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ABSTRACT

Optimal design of a standalone wind-PV-diesel hybrid system is a multi-objective optimisation problem
with conflicting objectives of cost and reliability. Uncertainties in renewable resources, demand load and
power modelling make deterministic methods of multi-objective optimisation fall short in optimal
design of standalone hybrid renewable energy systems (HRES). Firstly, deterministic methods of analysis,
even in the absence of uncertainties in cost modelling, do not predict the levelised cost of energy
accurately. Secondly, since these methods ignore the random variations in parameters, they cannot be
used to quantify the second objective, reliability of the system in supplying power. It is shown that for a
given site and uncertainties profile, there exist an optimum margin of safety, applicable to the peak load,
which can be used to size the diesel generator towards designing a cost-effective and reliable system.
However, this optimum value is problem dependent and cannot be obtained deterministically. For two
design scenarios, namely, finding the most reliable system subject to a constraint on the cost and finding
the most cost-effective system subject to constraints on reliability measures, two algorithms are pro-
posed to find the optimum margin of safety. The robustness of the proposed design methodology is
shown through carrying out two design case studies.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In optimal design of standalone hybrid renewable energy sys-
tems (HRES), reliability of the system in supplying power for a
demand load is as important as the levelised cost of energy (LCE)
produced by the system. the system. Reliability of a standalone
HRES in supplying power depends on various parameters,
including, system configuration (e.g. wind-PV-battery, wind-
diesel, etc), size of its components, reliability of each component
in terms of operation and the availability of renewable resources.
The availability of resources has the major influence on the reli-
ability of a standalone HRES as stochastic nature of renewable
resources imposes a great deal of uncertainty to the system
operation and the power produced. Stochastic nature of renewable
resource makes the reliability analysis of a standalone HRES
impossible without employing probabilistic methods of analysis.
In other words, multi-objective optimisation of standalone HRES
(with cost and reliability as two objectives) cannot be performed
deterministically.
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Results of probabilistic analyses have random errors that can be
reduced by increasing the size of sampling space. In order to ach-
ieve a desired level of accuracy in the results of probabilistic
methods of analysis high computational time is required. This be-
comes a major concern within a design process, as evaluation of
design candidates with respect to their cost and reliability becomes
highly time-consuming. In practice, to circumvent this problem,
adopting a deterministic approach, design of standalone HRES is
carried out for a worst-case-scenario, while applying a load factor
on the demand load. All calculations are based on the averaged
values and the stochastic nature of demand load and renewable
resources as well as the possible errors in the results due to
employing low fidelity models are ignored. No reliability measure
is calculated as part of the design candidate assessment. It is
assumed that a suitable selection of the worst-case-scenario and
safety factors will lead to reliable solutions. In fact, the multi-
objective optimisation problem with two objectives of reliability
and cost is reduced to a single-objective optimisation problem with
the objective of cost only. In practice, normally, the size of the
storage or backup/auxiliary components are determined based on a
suitable worst-case-scenario to achieve a level of confidence in the
expected power supply, while the remaining components are
optimised for minimising the cost. After sizing the storage or
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backup/auxiliary components a single-objective optimisation
search can be carried out to find the optimum size of the renewable
components. Most of the literature on design of standalone HRES
adopt this approach; for instance see Refs. [1-10].

In deterministic optimal sizing of a standalone wind-PV-diesel
hybrid system, the margin of safety applied on the demand load
affects the nominal size of the diesel generator and consequently
the reliability of the power supply and the levelised cost of pro-
duced energy. Adopting high-enough margins of safety leads to
reliable systems. However, as mentioned above since in deter-
ministic design methods no actual reliability measure is calculated
as part of the design candidate assessment, these methods cannot
be used for quantifying the optimum value for margin of safety. A
procedure including both deterministic and probabilistic analyses
is required to find the margin of safety which corresponds to a
desired reliability with minimal cost.

More recently, recognising the shortfall of deterministic
methods in design of reliable and cost-effective standalone HRES,
development of robust nondeterministic design methods has
received increasing attention from the research community [11,12].
The aim of the present study is to develop a robust method of
design under uncertainties for wind-PV-diesel configuration with
minimal number of probabilistic analysis. Section 2 begins with
definition of reliability measures used in this study, and then
elaborates on power and cost modelling. Section 3 explains the
fundamentals of the proposed design methodology and its devel-
opment steps. Section 4 details two algorithms proposed for per-
forming two design scenarios and the results of case studies
delivered using the proposed design methodology.

2. Reliability assessment and system modelling
2.1. Reliability assessment measures

Performance of a standalone HRES in supplying power can be
evaluated against different assessment criteria, amongst them total
unmet load, blackout duration distribution and the mean-time
between failures. For a standalone HRES the total unmet load is
defined as:

T
Ue = [ (L(t) — Pa(t))dt (1)
/

where, P, and L are, respectively, the usable available power and the
demand load (0 < P, < L). Usable available power is defined as:

Pa = min{Ptﬁa,L} (2)

in which, Py, stands for the total renewable and non-renewable
available power. Using hourly-averaged load (IL;) and hourly-
averaged useable available power (P}, ,), and a period of analysis
of T = 1 year=8760 h, Equation (1) can be rewritten as

8760

U= (Lh—Pna); (3)

i=1

Total, maximum and average blackout durations are three pa-
rameters which indicate the system downtime periods due to po-
wer deficiency irrespective of the amount of power deficiency. In
contrast to the unmet load, assessment of design candidates based
on blackout duration allows performing customer-need driven
designs. Using hourly-averaged data, total blackout duration is
defined as:

8760

BOt = Z [(1 _ﬁh‘a/zh)i] (4)

i=1

where, pair of square brackets [ | stands for the integer value
function. The information that can be extracted from the blackout
distribution, such as the maximum blackout duration (the longest
continuous blackout) BOn,x and the average blackout duration BO,y
(the average duration of each blackout), also can play an important
role in evaluation of the system performance.

Mean time between failures (MTBF) is defined as the duration of
the successful system operation over a period of time divided by
the number of failures during that period. If the successful system
operation is defined as the case when available usable power is
greater than or equal to the load (P, > L), using hourly-averaged
quantities, the MTBF can be defined as:

8760 — X7 [(1 — Poa/Iy) |
Nfail

MTBF =

(5)

where ngj is the number of blackout occurrences during period
T = 8760 h.

2.2. Power modelling and dispatch strategies

The power produced by a wind turbine is given by:

1
Pyt = iPVgUbAWTCPnEG (6)

in which p is the air density, Vyyp is the wind speed at hub elevation,
Awr is the rotor area, ngc is the overall efficiency of the electrical
components and the gearbox, and Cp is the rotor power coefficient
given by:

Cp = —2.025 x 1077V, +1.926 x 1073V,
—7.421 x 1074V | +1.483 x 1072V}, — 0.162VZ
+0.887Vp,yp, — 1.508

(7)

This model is extracted via curve fitting and using the power
coefficient data of about 60 wind turbines within the range of 10—
500 kW. The wind turbines used for developing this model are of
both types of constant and variable speeds and also both types of
pitch controlled and stall regulated. This model has a maximum
relative error of 7% for the range of 3 < Vyyp < 25 m/s.

Given wind speed Vier at elevation hgef, the wind speed at the
hub elevation can be calculated by the logarithmic law:

Vhub = VierIn (thb) /ln (E> (8)
20 V)

in which, zg stands for the site surface roughness length. The hub
height hpyp depends on the size of the wind turbine, which is un-
known prior to the design. For small to medium size wind turbines
the hub height can be estimated via the rule of thumb:

hhup = max{hc + R, 2R} (9)

where h¢ is the minimum blade tip-ground clearance and R is the
rotor radius.
Power produced by PV panels is given by

Ppy = IApy7py (10)

in which, I stands for the solar irradiance, Apy is the PV panel area
and npy is the overall PV unit efficiency.
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Table 1
Cost modelling parameters.

Wind turbine PV panel Diesel generator
S Rotor area Awr (m?) Panel area Apy (m?) Nominal power Pp jom (W)
Cu 4808/m? 8308/m? 0.48/Wyom
Qins 0.2 0.4 0
dogm  0.03 0.01 0.15
Nnom 20 years 20 years 15,000 h
Coamyv O 0 See Equation (19) Cgye; = 18/1

In this study, using hourly-averaged data, the following diesel
dispatch strategy is used:

o Excess power Pp, g — L}, > 0: No need for diesel generator power
Pyp = 0. '

e Power deficit less than the nominal power of the diesel gener-
ator 0 < L}, — P, g < Pp nom: The power deficit is compensated by
the diesel generator P, p = L, — Py

e Power deficit greater than the nominal power of the diesel
generator L, — ﬁhtR > Ppnom: Blackout; The diesel generator
works at its nominal power P, p = Pp nom-

Parameters P, p and Py g, respectively, stand for the hourly-
averaged diesel and renewable power and Ppnom stands for the
diesel generator nominal power.

2.3. Cost modelling

Using levelised cost of energy allows design alternatives to be
compared when different scales of operation and investment exist.
For systems with constant annual output over the life-span of the
system LCE, C}, can be calculated as follows:

G

(11)

where P; denotes the annual energy output and C, stands for the
annualised cost. Since the power produced by a standalone HRES
excess to the demand load is dumped, in Equation (11), the usable
amount of produced energy should be used instead of the system
total energy output:

8760 o
P = > min{Py, Ly }; (12)
j=1

The annualised cost C, is given by Ref. [13]:
Ca = C.UCRF (13)

parameters C; and UCRF in Equation (13) are, respectively, total life-
span cost (TLSC) and uniform capital recovery factor, given by:

d(1+d)™

UCRF = — 2
1+d)™ -1

(14)

in which, d is the annual discount rate and Ns represents the life-
span of the system in years. Assuming there is no escalation in
the price of the components, the formula for calculating the present
value of TLSC is as follows:

G = iL (15)
T &aay

where G is the cost in year j including capital cost C, fixed opera-
tion and maintenance (O&M) costs Cogmp Variable O&M costs
Cozamy, and the replacement cost C. Case j = O represents the

System Configuration : Ry, (m) = 6.3; A, [mz] =0; Ngoe = 0; Py om (W) = 15000

4DD T T T T T T T
300+ Minimum : 4172 4
Maximurn : 18850
2 Average : 10263
§ 200 Highest Frequency : 9806 -
L]
100 —
D ke
0.4 06 08 1 1.2 1.4 16 1.8
Unmet Load (Wh) 4

Probability of Failure (%)
=]

10 L i i i i

‘Unmet Load @ LOC 99.9%

______ B T

0.2 0.4 06 0.8 1

1
12 1.4 16 18 2

Unmet Load (Wh) 4

Fig. 1. Illustrative example of finding reliability measures at a given level of confidence.
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Table 2

Uncertainties in resources, demand load and modelling.
Parameter/model Distribution

Case U1 Case U2

Wind speed Uniform (6==+0.15) Uniform (6==0.30)
Solar irradiance Uniform (6 = £0.05) Uniform (6 = +0.10)
Demand load Uniform (6 = +0.10) Uniform (6 = £+0.20)
Cp model Uniform (6 = +0.07) Uniform (6 = £0.07)
PV array efficiency Uniform (6 = £0.05) Uniform (6 = £+0.05)

beginning of the life span with its corresponding cost, Cp, standing
for the capital cost only. The capital cost of the system (including
installation cost) is given by:

C = Z Cu,compScomp (1 +ains,comp) (16)

comp

in which S is the size of the component, C; is the unit cost and ajps
is the installation cost as a fraction of the total cost of the
component. Cost estimation at conceptual design phase of HRES
can be based on either cost per unit of nominal power production
or cost per unit of size. To be consistent with the power models,
for wind turbine and PV array the cost per unit size is used whilst
for the diesel generator the cost per nominal output power is
used. The O&M cost includes fixed and variable parts:

Coam = Y, Coamfcomp + »_ Cozmv.comp (17)
comp comp

The fixed part can be represented by

CogM,F,comp = %0&M,compCe.comp (18)

The variable part of the O&M cost for wind turbine and PV
panel is zero. Using hourly-averaged data, the annual variable part
of the O&M cost for diesel generator (the cost of consumed fuel) is
given by Ref. [14]

0.246 33780 Py b, + 0.08145Pp omTp
Cogmvp = =1 ’DllOOO TR Cryer (19)

in which Tp stands for the total number of hours that the diesel
generator operates, Py, p is the hourly-averaged diesel power and
Cryel is the fuel price.

For each component the replacement cost is given by:

G = Z 1 compCe,comp (20)

comp

where n1; is the number of replacements during the life-span of the
system. Having the nominal life of system (Ns), wind turbine
(Nnomwrt) and PV panel (Npom,pv) in years and the nominal life of
diesel generator Npomp in hours of operation, the following
equations can be used to find the number of replacements of these
components.

Table 3
Resources and demand load.

Site S1 Site S2

Wind speed, Vief  Wind speed as in [15],
(href = 3m)
Solar irradiance, I  Solar irradiance as in [15]

Demand load, L

3/4 of the wind speed

of [15], (href = 3 m)

Solar irradiance as in [15]
Three times of the demand Three times of the demand
load of [15] load of [15]

Table 4

Results of deterministic designs for different MoS and reliability analysis for site S1.

Monte Carlo simulation @99.99% LOC

Deterministic

Uncertainties U2

Uncertainties U1

MTBF LCE

(h)

Total BO (h) Maximum Average U,

Maximum Average U MTBF LCE
(h)

BO (h)

Total

(cent/kWh) BO (h)

LCE

Penetration TLSC ($)

Diesel nom.

radius (m) area (m?) Power (kW) (%)

0.00 6.3

PV panel

Design MoS WT rotor

case
D1

(cent/kWh)

449

(kWh)
187

BO (h)

BO (h)

(cent/kWh)

(kWh)
5.0
05
0
0
0
0
0

BO (h)

171

51
34
20

274 429

1096 43.6

32

239,200 41.3

26

1

15

259 462

446 471

8.7

243,850 42.1

160
1
1

15.75

16.5
18

0

0.05 7.0

D2

3.6

0

0

0

0
30.1

8760 443

247,800 42.8

60
60

0.10 7.0

D3

8760 48.7

8760 45.8

255,720 44.2

020 7.0

D4

8760 53.6

8760 50.2

279,450 483

160
209
221

1

225
30
45

0.50 7.0

D5

8760 61.7

8760 56.7

313,020 54.1

1.00 79

D6

8760 75.7

8760 68.8

373,980 64.6

2.00 8.1

D7

140 439

140 42.0 71

16.1

234,150 404 62

26

14.2

NA 6.3

D8

653
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Table 5

Results of deterministic designs for different MoS and reliability analysis for site S2.

Monte Carlo simulation @99.99% LOC

Deterministic

Uncertainties U2

MTBF LCE (cent/ Total

(h)

Uncertainties U1

LCE (cent/ Total
kWh)

341,030 58.9

MTBF LCE

Maximum Average U (kWh)

BO (h)

Ue

Maximum Average

BO (h)

Penetration TLSC ($)
Power (kW) (%)

Diesel nom.

PV panel

Design MoS WT rotor

(cent/kWh)

61.8

BO (h) (h)

BO (h)
104

KWh)

(kWh)
14.4

BO (h)

BO (h)
65

area (m?)
26
26
41

m)

radius (
6.2

case
D9

83
119

37.1

61.3

134

243
8760
8760
8760
8760
8760

61

15

0.00
0.05
0.10
020
0.50
1.00
2.00
N/A

63.1

20.0

73
46

62.6

4.1
0
0
0
0
0

36

61

15.75
16.5
18

6.2
6.2
6.2
6.2
6.8
10.2

D10
D11

347,720 60.1

64.4

190
8760
8760
8760
8760

8.7

63.7

354,320 61.2

66.8

66.0

366,230 63.3

41

D12
D13
D14
D15
D16

73.7

72.8

69
78
162

225
30
45

41

401,960 69.4

85.8
108.2

0
0
37.1

84.3
105.0

37

459,940 79.5

568,300 98.2

12
26
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61.8

83

104

61.3

134

14.4

341,030 58.9 65

61

15

6.2

35
= 30
2 - —e—Site S1, Uncertainties profile U1
K —A— Site S1, Uncertainties profile U2
g2 —&—Site S2, Uncertainties profile U1
g 15 ——Site S2, Uncertainties profile U2
[=
210
S
P 5
0 fe fe
0 0.5 1 1.5 2
MoS
Fig. 2. Total unmet load versus MoS.
Ny comp = Ns for wind turbine and PV panel (21)
Nnom‘comp
N.p = NsTp for diesel generator (22)
’ Nhom,D

In this study the following parameters are used: air density
p = 1.225 kg/m>; wind turbine electrical and gearbox efficiency
nec = 0.9; surface roughness length zp=0.03; minimum blade tip-
ground clearance h. = 8 m; overall PV unit efficiency npy = 12%;
the life-span of the system N = 20years and the real discount rate
d = 4%. Table 1 summarises other parameters required for the cost
analysis.

3. Design methodology development

Probabilistic analyses are highly time-consuming. A robust
design method must include minimal number of probabilistic an-
alyses. In order to develop such a method, the effect of margin of
safety (MoS) used in the deterministic design method on the reli-
ability measures is first investigated. The deterministic design
method encompasses two steps. In the first step, size of diesel
generator is found assuming that the diesel generator can cover the
maximum peak load with a reasonable margin of safety MoS
without any contribution from the renewable resources. Using

__10000
<
® 3 3 e
g 8000
= —e—Site S1, Uncertainties profile U1
' 6000 —a—Site S1, Uncertainties profile U2
§ —&—Site S2, Uncertainties profile U1
g 4000 ——Site S2, Uncertainties profile U2
£
i 2000
[=
3
= 0
0 0.5 1 1.5 2
MoS

Fig. 3. Mean time between failures versus MoS.
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100
= —6—Site S1, Uncertainties profile U1
3 80 —— Site S1, Uncertainties profile U2
"E —5—Site S2, Uncertainties profile U1
a 60 —+—Site S2, Uncertainties profile U2
5
2
% 40
o
o
s 20
o
|_
0 e
0 0.5 1 1.5 2
MoS

Fig. 4. Total blackout duration versus MoS.

hourly-averaged data the nominal size of the diesel generator
Pp nom is obtained by:

Pp nom = zh,max(1 + MoS) (23)

in which L, ..« stands for the maximum hourly-averaged demand
load. In the second step of the deterministic design method, using a
single-objective optimisation, the size of wind turbine and PV panel
which minimise LCE are determined. Using this method, for
different margins of safety the optimal size of wind-PV-diesel
components are obtained.

A genetic algorithm (GA) was developed to find the optimal size
of components. The solution space for hybrid systems is clustered
with multiple local optima. This can impact the search performance
of an ordinary GA. Special care has been therefore made in design of
reproduction operators for the developed GA. In order to increase
the exploratory behaviour of the GA, avoiding stagnation in local
optima, a dynamic mutation operator combined with a mixed
parent selection strategy has been used. At earlier generations,
identified by fitay/fitmax < 0.9, the GA explores the design space
towards finding the cluster of the global optima by using a high
mutation rate (P, = 0.7) and a random parent selection strategy
(irrespective of the individual fitness). At latest generations (fitay/
fitmax > 0.9) when the GA has found the cluster of the global optima,
the algorithm exploits the design space towards finding the global
optima itself by adopting a parent selection based on the individual

320 —e—Site S1, Uncertainties profile U1
280 —— Site S1, Uncertainties profile U2
240 —B—Site S2, Uncertainties profile U1
2 200 —+— Site S2, Uncertainties profile U2
g 160
R 120
80
40
0 & 8
0 0.1 0.2 0.3 0.4 0.5
MoS

Fig. 5. Variation of total unmet load with respect to MoS versus MoS.

600

—e—Site S1, Uncertainties profile U1
900 —A—Site S1, Uncertainties profile U2
—=—Site S2, Uncertainties profile U1

—+—Site S2, Uncertainties profile U2

400

oBO/oMoS
w
S
S}

200

100

0 —
0 01 02 03 04 05 06 07 08 09 1

MoS

Fig. 6. Variation of total blackout duration with respect to MoS versus MoS.

fitness. In this stage still a high mutation rate is used but the mu-
tation effect is limited. The random perturbation of the i-th design
variable x; is selected from a shrinking interval
Iim = (1 — (fitav/fitmax)) (X;.u — X;1), Where x;; and x;, are, respec-
tively, the lower and the upper limit of design variable x;. This is
aimed at a refine search in the vicinity of the global optima. Indi-
vidual fitness in this algorithm is defined as the reciprocal of in-
dividual LCE. In the developed GA an arithmetic crossover operator
is used. The infeasible solutions are defined as those with nonzero
total blackout duration and are rejected on creation. The algorithm
terminates when fitmax — fitay < 1 x 107>,

For each deterministic design case, employing the Monte Carlo
simulation method of Algorithm 1 below, the reliability of the
system is evaluated.

Algorithm 1. Monte Carlo simulation for reliability and cost
analysis
Given:

e X; = X; + X;; i =1,2,...,ny the set of n, uncertain parameters and
their range and form of distributions (x; stands for the known
mean value of parameter x; and X; is the random variation of x;
with known distribution).
The desired level of confidence (LOC) corresponding to each one
of the evaluated reliability assessment criteria {BO,BO,,BO-
maxMTBEU¢} and LCE.
The design candidate {AwT,Apv,Pp nom} to be assessed
1. Forj = 1,2,...,ngim
1.1. For each x;; i = 1,2,...,1n, select a random value X; in the
range consistent with its corresponding distribution.
1.2. Find the value of the assessment measures {BOy,BO.y,-
BOmax,MTBEUy}; and LCE;.
2. For each assessment criterion
2.1. Using a histogram, find the probability of failure
distribution.
2.2. Find the value of assessment measure corresponding to
the probability of failure of PF = 1 — LOC

Fig. 1 illustrates how Step 2 of Algorithm 1 is carried out to find
the assessment measures at a given LOC (here total unmet load, Uy,
at LOC 99.9%): First the range of the unmet load is divided into ngeg
segments (here, nseg = 1000). Then, for each segment k = 1,2,...,Nseg
the probability of failure is found: PF; = Probability of having a U,
greater than or equal to Uy = the total number of counts to the
right of Uy divided by ngim (for MTBF: PF = Probability of having a
MTBF less than or equal to MTBFy = the total number of counts to
the right of MTBFy divided by nsim). In this study nsm=10* is used.
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100

LCE (cent/kWh)
[¢)] (o)) ~ [0 (<o)
o o o o o

N
o

0 0.5 1 1.5
MoS

——Site S1, Deterministic
—e— Site S1, Uncertainties profile U1
—a— Site S1, Uncertainties profile U2
—8— Site S2, Deterministic
—e—Site S2, Uncertainties profile U1
—A— Site S2, Uncertainties profile U2

Fig. 7. LCE versus MoS.

In reliability analysis, uncertainties in resources (wind speed
and solar irradiance), demand load and modelling (wind turbine
power coefficient Cp and PV array efficiency) are considered. Table 2
shows two cases considered in this study. In this table ¢ represent
the variation limit as a fraction of the mean value. In this study two
sets of resource and demand load data are used. Table 3 compares
the site data for these two sites.

Tables 4 and 5 show the results of deterministic designs for
different margins of safety as well as the results of probabilistic
reliability analysis. The last row of these tables includes the results
of optimisation without considering a margin of safety, in which the
size of the diesel generator is determined along with the other
design variables.

Figs. 2—4 show three reliability measures: total unmet load,
mean time between failures and total blackout duration against
MoS. Figs 5 and 6 show trends of the variations of reliability mea-
sures with respect to MoS versus MoS. Fig. 7 shows LCE obtained
deterministically and the LCE obtained using Monte Carlo simula-
tion @ 99.99% LOC versus MoS. Solution spaces in two planes of
LCE-total unmet load and LCE-total blackout duration are shown in
Figs. 8 and 9.

These figures show

(i) Strong dependency of the reliability measures on the site
data and their associated uncertainties (Figs. 1-6).

(ii) Regardless of the site data and their associated uncertainties,
using a large-enough MoS leads to reliable designs (Figs. 1—

110
OSite S1, Uncertainties profile U1

100 A Site S1, Uncertainties profile U2
g 90 ¢ Site S2, Uncertainties profile U1
% 80 © OSite S2, Uncertainties profile U2
g 8
= 70
3 60 g o * o 8

MosS increasing
A A
() A o &
10 20 30 40 50 60 70 80 90 100
Total Blackout Duration (h)

o
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Fig. 8. Solution space in plane of LCE-Total blackout duration (solid markers represent
Pareto solutions).

4). That is, optimisation for reliability is equivalent to max-
imisation of MoS.

(iii) Probabilistic LCE deviates from deterministic LCE and this
deviation increases with MoS (Fig. 7). In other words, the LCE
calculated using deterministic methods is not accurate and
should be found via probabilistic methods.

(iv) Parameter MoS used in deterministic design has significant
effect on the LCE, and that both deterministic and probabi-
listic LCE vary linearly with MoS (Fig. 7). In other words,
optimisation for cost is equivalent to minimisation of MoS.

(v) The LCE calculated using probabilistic methods depends on
both site data and uncertainties profile (Fig. 7).

(vi) Predictable effect of increasing/decreasing MoS on the direc-

tion of forming Pareto Front in 2D solution space (Figs. 8 and 9).

Observations (ii), (iv) and (vi) lead us to the conclusion that MoS
used in deterministic design is a key design parameter which can
be used for directing the design towards solutions with desired
reliability or cost. However, referring to observation (i), this key
parameter is highly problem dependent and cannot be obtained
deterministically. Moreover, according to observation (iii) and (v),
even in the absent of uncertainties in cost modelling, design
candidate assessment with respect to cost must be based on
probabilistic cost analysis.

In summary, for each design problem, there exists an optimum
MoS that can be used to produce a Pareto solution. Hence, the
original multi-objective optimisation problem in which the

110
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Fig. 9. Solution space in plane of LCE-Total unmet load (solid markers represent Pareto
solutions).
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Table 6
Results of case study 1.

>MoS Diesel nom. WT rotor radius (m)/deterministic PV panel area (m?)/deterministic LCE @ 99.99% LOC (cent/kWh)
Power (kW) optimisation for LCE optimisation for LCE

0 (1st initial point) 15.00 6.3 0 449

1 (2nd initial point) 30.00 7.9 0 61.7

0.036 (1st iteration) 15.54 6.3 0 45.5

optimum size of the system components are to be found through
probabilistic analysis, can be reduced to a single-objective problem
in which the optimum MoS is to be determined via probabilistic
analysis and a single-objective optimisation in which the optimum
size of system components are to be found deterministically.

4. Design scenarios

There are three main approaches being adopted in performing a
multi-objective optimisation. In the first approach, known as a priori
method, a multi-objective optimisation problem is transformed to a
single objective problem by combining all design objectives using a
weighting system and forming a single aggregate or cost function.
Weighting systems comprise of a set of weighting factors and/or
tuning exponents representing the relative degree of importance of
design objectives. At the end of a successful search process, the design
alternative that minimises the cost function is entitled the optimum
solution. This solution is a single point on the Pareto frontier of the
corresponding original problem. In the second approach, known as a
posteriori methods, no weighting system is used and the search
process forms the Pareto frontier itself, or its best viable approxi-
mation. Here the first goal is to find Pareto front solutions. The
designer evaluates the generated design alternatives against the
assessment criteria and looks for trade-off solution. This is the chief
advantage of this method compared to the first approach. However,
the high computational time required to produce enough uniformly
distributed Pareto solutions is the main drawback of this approach
when adopted for design optimisation problems including probabi-
listic analyses. In the third approach of multi-objective optimisation,
by treating all-but-one design objectives as constraints, the multi-
objective optimisation problem is transformed to a single objective
one. This method is most suited for cases in which one objective is
dominant and other objectives either have known target values or
have known upper and/or lower bounds. In case of conflicting ob-
jectives, solution obtained by this method is again a single point on
the Pareto frontier of the original problem, while unlike the first
approach the designer actually directly imposes constraints on the
locus of the solution prior to commencing the optimisation. Adopting
the third approach, the following two design scenarios are developed.

4.1. Design scenario 1

In this design scenario the most reliable hybrid wind-PV-diesel
system subject to the constraint LCE < LCE, is obtained. Here, LCE is

Table 7
Results of Steps 1 and 4 of Algorithm 3 for case study 2.

calculated using the probabilistic analysis method of Algorithm 1
and therefore a LOC must be associated to LCEg Algorithm 2
below details the design method for this design scenario. The op-
timum MoS which maximises the reliability subject to the
constraint LCE < LCEg is represented by MoSg and is calculated
through Steps 1 and 2 of this algorithm.

Algorithm 2. Most reliable system subject to a constraint on the
cost
Given:

e Goal levelised cost of energy LCE; and its corresponding LOC
o Tolerance ¢: LCE < LCEg + ¢, ¢ > 0
o Site data
e The set of uncertain parameters and their range and form of
distributions (x; = X; +X;; i = 1,2,...,ny)
Step 1. For two arbitrary MoS; and MoS; do:
1.1. Using Equation (23), calculate the nominal size of diesel
generator Pp nom.
1.2. Use a deterministic optimisation method to find the opti-
mum size of other components.
1.3. For the obtained optimal solution run the Monte Carlo
simulation of Algorithm 1 to find its corresponding LCE.
Step 2. Calculate the corrsponding MoS to the goal LCE using
Equation (24)

MOSg = LCEg +C (24)

Step 3. ForMoS = MoSg do:

3.1. Employ Equation (23) to calculate the nominal size of diesel
generator Pp nom.

3.2. Use a deterministic optimisation method to find the opti-
mum size of the other components.

3.3. For the obtained optimal solution run the Monte Carlo
simulation of Algorithm 1 to find its corresponding LCE and
reliability measures.

3.4. If LCE < LCEg + ¢ stop the search; otherwise: update co-
efficients c; and cy; go to Step 2.

For the first time in Step 2 parameters c; and c; are found using
two points (MoS;, LCE1) and (MoS;, LCE;) in MoS — LCE plane:

MoS Diesel nom. WT rotor radius (m)/ PV panel area (m?)/ LCE @ 99.99% LOC BO; @ 99.99% U @ 99.99% MTBF@ 99.99%
Power (kW) Deterministic Deterministic (cent/kWh) LOC (h) LOC (kWh) LOC (h)
optimisation for LCE optimisation for LCE
0 (1st initial point) 15.0 6.2 26 61.8 104 37.1 83
0.05 (2nd initial point) 15.8 6.2 26 63.1 73 20.0 119
0.1 (3rd initial point) 16.5 6.2 41 64.4 46 8.7 190
0.1215 (1st iteration) 16.8 6.2 41 64.9 37 5.45 243
0.1219 (2nd iteration) 16.82 6.2 41 64.9 36 5.03 243
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Table 8
Results of Steps 2 and 3 of Algorithm 3 for case study 2.
Iteration R; [c3,c4,c5] as in Eq. (4) MoSg g, MoSg
1 BO(h) [+4E-6, —0.0023, +0.199] 0.1134 0.1215
U{(kWh) [+5E-5, —0.0059,+0.1477] 0.11945
MTBF(h)  [-6E-6, +0.0027, ~0.1785]  0.1215
2 BO(h) [+3E-6, —0.0021, +0.1914]  0.1122 0.1219
U{(kWh) [+6E-5, —0.0064, +0.1524] 0.1219
MTBF(h)  [-4E-6, +0.002, —0.1372] 0.1028
MoS, — MoS
= o2 Tl (25.a)
LCE, — LCE;
MoS;LCE; — MoS,LCE
c = 1>=2 21 (25.b)

LCE, — LCE,

Updating coefficients c; and ¢, in Step 3.4 can be carried out
either via Equation (25) by using the new point (MoS, LCE) from
latest iteration and one of the previous points or via data
regression (e.g. least square method) using all points. It should be
noted that in case of a perfect linear correlation between prob-
abilistic LCE and MosS, the first iteration should lead to the final
solution.

4.1.1. Case study 1

It is desired to find the most reliable hybrid wind-PV-diesel
system for site S1 with uncertainty profile U2 subject to
LCE < 45.5 cent/kWh @ LOC 99.99% (LCEg = 45.5 cent/kWh).

A tolerance of ¢ = 0.01 cent/kWh is used. By selecting MoS; =0
and MoS; = 1, Step 1 of Algorithm 2 leads to the results shown in
the first two rows of Table 6. The genetic algorithm optimisation
explained in Section 3 is used for performing the deterministic
optimisation of Steps 1.2 and 3.2. Using Equations (24) and (25) the

goal MosS is calculated as: MoSg = 0.036. Using this value Step 3 of
Algorithm 2 leads to the results shown in the third row of Table 6.

As it can be observed the first iteration leads to the final solu-
tion. The reliability measures for this solution are: BO; = 38 h,
BO4y =1 h, BOmax = 1h, MTBF = 237 h and U; = 1.2 kWh (all at a LOC
of 99.99%).

For this case by performing only three Monte Carlo simulations
a multi-objective optimal design under uncertainty is carried out.
This highlights the robustness of this design method.

4.2. Design scenario 2

In this design scenario the most cost-effective hybrid wind-PV-
diesel system subject to satisfying some goal reliability measures
R = {Ri} € {BOy,g,BOay,g,BOmax,e,MTBFg,U; g} is obtained. Each goal
reliability measure considered for the assessment is associated
with a LOC. Algorithm 3 details the design method for this design
scenario. The optimum MoS which minimises the LCE subject to the
constraints R; < R;g is represented by MoSg and is calculated
through Steps 1 to 3 of this algorithm.

Algorithm 3. Most cost-effective system subject to constraints on
reliability measures
Given:

e Goal values for a selected subset of the reliability measures
R = {Ri} < {BO.g,B04y,g,BOmaxgMTBFgU¢} and their corre-
sponding LOC

e Set of tolerance ¢ = {g;}: Rj < Rijg + & for each R; € R to be
minimised (BO¢,BOay,BOmax.Ur) and R; > R; ¢ — ¢; for each Rj € R to
be maximised (MTBF) (& > 0)

o Site data

e The set of uncertain parameters and their range and form of
distributions (x; = X; + X;; i = 1,2,...,ny)

Step 1. For three arbitrary MoS do:
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Fig. 10. Probability of failure distribution of the final solution-design quality: total blackout duration.
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Fig. 11. Probability of failure distribution of the final solution-design quality: total unmet load.
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Fig. 12. Probability of failure distribution of the final solution-design quality: mean time between failures.
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System Configuration : R, (m) = 6.2; A, (mz) =41 Np. = 0 Py hom (W) = 16816
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Fig. 13. Probability of failure distribution of the final solution-design quality: levelised cost of energy.

1.1. Using Equation (23), calculate the nominal diesel size
PD,nom-

1.2. Use a deterministic optimisation method to find the opti-
mum size of other components.

1.3. For the obtained optimal solution run the Monte Carlo
simulation of Algorithm 1 to find its corresponding LCE and
reliability measures.

Step 2. For each R; € R, using Equation (26) find its corre-

sponding MoSgR,.

MoSgr, = C3R? + C4R; + Cs (26)

Step 3. Assign MoSg = max{MoSgr,}.

Step 4. For MoS = MoS; do:

4.1. Employ Equation (23) to calculate the nominal diesel size
PD,nom-

4.2, Use a deterministic optimisation method to find the opti-
mum size of the other components.

4.3. For the obtained optimal solution run the Monte Carlo
simulation of Algorithm 1 to find its corresponding LCE and
the set of reliability measures R.

4.4, If desired reliability achieved end the search; otherwise
updates parameters c3 through cs5 and go to Step 2.

Calculating/updating coefficients c3 through cs5 is carried out
via data regression (e.g. least square method) using all available
points (MoSgR,,R;). It should be noted that three arbitrary MoS
of Step 1 should produce at least two distinct points in each
R; — MoS plane to be able to correlate R; to MoS through
Equation (26). Lower MoS are more likely to produce distinct
points.

4.2.1. Case study 2
In this design case study it is desired to design a wind-PV-diesel
system for site S2 under uncertainties U2. The reliability measures

BO¢ < 40 h, MTBF > 200 h and U; < 5 kWh at a LOC = 99.99% are
desired.

Tolerances ¢ = {1h 50Wh 1h} for the reliability measures
R = {BO; Uy MTBF} are used. Results are shown in Table 7. The
designed system in the second iteration satisfies all constraints
within the tolerated margins. Table 8 summarises the results of
Steps 2 and 3 leading to MoSg for the first and second iterations.

Figs. 10—13 show the histograms and probability of failure dis-
tributions obtained via Monte Carlo simulation of Algorithm 1 for
four design qualities (three reliability measures and LCE) of the final
design.

5. Summary and concluding remark

Optimal design of a standalone wind-PV-diesel HRES is a multi-
objective optimisation problem with conflicting objectives of cost
and reliability. Due to uncertainties in renewable resources and
demand load, probabilistic analysis methods such as Monte Carlo
simulation are required to quantify the system reliability. Per-
forming probabilistic analysis within a search process, in which
tens of thousands of design candidates are produced and evaluated
towards finding the global optima, is highly time-consuming and
inefficient.

Uncertainties in renewable resources, demand load and power
modelling make deterministic methods of multi-objective optimi-
sation fall short in optimal design of standalone HRES. Firstly,
deterministic methods of analysis, even in the absence of un-
certainties in cost modelling, do not predict the LCE accurately.
Secondly, since these methods ignore the random variations in
parameters, they cannot be used to quantify the second objective,
reliability of the system in supplying power. While it is well
established that using safety factors and design for worst-case-
scenarios leads to reliable solutions, it is also well known that
deterministic designs can lead to non-optimal over-designed/un-
der-designed systems as a result of employing improper safety
factors.
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Parameter MoS used in deterministic sizing of the diesel
generator plays the key role in the development of the new design
methodology. First it is shown that MoS has a major and predictable
influence on both LCE and reliability-related design qualities. It is
also shown that in the context of multi-objective optimisation with
conflicting objectives of cost and reliability, for each design prob-
lem, there exists an optimum MoS that can be used to produce a
Pareto solution. Hence, the original multi-objective optimisation
problem in which the optimum size of the system components are
to be found through tens of thousands of probabilistic analysis, can
be reduced to a single-objective problem in which the optimum
MoS is to be determined via few probabilistic analysis and a single-
objective optimisation in which the optimum size of system com-
ponents are to be found deterministically. As a result of this the
number of probabilistic analysis reduces dramatically.

Optimum MoS depends on: (i) site data, (ii) uncertainties and
(iii) desired (goal) design qualities in terms of the system cost and
reliability of power supply (e.g. LCE < 45.5 cent/kWh, BO; < 40 h,
etc). For a given site and set of uncertainty profiles, different goal
design qualities correspond to different optimum MoS, and
consequently different Pareto solutions.

For two design scenarios, namely, most reliable system subject
to a constraint on the cost and most cost-effective system subject to
constraints on reliability measures, two algorithms are proposed to
find the optimum MoS. The robustness of the proposed design
methodology is shown through carrying out two design case
studies. Design case study 2 also shows that how the proposed
design methodology can be employed to design systems compat-
ible with the end-user requirements.
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Glossary

A: area (m?)

BO: blackout duration

C: cost ($)

Cy: unit cost ($/unit)

d: discount rate

h¢: ground-blade tip clearance (m)

I: solar irradiance (W/mz)

L: demand load (W)

MoS: margin of safety

MTBF: mean time to failure

N: nominal life-span (years; hours of operation)
n: number

n,: number of uncertain parameter
P: power (W)

PF: probability of failure (—)

S: size (various units)

Uy total unmet load (Wh)

UCRF: uniform capital recovery factor
zo: site surface roughness (m)

«: cost as a fraction of initial cost

npy: overall PV unit efficiency

p: air density (kg/m>)

nec: wind turbine electrical and gearbox efficiency

Subscripts

a: available; usable available; annualised
av: average

c: capital

comp: HRES component (WT, PV, D)
D: diesel

d: daily

F: fixed

fail: failure

h: hourly

hub: hub elevation

ins: installation

max: maximum

min: minimum

nom: nominal

O&M: operation and maintenance
PV: photovoltaic

p: performance measures

R: renewable

r: replacement

S: system

sim: simulation

t: total

u: unit, uncertain parameter

V: variable

WT: wind turbine

Symbols

pr: averaged value of quantity ¢ over time period T
@: mean value of uncertain parameter ¢

¢: random part of uncertain parameter ¢

[¢]: integer value of parameter ¢

Abbreviations

HRES: hybrid renewable energy system
LCE: levelised cost of energy

LOC: level of confidence

0&M: operating and maintenance
TLSC: total life-span cost
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