are plotted in Fig. 8. All ratios are less
than one indicating that the FCSAR model performs better at pre-
dicting the missing sensors.

To examine the effect of different time averaging windows on
the FSCAR model's performance we fit the model for a range of time
averaging windows, from 10 min down to 30 s. For each day, we
calculated the model's RMSE as well as the adjusted coefficient of
determination R2. The adjusted coefficient of determination R2
quantifies the level of agreement between the data and a fitted
model taking into account the number of variables used in the
model:

R2 — 1 >Srit/ (TS — vrir)
a )
SS1otal/(TS)
where
s T P
SSEt =Y (Zs,t - Zs,t) ;
s=1 t=1
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Fig. 11. Plots of the detrended observed irradiance and the fit of the FCSAR model for sensor 1 from 11:00 to 13:00 on August 3 (a mostly cloudy day). The different plots are for

different averages: (a) 10 min, (b) 5 min, (c) 1 min, and (d) 30 s.



28 J.D. Patrick et al. /| Renewable Energy 87 (2016) 15—30

T

s
SStotal = »_, Y (Zst — 7)27
s=1

t=1

18T
2133
s=1 t=1

Zs,t is the predicted irradiance for the sth sensor at time t, Z; is
the observed irradiance, and vgj; is the number of parameters used
in the fit. Since we are using kernel regression to fit the time series,
we must estimate the number of parameters associated with that
regression. For the SBK estimate of the kth coefficient function in
(8), the effective number of parameters is the trace of the smoother

matrix

1\ (1 onge) 1
(1) (Lewmc) Lom

in (6) [see Refs. [40,57]. We calculate the total number of parame-
ters as the sum of the parameters in the first double sum in (8) plus
the sum of the effective number of parameters for the FCAR term.
The values of RZ and RMSE are shown in Table 2. We show the fits of
three days for the different time averages in Figs. 9—11.

Table 2 shows that as the time averaging window decreases,
RMSE increases and and R2? decreases, both indicating increasing
disagreement between data and model. However, as the time
averaging window decreases, variance in time averaged data at any
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Fig. 12. Boxplots for (a) the observed detrended data and (b) the residuals of the fit of the FCSAR model with b = 2 for April 1 (a partly cloudy day).
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individual location increases substantially (Figs. 9—11). As ramps in
the data increase in both magnitude and frequency the largest re-
siduals of the fitted model also increase. Similar patterns are
evident in the spatially-averaged data. Fig. 12 compares distribu-
tions for the spatially averaged detrended irradiance data and
corresponding distributions residuals for the fitted FSCAR model
for a partly cloudy day. As the averaging window decreases., out-
liers increase in both the data and the model residuals also increase,
leading to the increasing RMSE and decreasing R? evident in
Table 2. However, the FCSAR model continues to fit the bulk of the
data equally well across all time averaging windows, as is
demonstrated by the relatively constant boxes and whiskers across
the different time averages. Thus, the FCSAR model follows time
averaged data equally well for various averaging windows.

5. Conclusion

We have presented a novel nonseparable spatio-temporal
model for GHI data. This approach, termed the FCSAR model, out-
performs a natural neighbor interpolation when predicting GHI at
unobserved locations over the footprint of a PV system. We
compared the nonseparable FCSAR model with simpler, separable
models, and find little support for models that assume a separable
covariance structure. The FSCAR model integrates an FCAR form for
the time series component of the model and a SAR form for the
spatial component. The FCAR(p) form of the time series component
of our nonseparable model makes the FCSAR model flexible and
reliable, and may be suitable for fitting irradiance data in general.
Currently, the model is fit separately on each day. Further research
will consider validating the fitted models by comparing predicted
aggregate irradiance with generated power for a much larger solar
power plant than La Ola. Future work may also explore adding a
weather condition covariate that will allow the model to be fit over
days with different weather conditions, by permitting the coeffi-
cient functions in the time series structure to vary based on
weather condition. The use of the SBK method for estimating the
time series structure has an assumption that the second derivative
of the coefficient function is continuous [e.g. see 41, 55]. The use of a
weather condition covariate may result in coefficient functions that
do not satisfy this assumption. Patrick et al. [55] examine an
example for which the assumption is relaxed and shows the SBK
method still performs well in estimation and forecasting. Thus, the
use of an weather condition covariate will be worth exploring.
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