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a b s t r a c t

Environment has significant impacts on the structure performance and will change features of sensor
measurements on the monitored structure. The effect of varying environment needs to be considered
and eliminated while conducting structural health monitoring. In order to achieve this purpose, a
baseline model based structural health monitoring method is proposed in this paper. The relationship
between signal features and varying environment, known as a baseline model, is first established. Then, a
tolerance range of the signal feature is evaluated via a data based statistical analysis. Furthermore, the
health indicator, which is defined as the proportion of signal features within the tolerance range, is used
to judge whether the structural system is in normal working condition or not so as to implement the
structural health monitoring. Finally, experimental data analysis for an operating wind turbine is con-
ducted and the results demonstrate the performance of the proposed new technique.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Most structural systems are subject to suffering damage due to
inappropriate operation, hostile working conditions or fatigue
damage after long time service. Minor damage will change the
performance and reliability of the structural system; while serious
damage will lead to system malfunction and even cause casualties.
Therefore, structural health monitoring (SHM) has been widely
employed to monitor structural health status and indicate the
possibility of damage in the structural system so that proper
maintenance can be scheduled in time to reduce the unexpected
loss caused by downtime [1,2].

Extensive methods have been developed to implement struc-
tural health monitoring and fault diagnosis. Model-based and
signal-based structural health monitoring methods and their ap-
plications were comprehensively reviewed in Ref. [3], and
knowledge-based and hybrid/active methods were surveyed in
Ref. [4]. Ma et al. studied different types of damage in rotor systems
including rub-impact [5], misalignment [6] and pedestal looseness
[7], and experimental results verified the possibility of a finite
element method in health monitoring. Especially, many researches
ang@sheffield.ac.uk (Z. Lang).
focused on the performance of concrete damage-sensitive features.
For example, Mohanty et al. [8] investigated vibration of a multi-
stage gearboxwith various defects, i.e. one or two teeth broken, and
concluded that the input shaft frequency was able to indicate the
existence of defects. Williams et al. [9] studied the root mean
square (RMS) levels of measurements from an acoustic emission
(AE) sensor on inner race of ball bearing, and concluded that the
RMS levels of AE sensor measurements exhibited a monotonous
increase after the occurrence of damage.

However, the changes revealed by damage-sensitive features
which are always considered as SHM features are affected not only
by damage in the inspected structural system but also by the
working environment [10]. The varying environment has signifi-
cant impacts on the system dynamic behaviours as discussed by
Sohn in Ref. [11]. Moreover, Sohn et al. [12] studied the vibration of
a theme park ride by combining time series analysis with statistical
pattern recognition technique and concluded that the feature
variation caused by mass loading was more obvious than that
caused by delamination damage. Ha et al. [13] researched the ef-
fects of temperature and humidity on pre-stressed concrete girders
and found that when the temperature and humidity increased, the
frequencies and damping ratios decreased in proportion. The sta-
bility of a rotor system with rub-impact damage under different
rotating speeds was investigated by Han et al. in Ref. [14], and the
results revealed that when rotating speed increased, the system
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exhibited firstly stable, then period-doubling bifurcations and
finally reached the stable periodic motion again. As for the gearbox,
Loutas et al. [15] researched how the features of the vibration and
AE signals in the frequency domain changedwhen the gearbox kept
working until several teeth were cut and considerable damage
happened on the shaft. It was concluded that the oil temperature
had an effect on the recordings.

Therefore, many researchers have paid attention to the influ-
ence of varying environment on system behaviors, and then, try to
investigate the effect of non-damage factors so as to enhance the
reliability of structural health monitoring methods [16e18]. One
type of methods for removing the effects of varying environment is
to model the relationship of damage-sensitive features and varying
environment. Makis and Yang [19] found that a model developed
under the constant load assumption could not recognize whether
the vibration feature changes of gearbox were caused by the load
variation or by a failure occurrence. To settle this problem, an ARX
model was proposed which considered load as additional infor-
mation. Worden et al. [20] revised the conventional outlier analysis
method by replacing the traditional mean vector of damage-
sensitive features with features at the same temperature pre-
dicted from a polynomial regression model in temperature and the
mean vector of damage-sensitive features at this temperature. Zhao
and Lang established the relationship between the varying envi-
ronments and SHM features using a polynomial model [21] and a B-
spline model [18] respectively, and then proposed a novel health
indicator after removing the environmental effect to indicate
health condition of the monitored system. Experimental study on
wind turbine components proved the effectiveness of the health
indicator. Another type of methods removing the effects of varying
environment is to extract signal features which are insensitive to
environmental variation but still damage-sensitive. Cross and
Worden combined linearly several damage-sensitive features to
produce a new feature which was independent of environmental
variation but was sensitive to damage in Ref. [22], and further tried
to extract signal features which were insensitive to environmental
variation but still damage-sensitive by co-integration technique,
outlier analysis and minor principal components techniques in
Ref. [23].

Most above researches except [18,21] are based on the
assumption that the change of SHM features can be generally
expressed by the environmental variation within the whole range.
But the features of measurements are likely to be influenced
obviously by the local environment parameters [18]. Therefore, this
paper present a novel and efficient structural health monitoring
method by taking environmental variation which is at a similar
damage sensitivity level as a group. There are two novelties and
contributions in this paper. The first one is that an improved B-
spline model is developed to build baseline model between SHM
features and environment parameters. This model can deal with
local effect very well and fit data smoothly with low degree and
high efficiency. The other one is that the structural health moni-
toring is conducted not in the whole range of environment pa-
rameters but in different bins which cover the value of
environment parameters at similar damage sensitivity levels, this is
benefit to improve the reliability of the structural health moni-
toring results.

The layout of the paper is as follows. After this introduction, the
baseline model based SHM method under varying environment is
proposed and demonstrated systematically in Section 2. The
effectiveness of the new method is verified by experimental case
studies in Section 3 and Section 4. Finally, the conclusions are
presented in Section 5.
2. Methodology

Traditionally, structural health monitoring is achieved by
monitoring structural signal features and identifying any deviation
of these features from a healthy one, an obvious deviation is
indicative of a developing damage. The signal feature of the
monitored structure can be named as in-service feature, while the
signal feature of the healthy structure can be named as health
feature. They are extracted respectively from sensor measurements
of the monitored structure and the health structure by using a
range of data analysis methods [11], such as time domain analysis,
frequency domain analysis or time-frequency domain analysis
[9,24,25]. However, fluctuating environment has significant im-
pacts on the structure performance, and can also cause the change
of signal features which will lead to incorrect results of SHM. In
order to remove the effect of fluctuating environment on the results
of traditional structural health monitoring, a baseline model is
proposed to represent the relationship between healthy SHM fea-
tures and corresponding environment parameters. Then tolerance
ranges of the in-service SHM features under certain environment
conditions are obtained by statistical analysis. Finally, in-service
structural system health condition can be determined by identi-
fying occurrences of in-service SHM features within tolerance
range. Baseline model, tolerance range and health indicator are
achieved as follows.
2.1. B-spline based baseline model

The most important part of SHM considering varying environ-
ment is the baseline model between healthy SHM features and
corresponding environment parameters [26]. The purpose of
building a baseline model is to map the system environment pa-
rameters to the signal features extracted from the sensor mea-
surements so that the effects of varying environments can be
removed when conducting SHM. Baseline model can be expressed
as:

y ¼ f ðx1; x2; x3;…; xMÞ (1)

where x1; x2; x3;…; xM are the environment parameters, M is the
number of the environment parameters, and y is the SHM feature.
Many methods can be employed to build the baseline model, such
as polynomial model [21,26], ARX model [19] and auto-associative
neural network [27]. In this paper, a revised B-spline model is used
to determine the baseline model.

Conventional B-spline model can be expressed as [28].

y ¼ f ðx1; x2; x3;…; xMÞ ¼
XM1

i1¼0

…

XMM

iM¼0

ai1;i2;…iMNi1 ;pðx1Þ…NiM ;pðxMÞ

(2)

where Ni1 ;pðx1Þ, …,NiM ;pðxMÞ are the i1
th, …, iM

th B-spline basis
functions of degree p with respect to variables x1, …,xM ;

respectively; and Ni1;pðx1Þ, …, NiM ;pðxMÞ can be expressed by
Nim ;pðxmÞ ,m ¼ 1;2;…;M; ai1;i2;…iM is control coefficient of the term
Ni1 ;pðx1Þ…NiM ;pðxMÞ;Mm is the number of B-spline basis function of
Nim ;pðxmÞ, where m ¼ 1;2; …; M. Given a knot vector
xm ¼ fxm;0; xm;1; xm;2;…; xm;Kg and degree p, B-spline basis function
Nim ;pðxmÞ is usually defined by Cox-de Boor recursion formula as
follows:



Fig. 2. B-spline basis functions.
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Nim;0ðxmÞ ¼
�

1 if xm;im � xm < xm;imþ1
0 otherwise

(3.1)

Nim;pðxmÞ ¼
xm � xm;im

xm;imþp � xm;im
Nim;p�1ðxmÞ

þ xm;imþpþ1 � xm
xm;imþpþ1 � xm;imþ1

Nimþ1;p�1ðxmÞ (3.2)

It can be deduced from Eqs. (2) and (3) that the basis function
Nim;pðxmÞ is non-zero on only pþ 1knot spans, namely, ½xm;im ;

xm;imþ1Þ, ½xm;imþ1; xm;imþ2Þ, …, ½xm;imþp; xm;imþpþ1Þ, and on any knot
span ½xm;im ; xm;imþ1Þ, at most pþ 1 basis functions with degree p are
non-zero, namely, Nim�p;pðxmÞ, Nim�pþ1;pðxmÞ, …, Nim ;pðxmÞ. Thus,
changing the control coefficient ai1;i2;…iM or the position of knot xm;i

only affects the curve shape of B-spline model on local span, this is
so-called local effect or local modification property. In addition, B-
spline curve expressed by Eq. (3) is a piecewise and derivative curve
with each component a curve of degree p, this property allows B-
spline model to fit complex shapes smoothly with lower degree
than ARX model and with higher efficiency than neural network.
The B-spline model expressed by Eqs. (2) and (3) has excellent
capabilities in smooth data fitting and local effect, and can be used
to fit the data with lower degree but higher efficiency, so it is
employed in this paper to determine the baseline model.

In order to explain the ability of the B-spline model in fitting the
data, one example is provided in the following. Fig. 1 shows vi-
bration levels of a rotor system under different rotating speeds,
where the horizontal coordinate is the rotating speed of the rotor
system with the unit of Hz, and the vertical coordinate is the vi-
bration amplitude of the rotor system with the unit of mm
(Detailed information about the rotor system can be found in Case 1
in Ref. [29]). The B-splinemodel is applied to fit data shown in Fig.1.
In this case, only rotating speed is treated as an independent var-
iable, soM ¼ 1. When the degree of B-spline basis function is set as
p ¼ 3, the number of knots is set as 15, namely, K ¼ 14, and the
knot vector is set as
x1 ¼ �
x1;0;…; x1;K

� ¼ f60; 61; 63:3; 66:6;69:9; 73:2; 76:5; 79:8; 83:1; 86:4; 89:7; 93; 96:3; 99:6; 100g
Then, B-spline basis functions Ni1 ;pðx1Þ can be determined ac-
cording to Eqs. (3.1) and (3.2), and some of them are shown in Fig. 2.
Fig. 1. Original data.
Corresponding coefficients are estimated by least squares, and the
results are listed in Table 1. The fitting error when K ¼ 14 is shown
in Fig. 3 by a blue solid line. The maximum, mean and standard
deviation are 0.1636, 0.0032 and 0.0582 respectively, indicating
that the fitting error is small and ignorable. Therefore, data in Fig. 1
can be represented by B-spline model Eqs. (2) and (3) with B-spline
basis functions in Fig. 2 and corresponding coefficients in Table 1.

However, when the number of knots K increases, the perfor-
mance of B-spline model in fitting data becomes unstable, e.g.,
when the number of knots increases toK ¼ 45, fitting error by B-
spline model at the end data is much larger than that when K ¼ 14
as shown in Fig. 3; the maximum, mean and standard deviation are
2.5892, 0.0284 and 0.2725 respectively. This is because corrosion of
data at the end tends to deteriorate when the number of knots and
B-spline basis functions become larger. Besides, the increase in the
number of knots and B-spline basis functions will also lead to more
complicated and tedious computations, and computational errors
are accumulated when fitting a B-spline model. In order to solve
this problem, conventional B-spline model can be improved by
reordering all remaining B-spline basis functions and/or ignoring
insignificant B-spline basis functions and their multiplications by
using recursive forward-regression orthogonal estimator (RFROE)
[30]. The terms which contribute prominently to the model can be
selected as follows.

Step (a) All terms
Ni1;pðx1Þ…NiM ;pðxMÞ; i1 ¼ 0;1;2;…;M1;…; iM ¼ 0;1;2;…;

MM are considered as possible candidates for the most
important term w1ðtÞ. For
i1 ¼ 0;1;2;…;M1;…; iM ¼ 0;1;2;…;MM , set wði1…iMÞ

1 ðtÞ ¼
Ni1;pðx1Þ…NiM ;pðxMÞ; then calculate

P ði …i Þ
bgði1…iMÞ
1 ¼

N
t¼1w

1 M

1 ðtÞyðtÞPN
t¼1

�
wði1…iMÞ

1 ðtÞ
�2 (4)

and



Table 1
Coefficients for B-spline model.

Terms Coefficients Terms Coefficients Terms Coefficients Terms Coefficients

N1;3ðxÞ 0.3625 N5;3ðxÞ 0.9096 N9;3ðxÞ 1.7059 N13;3ðxÞ 4.0308
N2;3ðxÞ 0.2403 N6;3ðxÞ 0.8023 N10;3ðxÞ 2.1150 N14;3ðxÞ 4.7122
N3;3ðxÞ 0.6693 N7;3ðxÞ 1.1435 N11;3ðxÞ 2.6903 N15;3ðxÞ 4.9271
N4;3ðxÞ 0.3400 N8;3ðxÞ 1.4623 N12;3ðxÞ 3.1659 N16;3ðxÞ 4.9661

Fig. 3. Fitting error by B-spline model.
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�bði1…iMÞ
�2PN

� ði1…iMÞ
�2
½err�ði1…iMÞ
1 ¼

g1 t¼1 w1 ðtÞPN
t¼1y2ðtÞ

(5)

Step (b) Find the maximum of ½err�ði1…iMÞ
1 , e.g., ½err�ðM1…MMÞ

1 ¼
maxf½err�ði1…iMÞ

1 ; i1 ¼ 0;1;2;…;M1;…; iM ¼ 0;1;2;…;MMg.
Then the first term is selected with½err�1 ¼ ½err�ðM1…MMÞ

1 ,
andw1ðtÞ ¼ wðM1…MMÞ

1 ðtÞ ¼ NM1;pðx1Þ…NMM ;pðxMÞ.
Step (c) All the remaining terms are considered as possible can-

didates for w2ðtÞ. Set wði1…iMÞ
2 ðtÞ ¼ Ni1 ;pðx1Þ…NiM ;pðxMÞ�

a
ði1…iMÞ
12 w1ðtÞ, calculate bgðlÞ2 and ½err�ðlÞ2 by using Eqs. (4) and

(5), respectively, where

PN
a
ði1…iMÞ
12 ¼ t¼1w1ðtÞNi1;pðx1Þ…NiM ;pðxMÞPN

t¼1w
2
1ðtÞ

(6)

Step (d) Find the maximum of½err�ði1…iMÞ
2 , and then corresponding

term Ni1 ;pðx1Þ…NiM ;pðxMÞ is selected.
Fig. 4. Fitting error by improved B-spline model.
Step (e) Then Step (c) and (d) are iterative, and the procedure is
terminated at the Ds

th step when
1�
XDs

i¼1

½err�i < a desired tolerance;Ds <D (7)

or when Ds ¼ D, where D the number of the maximum iterative
steps.
The value of the desired tolerance can be determined by using

APRESS criteria in Ref. [31].
Step (f) Identify coefficients of selected terms, which contribute

significantly to the model, by using the least squares.

The fitting error by using improved B-spline model method is
shown in Fig. 4. The maximum, mean and standard deviation of the
fitting error are 0.1885, 0.0009 and 0.0708 respectively, indicating
that the value of the fitting error by using improved B-spline model
is obviously smaller than that by using conventional B-spline
model.

The improved B-spline based model algorithm can be summa-
rized as the flowchart in Fig. 5.
Fig. 5. Flowchart of the improved B-spline based model algorithm.
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2.2. Tolerance range

Denote the deviation between the in-service feature and pre-
dicted feature by improved B-spline based baseline model as:

e ¼ y
0 � y (8)

where y0 is the feature of a sensor measurement from the in-service
structural system, y is the feature predicted by the baseline model
in Eqs. (2) and (3), e is the deviation between y0and y. This deviation
is generally determined bymany factors, including modelling error,
noise, and the effects of less significant environmental changes
which cannot be covered by the baselinemodel. In principle, effects
of these factors can be neglected when the structural system is in
healthy working conditions, if the baseline model is acceptable in
representing the changes of sensor signal features in these condi-
tions. However, damage in the structural system can make a sig-
nificant change in the deviation, and this phenomenon can be
exploited for the structural system health monitoring purpose.

Under the assumption that the deviation e follows a normal
distribution when the structural system is working normally, that
is, e� Nðm; s2Þ , where m and s are the mean and standard deviation
of e, respectively, ½m� 3s;mþ 3s� can cover 99.73% of the e values
when the structural system is working in healthy conditions.
Therefore, the tolerance range of in-service feature y0 can be
expressed as:

y
0 ¼ yþ e2½yþ m� 3s; yþ m� 3s� (9)

If y0 is within this range, the monitored structural system is
working under healthy condition, or else, the monitored structural
system is subject to damage in a large degree.
2.3. Health indicator

According to the definition of tolerance range above, if a
monitored structure is operating in a healthy condition, most in-
service y0 should fall into the tolerance range. If there is a change
or damage, only a small number of values of y0 are within the
corresponding tolerance range. This phenomenon can be repre-
sented quantitatively by the concept of health indicator defined as
follows:

P ¼ Nin=Nall (10)

where Nin is the number of the values of y0 where y
0
2½yþ m� 3s;

yþ m� 3s�, and Nall is the total number of y0.
For example, for data shown in Fig. 1, baseline model can be
Fig. 6. Tolerance range and in-service data.
established by using RFROE method in Section 2.1, the obtained
improved B-spline model curve is shown as a solid blue line in
Fig. 6; tolerance range of y0 can be calculated by Eq. (9) and shown
as a dashed black line in Fig. 6; in-service y0 is shown as red points
in Fig. 6. After statistical analysis, total number of y0 is 81, 50 of
which are within the tolerance range, therefore, health indicator is
calculated by Eq. (10) as:

P ¼ Nin=Nall ¼ 50=81 ¼ 0:6173

2.4. Health indicator in each bin

The deviation e is likely to vary with the environmental condi-
tions, that is, the value is large in some conditions but small in other
conditions. In addition, in practice, signal features of damaged
structural systems change slightly in some environmental condi-
tions but change significantly in other environmental conditions.
Motivated by these phenomena, the whole environmental condi-
tions are divided into several bins according to the value of envi-
ronment parameters, so that the deviations which have a similar
level can be calculated and their tolerance range can be determined
in each bin. The bins can be defined as:

Bn1n2;…;nM ¼ fx1; x2;…; xMg; xi2
�
xi;ni

; xi;niþ1
�

(11)

where Bn1n2 ;…;nM is the bin when xi2½xi;ni
;xi;niþ1�, i ¼ 1;2;…M;xi;ni

and xi;niþ1 are two edges of ni
th segments for variable

xi;ni ¼ 1;2;…;Mi; Mi is the total number of the segments for ith

variable xi. In order to describe bins more precisely, the bins are
renumbered by the single subscript.

Tolerance range of in-service feature y0 and health indicator can
be calculated in each bin separately. For example, for the case
shown in Fig. 6, when the whole value of x is divided into four bins
according to the rotating speeds which cover the range of
x2½60;70Þ, x2½70;80Þ, x2½80;90Þ, x2½90;100�, and denoted by Bin
1, Bin 2, Bin 3, Bin 4, respectively as shown in Fig. 7. Tolerance range
of in-service feature y0 in each bin is calculated separately and also
shown in Fig. 7. Nin, Nall, and P are calculated in each bin, and the
results are shown in Table 2.

2.5. Baseline model based SHM method and remarks

From the above concepts of B-spline based baseline model, bins,
tolerance range and health indicator, a new baseline model based
SHM method can be proposed. The detailed procedure can be
described as follows and summarized as the flowchart in Fig. 8.
Fig. 7. Bins.



Table 2
Calculation of health indicator in each bin.

Bin index Nin Nall P Bin index Nin Nall P

Bin 1 16 20 0.80 Bin 3 7 20 0.35
Bin 2 7 20 0.35 Bin 4 20 21 0.9524

Fig. 8. Flowchart of the baseline model based SHM method.

Fig. 9. Main components of monitored WT.
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Step 1 Baseline model establishment: Establish B-spline based
baseline model by using RFROE method shown in Eqs. (2)-
(7) according to data measured on the healthy structural
system;

Step 2 Bin definition: Define bins using Eq. (11) according to the
value of environment parameters;

Step 3 Tolerance range calculation: Calculate tolerance range of
SHM feature in each bin using Eq. (9) according to data
measured on the healthy structural system;

Step 4 Health indicator calculation: Calculate health indicator
using Eq. (10) according to data measured on the monitored
structural system. Then the final decision about the possi-
bility of the monitored structure being healthy or damaged
can be achieved.

For the SHM method described above, the following remarks
can be made regarding the measured data, baseline model, bins,
tolerance range, and health indicator.

1) Measured data are involved in all steps. Measured data include
both environment parameters and measurements which are
sensitive to damage, for example, vibration, acoustic emission.
Data involved in Step1-Step3 are measured from the structural
system which is healthy and subject to no damage; while data
involved in Step 4 are in-service data and measured from the
monitored structural system. It should be pointed out that
measured data involved in Step1-Step3 should cover all possible
environmental conditions, or else SHM in that condition is
limited.

2) Baseline model in Step 1 can represent the relationship between
the healthy SHM feature and corresponding environment pa-
rameters. Therefore, the quality of baseline model has a signif-
icant impact on eliminating the effect of varying environment.
Knots, order of B-spline basis functions should be carefully
chosen in order to obtain a high quality B-spline based baseline
model.

3) Bins in Step 2 are divided according to environment parameters
which means that the volume of each bin can be equal or un-
equal. But it is suggested that environmental conditions where
SHM features have a similar damage sensitivity level are allo-
cated in the same bin.

4) Both tolerance range in Step 3 and health indicator in Step 4 are
statistical concepts. Therefore, massive data should be involved
in both Step 3 and Step 4, tolerance range and health indicator
are meaningless if only few data are involved. The threshold
value for the health indicator to distinguish between damage
and normal condition should be 1 under the ideal condition, but
in practice, it is smaller than 1 due to many factors including
modelling error, calculation error and measurement noise et al.
The threshold value can be determined by the statistical analysis
on the healthy condition. The threshold is a static for a particular
structure because the influence of varying environment pa-
rameters has been considered in the baseline model.
3. Experimental case study

In order to demonstrate the ability of the proposed structural
health monitoring method in practical applications, it is applied to
monitor the health conditions of gearbox and generator in an
operating wind turbine (WT) in this section.
3.1. Experimental measurements

Experimental measurements were undertaken in an operating
wind turbine with type of 300 KW-25WINDMASTER located in the
Wansbeck Blyth HarbourWind Farm, UK. The major components of
the monitored wind turbine are illustrated in Fig. 9. The function of
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gearbox is to transform input power from hub to high speed shaft,
and the generator is to transmit mechanical power to electrical
power. Thus, the gearbox and the generator are two of the most
critical components for wind turbine; but gearbox, generator and
corresponding shafts and bearings degrade slowly with operating
time. Detection failures of such vital components are very impor-
tant [24,25,32]. Therefore, the health conditions of gearbox and
generator in the operating wind turbine are monitored in this
experimental study.

In the experiment, two vibration accelerometers (Acc) and two
acoustic emission (AE) sensors are mounted on the top of the
gearbox (labelled as Acc1 and AE1) and at the back of the generator
(labelled as Acc2and AE2) respectively as demonstrated in Fig. 9.
The type of vibration accelerometers is B&K 8309, and the type of
acoustic emission sensors is vallen VS 900RIC. Data from 4 sensors
are recorded by the National Instruments (NI) data acquisition
equipment with 4-Channel 20MHz simultaneous analogue input
which is located at the bottom of tower and connected with sensors
by a cable with length of 50m. Data were collected at different
wind speeds discontinuously. During each data collection, one
second data acquisition from the accelerometers and AE sensors
were recorded as time driven data which can be considered as
stationary signals. The sampling rate is 5M Hz. Meanwhile, the
average values of the wind speeds and power outputs over a ten
minutes period were also recorded which were considered as the
representative of the environmental conditions, as shown in Fig. 10.
Root Mean Square (RMS) of each sensor measurement for each data
recording was treated as the damage-sensitive feature at the cor-
responding wind speed and power output which can be treated as
hit driven data in this experimental case study.

The details of experiments are summarized in Table 3 where it
can be observed that: two different state conditions of the wind
turbine were investigated, one condition is no damage occurred in
WT, the other condition is maintenance has been conducted before
experiments. The Experiment #1 and #2were conducted under the
first condition while the Experiment #3 and #4 were conducted
under the second condition. The data collected from Experiment #1
were used to obtain the improved B-spline based baseline model
and the tolerance range of SHM features; the data collected from
Experiment #2- #4 were used to prove the effectiveness of the
proposed structural health method.

It should be pointed out that it is impossible to inject damage
into healthy wind turbine systems without great expense, the
measurements were conducted on an operating wind turbine
without artificial damage. In order to solve this problem, apart from
Fig. 10. Data acquisition schedule.
two experiments on the wind turbine without damage, another
two experiments were conducted after maintenance and labelled
as Experiment #3 and Experiment #4, the time interval of which
was about twomonths, to verify the ability of the proposed method
in distinguishing different healthy conditions.
3.2. Experimental data analysis

The results of the experimental study obtained at each step of
the proposed method are given as follows.

Step 1 Baseline model establishment

The measured data from Experiment #1 are used to build the
improved B-spline based baseline model by RFROE method in Eq.
(2)- (7). All data from experiment #1 are divided into 5 groups, the
data in the first group are used to fit the improved B-spline based
baseline model and the remaining ones are used to validate the
baseline model by assessing the mean square error (MSE).

When wind speed is represented by x1, power output is repre-
sented by x2, and the order of basis functions is set as 3, the
improved B-spline model for the relationship between the pre-
dicted signal feature y and x1; x2 can be derived from Eqs. (2)e(7).
In this experimental case study, it is assumed that there are 16
knots for variable x1 and 18 knots for variablex2, then B-spline basis
functions Ni1;3ðx1Þ and Ni2 ;3ðx2Þcan be determined according to Eq.
(3.1) and (3.2), and some of them are shown in Fig. 11. By using the
RFROE method in Eqs. (4)e(7), when error reduction ratios (ERRs)
are set as 0.97, 0.93, 0.989, 0.975 for signals measured from AE1, AE
2, Acc1 and Acc2, respectively, the significant B-spline basis func-
tions and corresponding coefficients are obtained. The first five
selected terms and corresponding coefficients for each sensor
measurement are listed in Table 4. Consequently, the baseline
model is determined by the improved B-spline basedmodel with B-
spline basis functions, selected terms and corresponding
coefficients.

The suitability of the obtained B-spline based baseline models is
validated by assessingMSEwith remaining 4 data groups which are
not involved in the modelling process, the results are illustrated by
bar charts in Fig. 12. Ideally, MSEs for the data groups not used in
the modelling process are the same as that for modelling data, but
because of inevitable modelling error and calculation error, MSEs
for the data groups not used in the modelling process are always in
the similar levels which are slightly higher than that for modelling
data. It can be observed that the values of MSEs for the data groups
not used in the modelling process are all slightly different from
those for modelling data. So themodelling results are validated and
therefore can be used for structural health monitoring.

Step 2 Bin definition

Bins are defined according to wind speeds and power outputs.
When both wind speeds and power outputs are divided into three
equal segments, the results are shown in Fig. 13. After neglecting
bins where very few or no measured wind speeds and power
outputs fall inside, 5 bins remain for Experiments #1 and #2, 4 bins
for Experiment #3, and 3 bins for Experiment #4; all remaining
bins are numbered as shown in Fig. 13.

Step 3 Tolerance range calculation

In each bin, the tolerance range of SHM features, which are RMS
of measured signals in this study, is calculated separately using Eq.
(9) according to data in Experiment #1.



Table 3
Details of the experiments.

Experiments State Condition Under Which Experiment Was Conducted Usage of Data

Experiment #1 No damage wind speed was from 4.7 to 24.8m/s;
power output was from �15.9 to 302.7Kw

Training data: to obtain the improved B-spline based baseline
model and the tolerance range of SHM features in each bin

Experiment #2 wind speed was from 5.0 to 24.0m/s;
power output was from �12.9 to 302.2Kw

In-service data: to prove effectiveness of the proposed SHM
method when there was no damage in the system

Experiment #3 After maintenance wind speed was from 5.5 to 19.5m/s;
power output was from �15.0 to 302.0Kw

In-service data: to prove effectiveness of the proposed SHM
method when the health condition of the system changed

Experiment #4 wind speed was from 5.0 to 15.3m/s;
power output was from �15.5 to 251.7Kw

In-service data: to prove effectiveness of the proposed SHM
method when the health condition of the system changed

Fig. 11. Basis functions for improved B-spline model.

Table 4
First five selected terms and corresponding coefficients.

AE 1 AE 2 Acc 1 Acc 2

Terms ai1 ;i2 terms ai1 ;i2 terms ai1 ;i2 terms ai1 ;i2
a0;0 0.0968 a0;0 0.0088 a0;0 2.2073 a0;0 1.9922
N18;3ðx2Þ 0.2759 N3;3ðx2Þ �0.0145 N3;3ðx2Þ �3.0953 N3;3ðx2Þ �2.9660
N16;3ðx2Þ 0.2276 N10;3ðx2Þ 0.0168 N18;3ðx2Þ 1.2158 N6;3ðx1Þ �0.9345
N3;3ðx2Þ �0.1659 N18;3ðx2Þ 0.0190 N16;3ðx2Þ 0.8161 N18;3ðx2Þ 3.0551
N6;3ðx2Þ �0.0826 N15;3ðx1ÞN7;3ðx2Þ 0.0612 N5;3ðx2Þ �1.1536 N16;3ðx2Þ 2.6837
N14;3ðx1ÞN7;3ðx2Þ 0.3021 N8;3ðx1Þ 0.0092 N17;3ðx2Þ 0.6098 N5;3ðx1ÞN3;3ðx2Þ �6.2069

Fig. 12. Validation of each model.
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Step 4 Health indicator calculation

Health indicator in each bin is calculated using Eq. (10) ac-
cording to data in Experiments #2-#4, the results are shown in
Table 5.

4. Results analysis

It can be seen from Table 5 that the numbers of health indicators
in Experiments #3-#4 are less than those in Experiment #2
because few data were collected in Experiments #3-#4 whenwind
speeds and power outputs were large as shown in Fig. 13; health
indicators in different Bins are different which proves that changes
of SHM features vary with the environmental conditions. In addi-
tion, for measurements in Experiment #2, health indicator in each
bin is large, which indicates that both gearbox and generator are in
good health condition. This indication is consistent with the prac-
tical situation of the wind turbine as stated in Table 3. For mea-
surements in Experiment #3, some health indicators from AE
sensor at the back of generator (AE2) and vibration accelerometer



Fig. 13. Bins according to wind speeds and power outputs.

Table 5
Health indicator for measurements in Experiments #2 - #4.

Conditions Experiment #2, No damage Experiment #3, Maintenance Experiment #4, Maintenance

Location AE1 AE2 Acc1 Acc2 AE1 AE2 Acc1 Acc2 AE1 AE2 Acc1 Acc2

Bin 1 0.988 0.988 1.000 0.988 0.960 0.901 0.396 0.713 0.949 0.864 0.670 0.777
Bin 2 1.000 1.000 1.000 1.000 0.971 0.371 0.600 0.914 1.000 0.404 0.173 0.981
Bin 3 1.000 0.964 1.000 1.000 0.889 0.044 0.800 0.933 1.000 0.345 0.276 0.966
Bin 4 0.977 0.989 1.000 0.955 0.838 0.045 0.955 0.991 e e e e

Bin 5 1.000 1.000 1.000 0.906 e e e e e e e
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on the top of gearbox (Acc1) are small, which indicate that there are
some changes in both gearbox and generator. The same conclusion
can be reached by health indicators for measurements in Experi-
ment #4. These are also consistent with the practical situation of
the wind turbine as stated in Table 3. Therefore, the effectiveness of
the proposed SHM method has been proved. However, health in-
dicators for measurements from the AE sensor on the top of the
gearbox (AE1) and vibration accelerometer at the back of the
generator (Acc2) are large, indicating good health condition of both
gearbox and generator. This means vibration is more sensitive to
the condition change in the gearbox while AE signal is more sen-
sitive to the condition variation in the generator. This conclusion is
clearly very helpful for the choice of appropriate sensors for the
health monitoring of various wind turbine components.

It should be pointed out that the application of the proposed
technique is not limited to wind turbine gearbox/generator; it is
feasible to many SHM applications particularly when the changes
revealed by damage-sensitive features are affected by the working
environment.
5. Conclusions

In this study, a baseline model based structural health moni-
toring method has been developed and its effectiveness has been
investigated by experimental case studies. Procedure with four
steps is developed to guide how to implement the proposed
structural health monitoring method. The analysis of the field data
from an operating wind turbine has demonstrated that the new
baseline model based structural health monitoring technique can
distinguish different healthy conditions of gearbox and generator in
WT. It can also be concluded from the field data analysis that vi-
bration and AE signals are sensitive to condition changes of the
gearbox and generator respectively, and the choosing sensor
locations in experimental case study are applicable to the real
industry.
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