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12 Abstract. 

13 A global horizontal irradiation prediction (from 1 hour to 6 hours) is performed using 2 persistence 

14 models (simple and “smart” ones) and 4 machine learning tools belonging to the regression trees 

15 methods family (normal, pruned, boosted and bagged). A prediction band is associated to each forecast 

16 using methodologies based on: bootstrap sampling and k-fold approach, mutual information, stationary 

17 time series process with clear sky model, quantiles estimation and cumulative distribution function. New 

18 reliability indexes (gamma index and gamma test) are built from the mean interval length (MIL) and 

19 prediction interval coverage probability (PCIP). With such methods and error metrics, good prediction 

20 bands are estimated for Ajaccio (France) with a MIL close to 113 Wh/m², a PCIP reaching 70% and a 

21 gamma index lower than 0.9.
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25 1. Prediction intervals instead of single predictions… Why?

26 Electrical operators have to ensure an exact balance between electricity production and consumption at 

27 any time of the year [1,2]. They often have some difficulties to maintain this stability with conventional 

28 (heat engine, nuclear power plant, hydroelectricity, etc.) and incontrollable energy production system 

29 (PV and wind farm), almost in small or no interconnected electrical grid (as island ones [3,4]). The 

30 consistency of the electrical system is in fact dependent on the ability of the system to accommodate 

31 expected and unexpected changes in production and consumption in order to maintain quality and 

32 continuity of service to the customers [5,6]. Usually, the prediction of the solar and wind energy system 

33 production is necessary to achieve this goal. A lot of studies show that the time series formalism gives 

34 the best results for horizons between 1 hour and 6 hours [3,5,7,8], while for deeper horizons the use of 

35 satellite data and numerical weather predictions becomes the most attractive methods [9–11]. Satellite-

36 based irradiance models are able to estimate the solar radiation levels (historic, recent and future levels) 

37 without the need of installing ground sensors at the location of interest but correction based on 

38 measurements improves the results [12]. As clouds are the dominant source of small-scale variability in 

39 surface solar radiation and uncertainty in its prediction, for very short term global horizontal irradiance 

40 forecast, it is possible and recommended to use sky images as described by Schmidt et al. [13] .The 

41 present paper focuses on the first problem also called the nowcasting and proposes a machine learning 

42 methodology aiming on prediction intervals [14–16] rather than a single forecasted value [7,17]. In 

43 statistical inferences, specifically predictive inferences, a prediction interval is an estimation of the 

44 interval in which future observations will be with a given probability. This kind of approach is often 

45 denoted probabilistic forecasting and is often used in atmospheric science [18,19] in both regression 

46 analysis and frequentist statistics and allows the distribution generation of individual future prediction 

47 [20]. For the grid manager, this sort of information (prediction interval or reliability index of prediction) 

48 is essential and allows important additional information making it possible to master the management 

49 of electrical networks and particularly to increase the intermittent renewable energy part.

50 The structure of this paper will be: data and predictors description, prediction interval generation, results 

51 and then conclusions.
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52

53 2. The data used

54 The data used to build the models are hourly solar global horizontal irradiation (GHI) measured from a 

55 meteorological station and a usual cleaning approach is then operated in order to identify and remove 

56 the desired data. Mistakes often appear in the temporal series of solar data due to problems with the 

57 acquisition system; an automatic quality check used in the frame of GEOSS project (Group on Earth 

58 Observation System of System) [21] has been applied to the data. The process to estimate the quality of 

59 the data [22] and the procedure applied to flag suspicious or erroneous measurements is described in 

60 detail in [20].

61 2.1. Measurements

62 All the experiments and numerical simulations are related to Ajaccio, during a period of 9 years from 

63 2006 to 2014, (Corsica Island, France). This station is equipped with pyranometers (CM 11 Kipp & 

64 Zonen) and standard meteorological sensors (pressure, nebulosity, etc.). It is located near the 

65 Mediterranean Sea (100 m) and nearby mountains (1000 m altitude at 40 km from the site). This specific 

66 geographical configuration makes nebulosity difficult to forecast. Mediterranean climate is 

67 characterized by hot summers with abundant sunshine and mild, dry and clear winters. As the computing 

68 power was increasing over the past few decades, the field of machine learning has rapidly advanced in 

69 both theory and practice. Machine learning methods are usually based on the assumption that the data 

70 generation mechanism does not change over time, thus considering that the used process is stationary. 

71 In the next subsection, the  method used to make the GHI time series stationary is exposed [23].

72 2.2. Clear sky modelling

73 In previous studies [24,25], it has been demonstrated that the clear sky index (CSI) calculated with the 

74 simplified Solis model of Ineichen [26] is the most reliable for Ajaccio. This model generates a clear 

75 sky hourly irradiation (CS) expressed by Eq. (1), this model requires a fitting parameter (g), the 
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76 extraterrestrial irradiation (I0), the solar elevation (h) and the total measured atmospheric optical depth 

77 ( ):𝜏

78 (1)𝐶𝑆(𝑡) = 𝐼0(𝑡).𝑒𝑥𝑝 ( ‒ 𝜏

𝑠𝑖𝑛𝑔(ℎ(𝑡))).𝑠𝑖𝑛 (ℎ(𝑡))

79 The simplified Solis clear sky model is based on radiative transfer calculations and the Lambert-Beer 

80 relation [26] . The expression of the atmospheric transmittance is valid with polychromatic radiations, 

81 however when dealing with global radiation, the Lambert-Beer relation is only an approximation 

82 because of the backscattered effects. In view to improve the quality of the CS modelling, monthly 

83 average of water vapor column and aerosol optical depth at 700nm were introduced in the model using 

84 the aeronet sources [27]. According to [28] this model remains a good fitting function of the global 

85 horizontal radiation. The new computed time series (CSI) defined by equation (2) can be directly used 

86 with the machine learning forecasting:

87  (2)𝐶𝑆𝐼(𝑡) = 𝐺𝐻𝐼(𝑡)/𝐶𝑆(𝑡)

88

89 3. The prediction models

90 In this paper, the time series approach is used, the common notation specifying a time series CSI that is 

91 indexed by the natural number is written CSI = { : t T} where T is the time index set. The 𝐶𝑆𝐼(𝑡) ∈

92 modelling of a time series can be defined by a linear or non-linear model denoted fn (see Eq. 3 where t 

93 = [n, n-1,…, p+1, p] and n and p are respectively the number of observations and of parameters of the 

94 model ; n  p; h is the horizon of prediction and  the associated error) [29]. ≫ 𝜖𝑡 + ℎ

95 (3)𝐶𝑆𝐼(𝑡 + ℎ) = 𝑓𝑛(𝐶𝑆𝐼(𝑡),𝐶𝑆𝐼(𝑡 ‒ 1)….,𝐶𝑆𝐼(𝑡 ‒ 𝑝 + 1)) + 𝜖𝑡 + ℎ   

96 To estimate  using a machine learning method, a stationary hypothesis is often required and implies 𝑓𝑛

97 to use a stable process [30,31]. A process is defined stable if its mean and/or variance variations remain 

98 constant over time. Previous studies [3,32,33] confirmed that the use of the clear sky index (CSI) (Eq. 
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99 (2)) makes the time series stationary hence it can be introduced in a machine learning tool such as 

100 regression tree forecasting. A lot of methods of prediction based on machine learning are available, 

101 interested readers can refer to [34] concerning on random forest ensemble of support vector regression 

102 models, to [35] about Kalman filter and regressor, to [36] for works related to the Kriging, NWP and 

103 gradient boosted regression tree and to [37] for a very interesting evaluation of statistical learning 

104 configurations.

105 3.1. Naïve and reference methods: the persistence

106 The persistence is a naïve forecasting method. It is the most cost-effective and provides a benchmark 

107 against which more sophisticated models can be compared. The persistence approach [12] considers that 

108 the future GHI values are equal to the observed GHI at time t (Eq. 4). It considers that the atmospheric 

109 conditions and the solar irradiation remain unchanged between the current time t and the future time 

110 t+h.

111  (4)𝐺𝐻𝐼(𝑡 + ℎ) = 𝐺𝐻𝐼(𝑡)

112 A scaled persistence, also called “smart persistence” is defined by Eq. 5, using the clear sky Solis model 

113 . This model takes into account the daily solar irradiance profile. In numerous papers, this model is 𝐶𝑆

114 used as a reference and allows very good predictions (in stable meteorological conditions) [3,38]. 

115 (5)𝐺𝐻𝐼(𝑡 + ℎ) = 𝐺𝐻𝐼(𝑡).
𝐶𝑆(𝑡 + ℎ)

CS(𝑡)

116

117 3.2. Predictions based on regression trees 

118 Regression tree learning is a method based on the use of a decision tree as a predictive model. It is 

119 particularly used in data mining and in automatic learning and machine learning. In these tree structures, 

120 the leaves represent the values of the target variable and the branch lines correspond to combinations of 

121 input variables that lead to these values [39–42]. Decision trees have originally been used for decision 
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122 analysis. They were used to explicitly represent the decisions made and the processes that lead to them. 

123 They have since been introduced in machine learning and data mining. A decision tree describes the 

124 data but not the decisions themselves. It is a supervised learning technique: we use a set of data 

125 containing the past measurements and the target to build the tree. We then validate the tree performances 

126 by extrapolating its results to the test data set.

127 3.3. Classic regression tree (RT)

128 Hastie and Tibshirani [43] proposed a formalization of the classic regression tree models:

129            (6)𝐶𝑆𝐼(𝑡 + ℎ) =  ∑𝑡 ‒ 1
𝑖 = 1𝑘𝑖 × 𝐼(𝐶𝑆𝐼(𝑡 ‒ 𝑖))

130 Where are constant factors, I is a function returning 1 if the input is used and 0 if not. Once the tree 𝑘𝑖

131 structure has been constructed, a regression model is computed for each node. The learning phase is an 

132 iterative process where the error (defined as the mean of the absolute difference between the predicted 

133 and the actual value) will be minimized.

134 3.3.1.Pruned regression trees (RT_pruned)

135 Pruned regression aims to reduce the number of nodes to make the regression tree more regularizable. 

136 Pruned trees are built by increasing the quadratic error tolerance per node. Splitting nodes stops when 

137 the quadratic error per node drops below a given tolerance (  the split variable). For normal RT the 𝛾𝑚

138 tolerance is close to zero, while for the pruned RT, a higher value is chosen using a heuristic method 

139 based on the minimizing of the global error of prediction. In a pruned RT, I (see Eq. (6)) returns 0 more 

140 frequently than in the normal mode.

141 3.3.2.Boosted regression trees (RT_boosted)

142 There is a lot of interest in “ensemble learning” methods that generate many regression models and 

143 aggregate their results. For RT, two well-known methods are boosting and bagging of classification 

144 trees [44–46]. In boosting, the trees are built successively. The trees improving the prediction are 
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145 weighted by an extra coefficient. The prediction is then obtained by the weighted linear combination of 

146 the trees [47]. Eq. (7) gives the function for additive models applied to the solar forecasting by boosted 

147 regression trees.

148 (7)𝐶𝑆𝐼(𝑡 + ℎ) = ∑𝑚𝛽𝑚𝑏(𝐶𝑆𝐼(𝑡 + ℎ),𝛾𝑚)

149 The basis function  represents the individual trees with  the split variable, defined 𝑏(𝐶𝑆𝐼(𝑡 + ℎ),𝛾𝑚) 𝛾𝑚

150 by different values at each node and prediction results.  is the coefficient taken into account in the 𝛽𝑚

151 global algorithm to weight the results obtained by the different trees. 

152

153 3.3.3.Bagged regression tree (RT_bagged)

154 In bagging, the trees do not depend on earlier trees. Each one is independently constructed using a 

155 bootstrap sample of the data set. At the end, a simple majority vote is taken for prediction. The Bagging 

156 method is another version of the prediction with regression trees, it was described by Breiman [48]. 

157 Bagging means bootstrap aggregating, the model is an aggregation of regression trees which grow from 

158 samples of dataset. The subtrees are employed for the prediction and a vote takes place for the prediction 

159 (Eq (8)):

160 (8)𝐶𝑆𝐼(𝑡 + ℎ) = 𝑎𝑣𝑘 𝜑𝑘(𝐶𝑆𝐼(𝑡 + ℎ))

161 Where  are the different predictors before the aggregation and is the mean of the different 𝜑𝑘 𝑎𝑣𝑘 

162 predictors. 

163 3.4. Experiment set-up

164 Various steps are necessary for developing forecasting simulations and to objectively compare 

165 methodologies in view to draw reliable conclusions. These guidelines are listed below.
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166 3.4.1.Feature selection

167 One step is common to all data driven or machine learning models: the choice of the number of 

168 endogenous inputs to consider, this step is called “feature selection”. The same methodology is applied 

169 for all numerical experiments by using the mutual information applied to the CSI time series: the auto-

170 mutual information (AMI). This information measures statistical dependence between the current state, 

171 and the previous measures ( , for N number of observations). In contrast to 𝐶𝑆𝐼(𝑡) 𝐶𝑆𝐼(𝑡 ‒ 𝑖) 𝑖 = [0,…, 𝑁]

172 the correlation coefficients defined by Spearman and Pearson, the AMI measures non-monotonic and 

173 other more complicated relationships between variables [49]. It is expressed as a combination of 

174 marginal and conditional entropies (respectively ) and ) as described in  𝐻(𝐶𝑆𝐼(𝑡)  𝐻(𝐶𝑆𝐼(𝑡)|𝐶𝑆𝐼(𝑡 ‒ 𝑖) �)

175 the Eq (9).

176  (9)𝐴𝑀𝐼(𝐶𝑆𝐼(𝑡),𝐶𝑆𝐼(𝑡 ‒ 𝑖)) = 𝐻(𝐶𝑆𝐼(𝑡)) ‒ 𝐻( �𝐶𝑆𝐼(𝑡)|𝐶𝑆𝐼(𝑡 ‒ 𝑖))

177 This quantity is constructed from the amount of randomness of the random variable  given that 𝐶𝑆𝐼(𝑡)

178 the value  is known. The maximum of lagged inputs to consider (i.e. number of inputs of the  𝐶𝑆𝐼(𝑡 ‒ 𝑖)

179 regression tree) corresponds to index im of the first minimum of the auto-mutual information [50]. For 

180 example, this study in Ajaccio gives a first  minimum at the 8th time lag (im = 8), hence the 𝐴𝑀𝐼

181 regression tree will be constructed with 8 inputs (in Eq (3) p = im).

182 3.4.2.Filtering process

183 Concerning the GHI forecasting, it is a usual practice to transform the data in order to remove night 

184 hours and to objectively compare the studied predictors. This filtering is possible because during night 

185 time there is not significant PV electricity production [7]. We chose to apply a filtering criterion based 

186 on the solar elevation angle: solar radiation data for which the solar elevation angle is lower than 10° 

187 have been removed. Moreover, this filtering process allows to consider only data associated with high 

188 measurement accuracy. Indeed, the measurement uncertainties associated to pyranometers are typically 

189 much higher than ± 3.0% for solar elevation angle of less than 10°[3]. Note that for the sunset and 
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190 sunrise, the prediction is also very difficult (mainly for the mountainous area) owing to the geographic 

191 shield.

192 3.4.3.Validation rules and error metrics

193 The models parameters (i.e. an approximation to the function fn in equation (3)) are determined with the 

194 help of pairs of input and output examples contained in the training data. Once the model is fitted (or 

195 trained), it can be evaluated on a test data set totally independent of the training data. In our context, 𝒟 =

196 represents the training data set. The vector  contains the p past values {𝐂𝐒𝐈i,𝐶𝑆𝐼(𝑡𝑖 + ℎ)} N
i = 1

 𝐂𝐒𝐈i

197 (defining by the first minimum of the auto-mutual information) of the clear sky index for training sample 

198 i, CSIi = . The column vector inputs for all N training cases can (𝐶𝑆𝐼(𝑡𝑖),𝐶𝑆𝐼(𝑡𝑖 ‒ 1),….,𝐶𝑆𝐼(𝑡𝑖 ‒ 𝑝 ‒ 1))𝑇

199 be aggregated in the so-called design matrix  and the corresponding measurements are 𝑁 × 𝑝 𝐈𝐍𝐏𝐔𝐓

200 collected in the vector , so we can write . Similarly, we have 𝐎𝐮𝐭𝐩𝐮𝐭 𝒟 = {𝐈𝐍𝐏𝐔𝐓,𝐎𝐮𝐭𝐩𝐮𝐭} 𝒟 ∗ =

201  for the test data set. During this study, a k-fold methodology has been used. In a {𝐈𝐍𝐏𝐔𝐓 ∗ ,𝐨𝐮𝐭𝐩𝐮𝐭 ∗ }

202 k-fold cross-validation, the original sample is randomly partitioned into k equal sized subsamples [51]. 

203 k-fold cross validation should be employed to estimate the accuracy of the model induced from a 

204 regression algorithm, because the accuracy resulting from the training data of the model is generally too 

205 optimistic [52]. The k subsamples are used as training data. The cross-validation process is then repeated 

206 k times (k=50 in our case), with each of the k subsamples used exactly once as the training data. The k 

207 results from the folds can then be averaged (or differently combined) to produce a single estimation or 

208 used to compute probabilistic forecasts. The advantage of this method over repeated random sub-

209 sampling (see below) is that all observations are used for both training and validation, and each 

210 observation is used for validation exactly once [53]. More than 10-fold cross-validation is commonly 

211 used, but generally k remains an unfixed parameter (50 in our study). In this study, the accuracy of the 

212 forecasting models will be estimated on the basis of the normalized root mean square error (nRMSE) 

213 and the skill core (ss) which are the two most used error criterion in solar radiation forecasting [3,54]. 

214  and (10)𝑛𝑅𝑀𝑆𝐸 = E[(x ‒ x)2]/〈x〉 𝑠𝑠 = 100.(1 ‒
𝑅𝑀𝑆𝐸𝑚𝑒𝑡ℎ𝑜𝑑

𝑅𝑀𝑆𝐸𝑠𝑚𝑎𝑟𝑡 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
)
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215 According to the definition of the skill score factor ss (Eq (10), the scaled persistence model has a 

216 forecast skill ss= 0% [3]. A value of ss= 100% denotes a perfect forecast. Negative values of s indicate 

217 that the forecasting model fails to outperform the smart persistence model while positive values of ss 

218 means that the forecasting method improves on smart persistence. Furthermore, the higher the skill score 

219 is, the better the improvement is.

220 4. Probabilistic forecasts and prediction interval generation 

221 Several methods are available to product a bounded prediction [55], however the methodology used in 

222 this paper is based on the bootstrap of the training set [56,57]. In our case, bootstrapping refers to the 

223 building of several predictors based on different subsets of the training data. The resampling is done 

224 with the k-fold method, with subsets containing only 10% of the training data, randomly chosen [55]. 

225 For large subsets, all the bootstrapped estimations are equivalent and the prediction distributions do not 

226 allow generation of prediction intervals. For each fold k (see section 3.4.3), a new learning subset is 

227 built and is used to train a new regression tree. Each tree will return a prediction and the k predicted 

228 values will be used to construct a cumulative distribution function (CDF, described in the next 

229 subsection) for each step. In our study, we took , leading to 50 predictions per step.𝑘 = 50

230 4.1. Percentile bootstrap 

231 All bootstrap methods [15,58] are constructed without making assumptions about the underlying 

232 distributions from which our observations could have been sampled. With this kind of methods, the data 

233 themselves are used to estimate sampling distributions of predictions from the k subsets and k associated 

234 predictors. These estimated sampling distributions are then used to compute the confidence intervals 

235 based on percentiles estimation [59]. In descriptive statistics, a percentile is each of the 99 values that 

236 divide the data sorted into 100 equal parts, so that each part represents 1/100 of the population sample.
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237 4.2. Prediction distributions

238 The cumulative distribution function (CDF) of prediction is computed from the predicted GHI 

239 probability distribution function (PDF). The prediction interval methodology used during this study 

240 requires to determine these two kinds of distributions:

241 -for the PDF, we use the fact that when a sufficiently large sample is available, PDF is 

242 equivalent to the histogram of the predicted  [60],𝐺𝐻𝐼

243 -for the CDF, it is easy to compute because it is the normalized integral of the PDF [19]. 

244 Evaluated at a particular value (denoted  *), CDF gives the probability that  will take a value 𝐺𝐻𝐼 𝐺𝐻𝐼

245 less than or equal to  * [16,20], it gives the area under the PDF from minus infinity to  *. 𝐺𝐻𝐼 𝐺𝐻𝐼

246 An example of CDF of prediction (regression trees in Ajaccio with hourly data) is available in 

247 Figure 1.

248 Figure 1. Example of prediction cumulative distribution function (CDF) used during prediction 

249 interval generation

250 With this tool, all the percentiles can be generated in order to compute the prediction intervals. A 

251 percentile (or a centile) is a statistical measure indicating the value below which a given percentage of 

252 prediction falls. For example, the 30th percentile Q(0.3) is the value below which 30% of the prediction 

253 may be found (110 Wh/m² in Fig. 1, dashed line). The 25th percentile Q(0.25) is called first quartile, the 

254 50th one Q(0.5) is the median, and the 75th percentile the third one Q(0.75). The median value Q(0.5) 

255 of the CDF can be considered as a prediction and the other quantiles are used to define ad-hoc 𝐺𝐻𝐼 

256 prediction intervals. The 50 available intervals framing the forecast are given with the triplet of Eq (11) 

257 (with  defining the 50 intervals) and  (where (𝑛 ∈ [1,50] 𝐺𝐻𝐼𝑛(𝑡 + ℎ) ≥ 𝐺𝐻𝐼(𝑡 + ℎ) ≥ 𝐺𝐻𝐼𝑛(𝑡 + ℎ)

258  is the upper bound and  the lower bound of the framing).𝐺𝐻𝐼𝑛(𝑡 + ℎ) 𝐺𝐻𝐼𝑛(𝑡 + ℎ)

259 (11){ 𝐺𝐻𝐼(𝑡 + ℎ) = �𝑄(0.5)|𝐶𝐷𝐹(𝑡 + ℎ)
𝐺𝐻𝐼𝑛(𝑡 + ℎ) = �𝑄(0.5 + 𝑛.0.01)|𝐶𝐷𝐹(𝑡 + ℎ) 
𝐺𝐻𝐼𝑛(𝑡 + ℎ) = �𝑄(0.5 ‒ 𝑛.0.01)|𝐶𝐷𝐹(𝑡 + ℎ)

�

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability_density_function
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260 Where  is the CDF related to the 50 bootstrapped estimators (50-fold in section 3.4.3) as 𝐶𝐷𝐹(𝑡 + ℎ)

261 described in Eq. (12). 

262   (12)𝐶𝐷𝐹(𝑡 + ℎ) = 𝐶𝐷𝐹{𝐺𝐻𝐼𝑘(𝑡 + ℎ)} with 𝑘 ∈ [1,50]

263 In the figure 1, concerning n = 20, the prediction would be equal to 116Wh/m², the higher bound to 

264 122/m² and the lower bound to 110Wh/m².

265 5. Prediction interval relevance 

266 The uncertainties induced by the global radiation forecasting can be decomposed into three parts [55]: 

267 the first one is related to the measure, the second one to the time series characteristics and the last one 

268 to the data driven method. Here, the method is based on a methodology of estimation of the uncertainties 

269 due to the data driven method,  some authors [16,20,61] proposed probabilistic forecasting from data 

270 driven methods and exposed the related uncertainty. Two kinds of approaches, a bit similar, not 

271 competing but complementary, are proposed to draw a confidence band around predictions. If the works 

272 presented in [16,20] are quite similar to our approach, the tools that we use (prediction interval coverage 

273 probability and mean interval length) are probably more intuitive than the reliability diagram, the rank 

274 histogram, the continuous ranked probability score and its associated skill score. The grid manager needs 

275 to have a simple method for estimating the reliability of the forecasting and he must be able to draw 

276 easily conclusions and to react rapidly. The most interesting aspect of the present study is the simplicity 

277 of the algorithms. Moreover, our prediction band generation methodology is usable for all the machine 

278 learning methods and for different time granularities and horizons. New metrics taking into account the 

279 aspects of accuracy (measures between the bounds of the bands) and relevance (intervals length) are 

280 proposed in order to compare all the proposed bands. 
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281 5.1. Mean interval length (MIL) and prediction interval coverage 

282 probability (PICP)

283 The mean interval length (MIL) is defined by the difference between upper and lower bounds of the 

284 prediction interval (respectively  and ) as described in Eq (13). 𝐺𝐻𝐼𝑛(𝑡 + ℎ) 𝐺𝐻𝐼𝑛(𝑡 + ℎ)

285 (13)𝑀𝐼𝐿𝑛 = 〈𝐺𝐻𝐼𝑛(𝑡 + ℎ) ‒ 𝐺𝐻𝐼𝑛(𝑡 + ℎ)〉

286 The prediction interval coverage probability (PICP) is defined by the probability that the measure at t+h 

287 be between the upper and lower prediction bounds [62]. It is estimated by the rule defined in the Eq. 

288 (14) (N the number of available data).

289  PICPn = (100/N).count(j) with j :  Eq 14𝐺𝐻𝐼𝑛(𝑡 + ℎ) ≤ 𝐺𝐻𝐼(𝑡 + ℎ) ≤ 𝐺𝐻𝐼𝑛(𝑡 + ℎ)

290 To have a PICP close to 100% – that is to say, to be sure that the forecast will be, with 100% probability 

291 in the MIL range – a very large MIL must be chosen.  But, for a grid manager, the interest of this approach 

292 will be inefficient. The goal of the prediction interval is to elaborate a methodology conducing to a good 

293 compromise between high value of PICP and a low value of MIL. Considering the theory of the global 

294 radiation calculation under clear sky, 100% of the predicted values will be included between the upper 

295 born corresponding to the global radiation in clear sky conditions and the lower one, diffuse radiation 

296 under clear sky, considering uncertainties related to the Solis modeling error (see Eq. 2).

297 5.2. A new test: the gamma test

298 A methodology called gamma test [63,64] have been developed in order to compare two 2D maps. In 

299 this paper this method is adapted to the interval comparison. With the two previous parameters MIL and 

300 PICP a gamma factor is computed using Eq. (15) concerning the 50 prediction intervals (  and 𝑇𝑜𝑙𝑀𝐼𝐿

301  are two tolerances depending on the considered problem, and , see Eq. (11)).𝑇𝑜𝑙𝑃𝐶𝐼𝑃 𝑛 ∈ [1,50]

302 (15)Γ𝑛 = ( 𝑀𝐼𝐿𝑛

𝑇𝑜𝑙𝑀𝐼𝐿
)2

+ (1 ‒ 𝑃𝐶𝐼𝑃𝑛

𝑇𝑜𝑙1 ‒ 𝑃𝐶𝐼𝑃
)2
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303 The higher the index, the less the prediction interval is efficient. With this index, it is possible to 

304 construct a statistical hypothesis test.  In the start of the procedure, there are two hypotheses, the null 

305 hypothesis (H0) and the alternative hypothesis (H1) defined by:

306 -H0: “the prediction interval is relevant” if <1,Γ𝑛

307 -H1: “the prediction interval is not relevant” if >1Γ𝑛

308 Computing  for the n intervals and each predictor, we propose a simple rule (or test) allowing to Γ𝑛

309 validate the prediction interval. This test allows to boundary the Cartesian coordinate plane defined by 

310 the two variables MIL and (100-PICP) (figure 3). This limit is an ellipse:

311 -inside the ellipse, the hypothesis H0 is retained, it is the “prediction interval is relevant” area,

312 -outside the ellipse, H1 is retained, it is the “prediction interval is not relevant” area.

313 We have taken =0.5  and =50%, meaning that a good interval 𝑇𝑜𝑙𝑀𝐼𝐿 〈𝐺𝐻𝐼(𝑡)〉 𝑇𝑜𝑙1 ‒ 𝑃𝐶𝐼𝑃

314 proposes a MIL inferior than 50% of the mean value of the GHI and also allows to obtain a PICP higher 

315 than 50%. Note that this two values may be modified considering the problem. The gamma index is, for 

316 our case defined by the equation 16 with a factor o ( ) allowing to bias one of the two variables ∈ [ ‒ 1,1]

317 (MILn and PICPn). In the following sections we have chosen o = 0 in order to make the readability of 

318 the article easier.

319 (16)Γ𝑛 = (1 + 𝑜)²( 𝑀𝐼𝐿𝑛

0.5〈𝐺𝐻𝐼(𝑡)〉)
2

+ (1 ‒ 𝑜)2(1 ‒ 𝑃𝐶𝐼𝑃𝑛

50% )2

320 6. Results

321 The data used in this application are solar global horizontal irradiations GHI measured in Ajaccio with 

322 an hourly time granularity for the years 2006-2014. In the next we apply the previous methodologies to 

323 the real case of the GHI prediction interval measured in-situ. 
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324 As previously mentioned, the machine learning methods can be applied only to stationary time series 

325 and to satisfy this requirement, the solar irradiations GHI are transformed in clear sky index CSI. Thus, 

326 CSI are predicted and at last, a reverse process is applied to obtain the corresponding GHI. Only 

327 endogenous data were used as input and the number of inputs was calculated by auto-mutual information 

328 methods (AMI) (paragraph 3.4.1). The application of this AMI showed that the 8 previous data must be 

329 used to forecast the future data.

330 6.1. Predictors comparison (h+1)

331

332 Using the methodology previously described, some prediction intervals obtained with classical 

333 Regression tree, were calculated as shown in Fig. 2.

334 Figure 2. GHI prediction concerning 3 intervals defined from percentiles 

335 This kind of figure is not enough interesting to consider a ranking of intervals or to estimate the best 

336 model of forecast to propose to the grid manager (the 1348th and 1366th hours are ill-modeled but is this 

337 a bad model?). In this scope, it is essential to compare the different parameters exposed previously 

338 (nRMSE,  MIL and PICP). In Table 1, the values of these parameters for the 6 tested predictors (4 Γ𝑚𝑖𝑛

339 kinds of regression trees (classic, pruned, bagged and boosted) and 2 models of persistence (classic and 

340 smart one). For each regression tree, we show results related to classical forecasts realized using a time 

341 series formalism without quantiles estimation (denoted “classic” in the table) and to forecasts based on 

342 the Q(0.5) quantile estimation (denoted “median Q(0.5)”). 

343 Table 1. Predictors comparison for a time horizon h+1 hour (in bold the best results)

344 The  values in Table 1 are related to the lowest value computed among the 50 prediction intervals Γ𝑚𝑖𝑛

345 descriptions for each regression trees type (see section 3.4.3) as shown in Eq (17). 

346 (17){n0 = argmin 𝑛(Γ𝑛)
Γ𝑚𝑖𝑛 = Γ𝑛0

�



ACCEPTED MANUSCRIPT

16

347 The ellipse related to gamma index and the comparison of the predictors are plotted in Fig. 3. Each mark 

348 is related to a prediction interval based on the quantile estimation (50 marks per RT predictor). 

349 Figure 3. Comparison of the predictors and of the predictions interval definition using the MIL-PICP 

350 plot.      for the RT_pruned,     for the RT_bagged,     for RT and     for RT_boosted.

351 In Table 1 and Figure 3, only two regression trees pass the gamma test (RT and RT_boosted). The marks 

352 the closest to the origin of inner product space defined by MIL and 100-PICP (Fig. 3) show the best 

353 intervals and quantiles to consider. For all the models, the best configurations are obtained for n between 

354 35 and 45 (see Eq. (11)) because theses couples of MIL and 100-PICP are those which minimize MIL 

355 and maximize 100-PICP. For all the tested models, the predictions of the Q(0.5) estimation give very 

356 good results compared to the classical approaches. Excepted for RT (nRMSE=0.2477), the machine 

357 learning methods propose results better than the smart persistence. In the next paragraph, a comparison 

358 of the parameters of prediction intervals will be analyzed depending on the horizon of forecasts.    

359 6.2. Influence of the prediction horizon 

360 In this part, only the best predictor, RT_boosted, is used for more clarity. Table 2 shows the values of 

361 the gamma index, MIL, PICP and skill Score for RT_boosted. These values are reported according to 

362 the time horizons between 1h and 6h by hourly time step.

363 Table 2. Prediction interval evolution concerning the considered horizon for the RT_boosted

364 For horizons upper than 2 hours, the best   is related to a MIL close to 100 Wh/m² while for h+1 Γ𝑚𝑖𝑛

365 horizon it is 134 Wh/m². The PICP decreases from the horizon h+2. It is a consequence of the variability 

366 of the CSI (and GHI) and of the decrease of forecastability with the horizon. Note also that the skill 

367 score is, for h+2 and h+3 lower than 1, that is meaning that, for these horizons, the smart persistence is 

368 better than RT_boosted. But it has to be kept in mind that the smart persistence cannot generate 

369 confidence bands. In the next part, the performance of the band estimation will be improved with the 

370 Solis model.



ACCEPTED MANUSCRIPT

17

371 6.3. Use of model of knowledge to bound the prediction intervals

372 In order to improve the prediction bounds, it is possible to use the Solis clear sky model [28]. Indeed, 

373 the measured horizontal global irradiation is most of the time lower than the global irradiation estimated 

374 with a clear sky and higher than the horizontal diffuse irradiation (the only solar component present by 

375 cloudy condition and minimum when the sky is clear). In Fig. 4, the scheme related to this correction. 

376 Figure 4. Solis model as improvement of the band generation. In Gray the prediction band, in black the 

377 measurements and in blue the upper and lower bounds computed with the Solis model

378 In theory, this correction is attractive, because it allows, with a same PCIP to decrease the MIL and so 

379 to decrease the gamma index. In practice, the fact to use the Solis model is very interesting but the 

380 numerical uncertainties of Solis model modify slightly the PICP (less than 5 percentage points). The 

381 result of this improvement is shown in Table 3 for the RT_boosted predictor and a horizon h+1. 

382 Table 3. Impact of the clear sky model improvement on the result of the prediction bands

383 For the same PICP, the MIL is decreased by 15% using the Solis model as limit of confidence bands. 

384 The gamma is strongly modified from 0.88 to 0.74, so it is improved by 16% with this simple 

385 modification. If we consider a large band defined only with the global and the diffuse clear sky 

386 modelling (Solis model), the MIL is equal to 408.87 Wh/m² and the PICP is close to 100% (all the 

387 measured values are between the global and the diffuse clear sky limits). The gamma index becomes 

388 0.94 instead of 0.74 with the RT_boosted.

389 7. Comments and conclusions

390 In this paper, some results related to the GHI probabilistic forecasting were exposed with 2 persistence 

391 models (simple and smart one based on the Solis model) and 4 machine learning tools related to the 

392 regression trees (normal, pruned, boosted and bagged). A prediction band methodology was elaborated, 

393 based on the bootstrap sampling and the cumulative distribution function (CDF) of prediction for 

394 horizons varying between 1 to 6 hours. A new validation tool was built based on the mean interval length 

395 (MIL) and prediction interval coverage probability (PICP) and called the gamma test. With these 



ACCEPTED MANUSCRIPT

18

396 methods and the error metrics, a reliable prediction band was elaborated for Ajaccio with a MIL close 

397 to 113 Wh/m², a PCIP reaching 70% and a gamma index lower than 0.9. The proposed graphical tool 

398 would allow the grid manager to better assess the risk taking on the forecast. In future, this methodology 

399 will be applied in an on-line system based on the Tilos Island through the TILOS ((Technology 

400 innovation for the Local Scale, Optimum integration of Battery Energy Storage) H2020 project.
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Figure 1. Example of prediction cumulative distribution function (CDF) used during prediction 

interval generation
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Figure 2. GHI prediction concerning 3 intervals defined from percentiles 
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Figure 3. Comparison of the predictors and of the predictions interval definition using the MIL-PICP 

plot.      for the RT_pruned,     for the RT_bagged,     for RT and     for RT_boosted.
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Figure 4. Solis model as improvement of the band generation. In Gray the prediction band, in black the 

measurements and in blue the upper and lower bounds computed with the Solis model
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- A prediction band joined to each forecast for given a reliability at each prediction 

- bootstrap,  k-fold and mutual information are applied for the forecasting

- quantiles estimation and cumulative distribution function used for prediction interval

- a new gamma test using the mean interval length and prediction interval coverage probability 

- Reliable prediction band:  MIL= 113 Wh/m², PCIP= 70% and gamma index< 0.9.
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nRMSE 𝚪𝒎𝒊𝒏 MIL(Wh/m²) PICP(%)

normal 0.3040 x x xPersistence

smart 0.1911 x x x

Classic 0.2477 x x xRT

Median Q(0.5) 0.1858 0.91 148.5 69.77%

Classic 0.1878 x x xRT-pruned

Median Q(0.5) 0.1843 1.01 159.71 65,55%

Classic 0.1851 x x xRT-bagged

Median Q(0.5) 0.1832 1.01 160.17 65.37%

Classic 0.1886 x x xRT-boosted

Median Q(0.5) 0.1815 0.88 134.24 68.82%

Table 1. Predictors comparison for a time horizon h+1 hour (in bold the best results)
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Horizon 𝚪𝒎𝒊𝒏 MIL(Wh/m²) PICP(%) ss nRMSE
h+1 0.88 134.2 68.82% 1.0025 0.1886
h+2 1.38 102.2 34.60% 0.9600 0.3021
h+3 1.33 105.9 37.67% 0.9907 0.3197
h+4 1.31 100.8 38.76% 1.0158 0.3334
h+5 1.31 104.5 38.82% 1.0386 0.3423
h+6 1.27 98.7 40.28% 1.0552 0.3493

Table 2. Prediction interval evolution concerning the considered horizon for the RT_boosted
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Without Solis With Solis

 MIL  (Wh/m²)  MIL (Wh/m²)
0.88 134.24 0.74 113.57

Table 3. Impact of the clear sky model improvement on the result of the prediction bands


