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Abstract：：：：The direct steam generation (DSG) solar power system using two stage 16 

accumulators and cascade steam-organic Rankine cycle (RC-ORC) has remarkably 17 

enlarged storage capacity. It can facilitate stable power generation and address the 18 

challenges of conventional DSG systems. Regenerator is generally an issue worthy of 19 

discussion in organic Rankine cycle (ORC) systems. However, its influence on the 20 

newly proposed DSG system has not been investigated yet and is expected to be 21 

appreciable. Introducing a regenerator affects not only the ORC efficiency, RC-ORC 22 
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efficiency, heat exchanger area, but also heat storage capacity, discharge duration, 23 

discharge efficiency, aperture area of collectors and the net profit (∆�). Detailed 24 

performance comparison between the DSG systems without/with regenerator is 25 

carried out in this paper. The results indicate that at a given power output, aperture 26 

area is reduced by the regenerator especially for MM, R365mfc and pentane due to 27 

the increment in ORC, RC-ORC and discharge efficiencies, as well as the decrement 28 

in heat input. Discharge duration is shortened by 0.01-1.78 h depending on ORC 29 

fluids. R365mfc exhibits the maximum ∆� (4.19~6.48 million USD), followed by 30 

MM and pentane. On the contrary, ∆� is negative for benzene (-5.61~-4.31 million 31 

USD).  32 

 33 
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  1. Introduction 38 

Direct steam generation (DSG) technology has received increasing attention in 39 

concentrating solar power systems. However, its development is restricted by 40 

two technical bottlenecks: the instability of steam Rankine cycle (RC) and limited 41 

storage capacity. The former is caused by fluctuating solar radiation. The latter is 42 

attributed to the small temperature drop of water in accumulators to avoid inefficient 43 

power generation at the off-design condition in the discharge process [1].  44 
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In our previous work, an innovative DSG system with two-stage accumulators and 45 

cascade steam-organic Rankine cycle (RC-ORC) was proposed, which can solve or 46 

alleviate the above challenges [2]. When the system works in nominal condition, 47 

water in the low-temperature accumulator (LTA) is heated by solar collectors and 48 

partially vaporized to saturated steam to drive the RC-ORC. The unvaporized hot 49 

water is stored in the high-temperature accumulator (HTA). By adjusting the mass 50 

flow of water from the LTA to the HTA under fluctuating solar radiation, the steam 51 

generation rate can be kept constant, leading to steady heat-to-power conversion. 52 

During discharge, water flows from the HTA to the LTA through an intermediate heat 53 

exchanger (HX) with a temperature drop of approximately 150~200 °C. The released 54 

heat is only used to drive the bottom organic Rankine cycle (ORC). During this 55 

period, the HTA undergoes an isothermal process and the storage capacity can be 56 

remarkably extended. In principle, the above system differs from existing solar 57 

thermal storage technologies. The two-stage accumulators not only combine the 58 

advantages of conventional single-stage accumulator and two-tank storage system, but 59 

also match the cascade RC-ORC perfectly. Meanwhile, off-design operation of the top 60 

RC is avoided and the ORC can work efficiently during the unique heat release 61 

process [2]. 62 

  Regenerator is a common unit and plays a vital role in ORCs. Its influences have 63 

been investigated intensively. But most studies only focus on stand-alone ORC 64 

systems. Tiwari and Habibi et al. concluded that the regenerator led to improvements 65 

in thermal efficiency, exergy efficiency, net power output and levelized energy cost in 66 
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solar ORC systems [3, 4]. Meanwhile, regenerative ORC required lower heat to 67 

produce the same power than the basic ORC. On the other hand, Ventura et al. 68 

revealed that there existed a threshold pressure above which the regenerator did not 69 

improve the system performance [8]. As for economics, investigations by Mosaffa et 70 

al. indicated that the regenerative ORC exhibited lower total cost rate or levelized cost 71 

of electricity than that of basic ORC [9, 18]. Braimakis et al. pointed out that 72 

recuperative ORC was appealing in some particular conditions [10, 11]. Recent 73 

studies and relevant conclusions on regenerator are summarized in Table 1. Besides 74 

these theoretical research, ORC manufacturers like Turboden, DürrCyplan, Enertime 75 

and Exergy provide the client with commercial-off-the-shelf recuperative systems in 76 

biomass and waste heat recovery projects [21-24]. 77 

  Despite of the importance of regenerator in ORCs, its effect on the newly proposed 78 

DSG system has not been assessed. When a regenerator is introduced to the novel 79 

system with two-stage accumulators and cascade RC-ORC, current conclusions 80 

concerning the effect of regenerator on ORCs may not be applicative. The reasons are 81 

as follows: 1) the regenerator influences not only the ORC and RC-ORC efficiencies, 82 

power output of RC and ORC, but also heat storage capacity and discharge period; 2) 83 

mass flow rates and heat transfer rates in the cascade cycle might be altered and HX 84 

area needs to be adjusted accordingly; 3) the changed storage capacity and cycle 85 

efficiencies lead to variations of the heat required by the power block and total 86 

aperture area of solar collectors; 4) the annual revenue and net profits in the whole 87 

lifetime of the plant are affected consequently.  88 
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Thus, it is necessary to conduct an integrated assessment of regenerator’s impact on 89 

the cascade DSG system. The structure of the work is shown in Fig. 1. ‘+’ and ‘-’ 90 

denote increment and decrement, respectively. ‘+/-’ means it could be either increment 91 

or decrement. Various thermodynamic and thermo-economic indexes without/with 92 

regenerator are compared. The economic effect is evaluated by the net profit, which is 93 

the sum of extra HX cost, reduced collector cost and generating revenue. The net 94 

profits in six regions with representative meteorological conditions are estimated. 95 

  2. System description 96 

  The schematic diagram of the investigated DSG system is illustrated in Fig. 2. It 97 

contains RC, ORC, HTA and LTA. The RC is composed of solar collectors, wet steam 98 

turbine and water pumps. The ORC includes a turbine, HX2, regenerator (HX3) and 99 

pumps. HX1 serves as a condenser in RC and an evaporator in ORC. The collectors, 100 

LTA and HX3 are marked in red, which indicates that HX3 influences the temperature 101 

of LTA and the total aperture area of solar collectors. The reasons will be provided in 102 

Section 4. 103 

  The system can operate in two modes. The flow diagrams of the modes are 104 

depicted in magenta in Fig. 3. 105 

Mode 1: Simultaneous heat collection and power conversion (i.e., nominal or rated 106 

condition). The system works in this case over a wide range of solar radiation (e.g., 107 

400~1000 W/m2). Power is generated through the RC-ORC. V1, V2, V4 and V6 are 108 

open. P1, P2 and P3 run. The rest valves and pumps are closed or off-work. Water is 109 

heated and partially vaporized through the collectors. The heated water is stored in the 110 
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HTA and the produced saturated steam expands in the wet steam turbine to produce 111 

electricity. Afterwards, the exhaust steam is condensed into saturated water by HX1 112 

and is pressurized by P1 before being sent back to the collectors. The condensation 113 

heat is used to vaporize ORC fluid. The produced saturated vapor expands in the ORC 114 

dry turbine to generate electricity. Then, the exhaust vapor is condensed in sequence 115 

by HX3 and HX2 into saturated liquid and is ultimately sent back to HX3 and HX1 by 116 

P2. The total electricity generation is �� �� + �� 	��. The water flow rate through P3 117 

(
� ��) can be adjusted in dependence on the solar radiation. Assume 
��= 400 W/m2 118 

and the heat input to the RC-ORC is ������ in the nominal condition. When 
��= 119 

400 W/m2, 
� �� = 0. The HTA temperature remains constant because the heat 120 

transferred from the collectors to HTA is exactly used to drive the RC-ORC. When 121 


�� > 400 W/m2, 
� �� is adjusted to fulfill 
� ���ℎ��� − ℎ��� = � − ������. � is 122 

the heat obtained by collectors. ℎ��� is the specific saturated liquid enthalpy of water 123 

at the nominal temperature in HTA. So there is an almost linear relationship between 124 


� �� and solar radiation. The control objective of P3 is a constant steam generation 125 

rate for the steady power conversion of the cascade cycle. The HTA temperature 126 

remains constant but its water mass increases. When 
�� < 400 W/m2, the system 127 

may work in Mode 2. The power consumption by P3 is not counted in Mode 1 but in 128 

Mode 2, because the pressurization of water through P3 is essential to sustain the 129 

discharge process. 130 

Mode 2: Heat discharge. The system works in this mode when the radiation is 131 

lower than the rated condition and electricity is required by consumers. V3, V5 are 132 
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open, and P2 runs. In a conventional DSG system, water in the accumulator is 133 

partially vaporized by depressurizing to drive thermodynamic cycle. The temperature 134 

drop of water is limited because the wet steam turbines would suffer from inefficient 135 

off-design operation [25-26]. This flashing process may also take place for the 136 

proposed DSG system due to the intermittence of solar radiation. For instance, if the 137 

direct radiation drops suddenly from 900 W/m2 to zero by a cloud and the shading 138 

lasts for several minutes, flashing in the HTA will react to the intermittence and 139 

prevent a sharp shutdown of the steam turbine. However, flashing is omitted in this 140 

simulation as hourly average radiation is adopted. The heat discharge mode is unique. 141 

The water in HTA flows into LTA via HX1 and a throttle valve (TV). The released 142 

heat in this mode is only used to drive the ORC and the total electricity generation is 143 

�� 	��. The distinctive discharge process guarantees smooth power generation and 144 

generates much more electricity than a conventional discharge process due to the 145 

considerable temperature drop of water from HTA to LTA (more than 100 °C in this 146 

study). 147 

3. Mathematical models 148 

3.1. Thermodynamics 149 

3.1.1. Solar collectors 150 

The solar heat collection is simulated by the System Advisor Model (SAM) 151 

software, which is developed by National Renewable Energy Laboratory [27]. 152 

Collector efficiency (!"�#) is defined as the optical efficiency (!�$�) minus an 153 

efficiency penalty term (!#�%%) representing heat loss [28]: 154 
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  !"�# = !�$� − !#�%% = &!�$�,( − )∙+,-..,/012-,∙345        (1) 155 

where K denotes the dependency of !�$� on the incidence angle; !�$�,( is the peak 156 

optical efficiency when the incidence angle is zero; 6 is the length of receivers (m); 157 

7#�%%,�8 is the average heat loss from evacuated tube receivers (W/m); 9"�# is the 158 

aperture area of collectors (m2); 
�� is the direct normal solar irradiance (W/m2). 159 

7#�%%,�8 is evaluated by 160 

7#�%%,�8 = :( + :;<=> + ?:@ + :A<=>B ∙ C�� + C��� − C�2  

                +�:E + :F
��&� ∙ GHIJ KGHI∙G-LMKG-LMJ
� + :� �GHIJ KG-LMJ ��GHIKG-LM�

F   (2) 161 

where :(…:A are the heat loss coefficients; => is the wind speed (m/s); C�� and 162 

C���  are inlet and outlet temperature of the solar field (°C); C�  is the ambient 163 

temperature (°C). 164 

  The actual operating collectors consist of liquid and binary phase regions. Collector 165 

outlet can be at steam-liquid mixture of different dryness with the variation of 166 

irradiation intensity, and !"�# will change accordingly. Collector efficiency in liquid 167 

phase region (!"�#,#� is determined by 168 

!"�#,# = N� OP·∆R,345·1,                        (3) 169 

  The actual overall collector efficiency is 170 

 !"�# = T
345·1 = T,KTU345·�1,K1U� = N� OP·∆R,KN� OP·∆RUV� OP·∆W,X2-,,, KV� OP·∆WUX2-,,U

= ∆R,K∆RU∆W,X2-,,,K ∆WUX2-,,U
      (4) 171 

  The specific parameters and the corresponding default values of parabolic trough 172 

collectors (PTCs) and linear Fresnel collectors (LFCs) in SAM are posted in Table 2. 173 

For PTCs, & is calculated by 174 

   &�G� = 
9Y�G� Z[\ ] = 
^_ �1, "a bcd eK"feK"JeJ
bcd e � cos ]   (5) 175 
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where 
9Y�G� represents the incidence angle modifier; ] is the incidence angle (°) 176 

and its calculation procedure is presented in Appendix A; Z(, Z@ and ZE are the 177 

incidence angle coefficients. 178 

& for LFCs is calculated by 179 

&)j� = &#&�            (6) 180 

&# = Z(,# + Z@,#]# + ZE,#]#E + Z�,#]#� + ZF,#]#F           (7) 181 

&� = Z(,� + Z@,�]� + ZE,�]�E + Z�,�]�� + ZF,�]�F               (8) 182 

where ]#  and ]�  are the longitudinal and transverse angle (°); Z(,# …ZF,#  and 183 

Z(,�…ZF,� are the incidence angle coefficients. The default values are listed in Table 3. 184 

3.1.2. Turbines 185 

The work produced by the steam and ORC turbines is calculated by 186 

   �� kG = 
� ���ℎ@ − ℎE� = 
� ���ℎ@ − ℎE%�lkG     (9) 187 

    �� 	G = 
� 	���ℎ@( − ℎ@@� = 
� 	���ℎ@( − ℎ@@%�l	G        (10) 188 

where lkG and l	G denote the isentropic efficiencies of steam turbine and ORC 189 

turbine, respectively. 190 

3.1.3. HXs 191 

  The heat balance in rated condition and discharge process for HX1 is expressed by 192 

     
� ���ℎE − ℎ�� = 
� 	���ℎ@( − ℎ@;�           (11) 193 

                 
� ��,��ℎ; − ℎA� = 
� 	���ℎ@( − ℎ@;�               (12) 194 

where 
� ��,� is the water mass flow rate through HX1 in discharge process. 195 

  In the binary phase of HX1: 196 


� ��,� �ℎ; − ℎ;m� = 
� 	���ℎ@( − ℎ@(m�               (13) 197 
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where subscript 10' denotes the saturated liquid state of ORC fluid, and 5' represents 198 

the state point of water corresponds to 10'. 199 

In the single phase of HX1: 200 


� ��,� �ℎ;m − ℎA� = 
� 	���ℎ@(m − ℎ@;�              (14) 201 

  The heat balance in HX3 is expressed by 202 

                       ℎ@@ − ℎ@E = ℎ@; − ℎ@F                (15) 203 

  The regenerator efficiency (l�) is defined as [32] 204 

                          l� = GfnoGfpGffoGfp                            (16) 205 

3.1.4. Pumps 206 

The work consumed by P1 and P2 is calculated by 207 

               �� �@ = 
� ���ℎF − ℎ�� = 
� ���ℎF% − ℎ��/l�      (17) 208 

        �� �E = 
� 	���ℎ@F − ℎ@�� = 
� 	���ℎ@F% − ℎ@��/l�        (18) 209 

where l� is the pump isentropic efficiency. 210 

Water flows from HTA to LTA continuously in the discharge process to drive the 211 

ORC. For further circulation, it is necessary to pump back the water into HTA to 212 

supplement the diminishing water. The required pump power is defined as 213 

�� �� = 
� ��,��ℎr − ℎs� = 
� ��,��ℎr% − ℎs�/l�      (19) 214 

3.1.5. Heat-to-power conversion efficiency 215 

3.1.5.1. Efficiency under nominal condition 216 

The RC, ORC and RC-ORC efficiencies are calculated by 217 

   !�� = >� OPN� OP�RfoRp� = >� tu∙vwo>� xfN� OP�RfoRp�       (20) 218 

             !	�� = >� yOPN� yOP�RfaoRfn� = >� yu∙vwo>� xJN� yOP�RfaoRfn�        (21) 219 
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!��o	�� = >� IzMTI-V = >� OPK>� yOPN� OP�RfoRp�          (22) 220 

where l{ is the generator efficiency, �� ��� is the net electrical power and ���N is 221 

the heat input in nominal condition. 222 

3.1.5.2. Efficiency during heat discharge 223 

The net generated power by the ORC during heat discharge is expressed by 224 

  �� 	��,� = �� 	G ∙ l{ − �� �E − �� ��         (23) 225 

  The efficiency during heat discharge is calculated by 226 

  !	��,� = N� yOP�RfaoRff.�vyu∙vwoN� yOP∙�Rfp.oRf|�/vxoN� OP,}∙�R~.oR��/vxN� yOP∙�RfaoRfn�     (24) 227 

  The power loss caused by the TV is calculated by 228 

�� #�%% = 
� ��,� ∙ �ℎA − ℎ�%�                    (25) 229 

  The total heat released in this step is defined by 230 

   �� = Y> ∙ �ℎ; − ℎA�       (26) 231 

where Y> is the water weight transferred from HTA to LTA, which is the product of 232 

water density and HTA volume. 233 

  The heat storage capacity (i.e. the power output during discharge) is calculated by 234 

               �� = !	��,� · ��                      (27) 235 

  The operation duration of this process is determined by 236 

                            �	�� = �}>� yOP,}                          (28) 237 

3.2. Thermo-economics 238 

  For the convenience of calculation, the rated net power is assumed to be constant 239 

without and with the regenerator ��� ��� = �� ���,� = 10 MW�. The comparison is 240 

made at the same volume of accumulators. According to the conservation of energy, 241 



12 

 

the total heat output from the solar field is equal to the total heat input to the power 242 

block in both rated operation and discharge process during a typical meteorological 243 

year. The duration of the nominal condition (���o	�� ) is not affected by the 244 

regenerator since the rated power and meteorology conditions are the same for a given 245 

region. Therefore, the power output under nominal condition in the typical 246 

meteorological year is fixed. Besides, the initial investment in turbines is considered 247 

to be independent of the regenerator due to the constant total power capacity. 248 

The regenerator mainly influences the discharge duration, power output in 249 

discharge process, HX area and its cost. It also affects the solar aperture area and its 250 

cost because the daily heat input to the power block varies and thus the design 251 

aperture area needs adjustment. The daily heat requirement for the RC-ORC is 252 

determined by two parameters: the heat-to-power conversion efficiency in the 253 

nominal operation and the heat release in the discharge process. Both parameters are 254 

elevated by the regenerator in principle. 255 

  3.2.1. Cost of extra HX area (△ ���) 256 

  Details on the HX area calculations are provided in Appendix. B. 257 

Purchased cost of HX is [38, 39, 40] 258 

�[�@(�$ = &@ + &E�[�@(9 + &���[�@(9�E            (29) 259 

where �$ is a basic cost concerning with the HX area. Considering the specific 260 

material of the construction and operating pressure, the bare module cost for HX 261 

should be corrected as [38, 39, 40] 262 

                               ( )1 2BM P M PC C B B F F= +                      (30) 263 



13 

 

  BMC  is the corrected cost, MF  is the material correction factor, and PF  is a 264 

measure that reflects the pressure factor since the system components work at a 265 

pressure much higher than the ambient pressure, which is determined by [38, 39, 40] 266 

( ) ( ) 2

10 1 2 10 3 10log log 10 1 log 10 1pF C C p C p= + − + −             (31) 267 

  1K , 2K , 3K , 1B , 2B , 1C , 2C  and 3C  are coefficients for the cost evaluation 268 

of system components. The values are posted in Table 4. Since the unit in the 269 

parentheses of the second term in the right hand side of Eq. (46) is gage pressure in 270 

bar, a transformation from MPa to bar is thus needed to fit the equation request. 271 

  The actual cost need to be converted from the cost of 2001 by introducing the 272 

Chemical Engineering Plant Cost Index (CEPCI) [41]. The cost of 2014 should be 273 

corrected as 274 

                 ���,E(@F = ���,E((@ ∙ ����
E(@F/����
E((@            (32) 275 

where 2001CEPCI =397, 2014CEPCI =586.77. 276 

  The cost of extra HX area is 277 

 , 1,2014 , 2,2014 , 3,2014 , 1,2014 , 2,2014( ) ( )HX BM HX BM HX BM HX r BM HX BM HXC C C C C C∆ = + + − +    (33) 278 

3.2.2. Variation of collector cost ( colC∆ ) 279 

  The varied aperture area (colA∆ ) is composed of the reduced area in nominal 280 

condition ( ,col nomA∆ ) and the reduced area in heat discharge (,col dA∆ ). colA∆  can be 281 

obtained according to the conservation of energy:  282 

           

365

, ,
0

, , 8760

, ,
0

( )nom j d j
j

col col nom col d

col i DN i
i

Q Q

A A A
Iη

=

=

∆ +
∆ = ∆ + ∆ =

∑

∑ �

               (34) 283 

where , ,( )nom j d jQ Q∆ +  is the variation of daily required heat. ,col iη  and ,DN iI  is 284 



14 

 

hourly collector efficiency and direct normal radiation, respectively. ,col iη  varies 285 

little for the systems without and with a regenerator, and the reason will be provided 286 

in Section 4.1.2. 287 

The reduced cost of solar collectors is expressed by 288 

△ �"�# = �"�# ·△ 9"�#           (35) 289 

where �"�# is the collector price per square meter, including costs of manufacturing, 290 

assembly, equipment and construction activities. The annual operation and 291 

maintenance cost is not considered and △ �"�# is conservative estimated. 292 

3.2.3. Net profit with respect to the regenerator (△ �) 293 

  The additional yield in the whole lifetime (6C) of the plant is determined by     294 

   △ � =  �� ·△ �� · 365 · 6C                        (36)                                                         295 

where �� is the electricity price, △ �� is the variation of storage capacity during 296 

heat discharge due to the installation of regenerator. 297 

  The net profit by the regenerator (△ �) is expressed by 298 

                        △ � = △ � +△ �"�# −△ ���                       (37) 299 

4. Results and discussion 300 

 The effects of ORC fluids on the system performance are studied. Pentane is a 301 

popular working fluid adopted by Ormat Technologies Inc. [45], which has built more 302 

than 1000 ORC plants of up to 1701 MW [46]. Therefore, it is selected as the 303 

representative fluid. Then benzene, cyclohexane, R1233zd-E, hexamethyldisiloxane 304 

(MM) and R365mfc are analyzed. R1233zd-E is a new promising fluid with low 305 

global warming potential and almost no ozone depletion potential. Experimental 306 
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investigation shows that it is a drop-in replacement for R245fa [47-49]. The physical 307 

property parameters of R1233zd-E can be obtained from AP1700 [50]. MM has 308 

favorable thermal stability and is suitable for high temperature ORC [51-52]. 309 

Research indicates MM is one of the best ranked fluids because of its high efficiency 310 

and environmental friendliness [53]. Benzene, cyclohexane and R365mfc are widely 311 

investigated with high efficiencies and good feasibilities [54-55].  312 

Only subcritical cycles are considered, which offer a constant temperature and 313 

pressure in the vaporization process. The assumptions in the calculation are shown in 314 

Table 5. In the event of a market price from China, a current exchange rate from 315 

China Renminbi to US dollar (USD) of 0.16 is applied. 316 

4.1. Thermodynamic performance using pentane 317 

4.1.1. Thermodynamic performance under nominal condition 318 

  Wet steam turbines in a commercial nuclear plant, Qinshan Nuclear Power Plant 319 

(300 MW, China), is served as reference [58]. In this simulation, the wet steam 320 

turbine in the RC has the same design outlet pressure as the high pressure turbine in 321 

Qinshan Nuclear Power Plant (0.817 MPa). Flow chart of the thermodynamic 322 

calculation is graphed in Fig. 4. The results of the calculated parameters in the bottom 323 

ORC are listed in Table 6.  324 

  Design conditions of thermodynamic performance without/with regenerator are 325 

displayed in Table 7. The RC efficiency �!��� remains invariable owing to the fixed 326 

design parameters of RC. By installing the regenerator, the ORC efficiency �!	��� 327 

increases by 16.4% while the RC-ORC efficiency (!��o	��) improves by 9.7%. 328 
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Besides, the output of RC ��� ��� declines by 0.36 MW, and the output of ORC 329 

(�� 	��) increases by 0.36 MW as compensation. The fluctuations of both the mass 330 

flow rates of RC �
� ��� and ORC (
� 	��) are within 10%. Notably, heat input (���N) 331 

is 3.71 MW less than that of no regenerator. It indicates that less heat is required by 332 

using regenerator at a rated power. Therefore, thermodynamic performance of the 333 

system can be improved appreciably by the regenerator. 334 

4.1.2. Thermodynamic performance in the heat discharge process 335 

  T-Q diagram during heat discharge is depicted in Fig. 5, which reveals the 336 

relationship between fluid temperature and heat transfer rate in HX1. The place where 337 

the minimum temperature difference (∆CN��=10 °C) occurs is at the cold fluid inlet, 338 

which is the same as that without regenerator [2]. 339 

  The bottom ORC operates under rated condition in the heat discharge process. 340 

The related parameters are listed in Table 8. The discharge duration (�	�� ) is 341 

shortened by 0.87 h due to the regenerator. More work is consumed by P3 and 342 

throttling process on account of the increased discharge mass flow rate of water 343 

�
� ��,��. The raise in discharge ORC efficiency (!	��,�) is 16.3%. Notably, the 344 

storage capacity (��) drops by 714.6 kWh, which can be explained by an insight to 345 

the parameter distribution of the top water. As shown in Table 9, CA elevates after 346 

employing the regenerator. The reduction of water enthalpy drop (△ �ℎ; − ℎA�) is 347 

significant, leading to a decreased heat transferred during discharge (△ ��). 348 

  Variation of PTC efficiency �!�G�� with the solar field outlet dryness is graphed in 349 

Fig. 6. Given 
��, !�G� decreases slightly with the increment of outlet dryness. As 350 
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the outlet dryness increases from 0 to 1, the relative decrement is only 0.74%, 0.98% 351 

and 1.46% when 
�� is 800, 600 and 400 W/m2, respectively. The reason is that PTC 352 

efficiency in binary phase region (!�G�,�� declines marginally as compared with that 353 

in liquid phase region (!�G�,#�. Similarly, the outlet dryness also has minimal effect on 354 

!)j�. Besides, given 
�� of 800W/m2, the two curves representing different inlet 355 

temperatures almost coincide. It manifests the regenerator has little impact on !"�#. 356 

Therefore, the fluctuation of C��  has little effect on the yearly heat collection 357 

(
8760

, ,
0

col i DN i
i

Iη
=
∑ � ). For instance, the heat for Phoenix in the regenerative case is 1642.02 358 

and 1084.82 kWh/m2·year by PTC and LFC, respectively. It is 1644.48 and 1086.00 359 

kWh/m2
·year in non-recuperated case. The difference is slight. !"�#,�  in Eq. (49) can 360 

be the hourly collector efficiency independent of the regenerator.  361 

4.2. Thermo-economic performance using pentane 362 

4.2.1. Cost of extra HX area 363 

  Employing regenerator will inevitably elevate the total HX cost. Large HX cost is 364 

mainly contributed by its area and hence total amount of materials in use [59, 60]. All 365 

the adopted HXs are single shell and double tube pass HXs. Shell and tube HX shows 366 

great flexibility in terms of heat power transferred between hot and cold fluids, high 367 

operating pressure and temperature, great availability of construction materials, high 368 

value of both heat power transferred/weight and volume ratio and finally low costs 369 

[61, 62]. Hot fluid is located in shell side and cold fluid is in tube side. The tube outer 370 

diameter of 19 mm and tube pitch of 25 mm are adopted, which are common in 371 

industrial production. Over design area of approximately 5~10% is ensured. Flow 372 
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chart of the HX area calculation is exhibited in Fig. B.1. 373 

  Key parameters of the HXs in rated conditions are indexed in Table 10. As the inlet 374 

pressure of HX2 at shell side (P12) is low, the enhancement in heat transfer by 375 

increasing the flow rate is limited by pressure drop, and thus rod baffle is adopted in 376 

HX2 to reduce the vibration and the flow resistance of the shell side fluid. The design 377 

inlet mass flow rate and temperature of HX1 at the tube side increases after 378 

introducing HX3. Accordingly, some design parameters of HX1 are altered slightly 379 

but its area can meet the heat transfer requirement in regenerative situation. In 380 

addition, the heat duty of HX2 decreases because part of the condensing heat duty is 381 

shared by HX3. As a result, HX2 area is reduced. The total cost of HXs is increased 382 

by 0.563 million USD after employing the regenerator. 383 

4.2.2. Reduced cost of collectors and the net profit 384 

  Direct normal irradiance in a typical meteorological day (vernal equinox day) 385 

derived from EnergyPlus [63] is graphed in Fig. 7. Phoenix is exemplified and the 386 

collector efficiency is also exhibited. !�G�  is considerably higher than !)j� . In 387 

practical operation, simultaneous heat collection and power conversion mode switches 388 

on when 
�� ≥400 W/m2 in the morning, and it ceases when the last hourly 389 


�� ≥400 W/m2 appears. The system works in this mode from 9:00 to 18:00 and 390 

RC ORCt −  is 9 h. According to the data in EnergyPlus, the yearly RC ORCt −  of 3056, 2515, 391 

2333, 2020, 2792 and 1726 h can be determined for Phoenix, Sacramento, Cape Town, 392 

Canberra, Lhasa and Delingha, respectively.  393 

  The reduced aperture area (colA∆ ) and net profits are depicted in Fig. 8. ∆9)j� is 394 
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appreciably larger than ∆9�G� on account of the lower !)j� and less 
8760

, ,
0

col i DN i
i

Iη
=
∑ � . 395 

colA∆  in Delingha is the largest owing to the least 
8760

, ,
0

col i DN i
i

Iη
=
∑ � . Given the region, 396 

∆�)j�  is slightly higher than ∆��G� , which indicates that regenerator is more 397 

beneficial in the LFC-based system. ∆� is the greatest in Delingha, where the direct 398 

radiation resource is the least among the six regions. On the contrary, the lowest P∆  399 

is contributed by the most abundant solar irradiance region of Phoenix. It is more 400 

profitable to install regenerator in the territories with weaker solar radiation resources. 401 

4.3. Thermodynamic performance using other five ORC fluids 402 

4.3.1. Thermodynamic performance under nominal condition 403 

  Parameters under nominal conditions for the five ORC fluids (benzene, 404 

cyclohexane, R1233zd-E, MM and R365mfc) are provided in Table 11. Compared 405 

with those of non-recuperated situations, !	�� increases by 4.62%, 12.83%, 0.40%, 406 

39.59% and 18.36% for benzene, cyclohexane, R1233zd-E, MM and R365mfc, 407 

respectively. The corresponding variations of !��o	�� are -0.22%, 7.91%, 0.20%, 408 

20.66% and 10.66%. Regenerator has no effect on �� �� and �� 	�� for benzene but 409 

results in lower !��o	�� and higher ���N. In particular, 
� �� decreases and 
� 	�� 410 

elevates except for benzene. The wet steam turbine is less efficient than the ORC 411 

turbine and a lower 
� �� might be beneficial. �� 	�� climbs by 0.28, 0.01, 0.82 and 412 

0.40 MW in sequence for the rest four fluids and the corresponding ���N declines 413 

by 2.88, 0.09, 7.25 and 4.12 MW. The data show that thermodynamic performance is 414 

promoted significantly by using MM, while the improvements are appreciable for 415 
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cyclohexane and R365mfc. The influence is minor for R1233zd-E and even negative 416 

for benzene. 417 

4.3.2. Thermodynamic performance in heat discharge process 418 

  T-Q diagrams during heat discharge are depicted in Fig. 9. As a hot side fluid, water 419 

leaves HTA at a constant temperature (250 °C), but reaches LTA inlet at different 420 

temperatures. The heat transfer is related to the characteristics of ORC fluids. ∆CN�� 421 

appears at the saturated liquid state for benzene and cyclohexane, while it takes place 422 

at the cold fluid inlet for R1233zd-E, MM and R365mfc. The reason is that the latent 423 

heat values of benzene and cyclohexane are larger, and most of the absorbed heat is 424 

used for evaporation. It results in a relatively high average temperature of the hot side 425 

fluid. For instance, the ratio of specific latent heat in the vaporization process to the 426 

total absorbed heat (i.e., ℎ@( − ℎ@;) is 59.3% for benzene, while it is only 42.5% for 427 

pentane. 428 

  The increased storage capacity is provided in Table 12. �	�� is shortened by 0.76, 429 

0.48, 0.01, 1.78 and 0.77 h in sequence to complete the discharge process by the 430 

employment of regenerator. The consumed work by P3 (�� $�) and the power loss in 431 

the throttling process (�� #�%%) are greater in the regenerative case (except for �� $� 432 

using cyclohexane) mainly due to the increased 
� ��,�. !	��,� increases by 4.50%, 433 

13.09%, 0.41%, 39.05% and 18.62% after adopting the regenerator. �� climbs by 434 

156.1 kWh for cyclohexane, 4.6 kWh for R1233zd-E and 554.6 kWh for R365mfc, 435 

while it declines by 4737.8 kWh for benzene and 969.7 kWh for MM. The decreased 436 

�� can be explained by the parameters in Tables 9 and 13. CA is elevated by the 437 



21 

 

regenerator (△ CA is 18.05 °C for benzene and 31.64 °C for pentane). The total heat 438 

released during heat discharge (��) is thereby reduced. Due to the trade-off between 439 

△ !	��,�  and ∆�� , ��  might drop. The above results demonstrate that the 440 

regenerator improves thermodynamic indexes significantly in discharge process for 441 

cyclohexane and R365mfc, but affects R1233zd-E marginally. Though the regenerator 442 

elevates !	��,� for benzene and MM, its negative effects on �� is evident. 443 

4.4. Thermo-economic performance using the five ORC fluids 444 

  Parameters of the HXs without/with regenerator are displayed in Tables 15 and 16. 445 

Compared with the corresponding data in Table 15, HX1 area in Table 16 keeps 446 

constant while HX2 area decreases. Notably, as the hot fluid inlet of HX3 (�@@) using 447 

MM is low (only 9 kPa), rod baffle will be required to reduce flow resistance if the 448 

hot fluid is located in shell side, leading to dramatically huge shell size and expensive 449 

HX. To avoid such situation, cold fluid is located in shell side because the velocity of 450 

liquid is much lower than that of vapor, which leads to large allowable pressure drop. 451 

Single baffle is employed to guarantee high heat transfer coefficient and acceptable 452 

HX area. Conversely, HX3 area for R1233zd-E is small due to the low heat duty and 453 

high overall heat transfer coefficient. The total area in Table 16 expands by 27.02%, 454 

43.35%, -5.86%, 158.14% and 27.32% successively. The corresponding extra initial 455 

investment in HXs is 0.812, 1.073, 0.020, 3.240 and 0.674 million USD. Though total 456 

area reduces for R1233zd-E, more initial investment is required due to the extra shell 457 

of HX3, accessory equipment and the overall manufacturing cost. 458 

  colA∆  and the net profits for benzene are depicted in Fig. 10. It's worth noting that 459 
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∆��G� and ∆�)j� are negative in all the regions (-5.61~-4.31 million USD), which 460 

manifests that the regenerator has adverse economic effect. Similar with Fig. 8, both 461 

PTCA∆  and LFCA∆  in Delingha is the most striking, and the least is in Phoenix. In 462 

addition, given the territory, the difference between ∆��G�  and ∆�)j�  is not 463 

significant in Figs. 8 and 10. Therefore, only PTC is exemplified in Figs. 11 and 12, 464 

which show PTCA∆  and the net profits for the rest four fluids. It is observed that 465 

PTCA∆  for MM is the most (4.33~6.76×104 m2), followed by R365mfc and 466 

cyclohexane. R365mfc exhibits the maximum net profits (4.19~6.48 million USD) , 467 

followed by MM (2.82~6.95 million USD). The least PTCA∆  of approximately 468 

0.05~0.08×104 m2 and the lowest net profits of 0.07~0.13 million USD are achieved 469 

for R1233zd-E, which indicates that the regenerator has little benefits for R1233zd-E. 470 

P∆  is the maximum in relatively low irradiation district of Delingha while the 471 

minimum appears in Phoenix. It follows that the regenerator produces less profits in 472 

areas with richer solar radiation resources. 473 

5. Conclusion 474 

  The effect of regenerator on the DSG solar power system characterized by unique 475 

prolonged thermal storage and stable power conversion is investigated. The 476 

performances in the nominal condition and the discharge process are analyzed. 477 

Following conclusions can be drawn: 478 

   (1) In the rated condition, heat-power conversion efficiency may be raised by 479 

using regenerator. The increment is the most appreciable for MM, followed by 480 

pentane. However, the effect is minor for R1233zd-E and even negative for benzene 481 
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because !��o	�� is decreased by 0.22% and the heat input of the power block is 482 

increased by 0.08 MW. 483 

  (2) In the discharge process, the extent of the discharge efficiency enhancement is 484 

similar with that of ORC efficiency in the rated condition. �	�� is shortened by 0.87, 485 

0.76, 0.48, 0.01, 1.78 and 0.77 h in sequence for pentane, benzene, cyclohexane, 486 

R1233zd-E, MM and R365mfc due to the regenerator. Heat storage capacity declines 487 

by 4737.8 kWh for benzene, while the fluctuation is less than 1000 kWh for the other 488 

fluids. 489 

  (3) The required HX1 area keeps constant but the HX2 area decreases when the 490 

regenerator is introduced. MM offers the maximum extra initial investment in HXs 491 

and the highest extra aperture area, while the minimum investment and the lowest 492 

aperture area is achieved for R1233zd-E. ∆�)j� is slightly higher than ∆��G�, which 493 

indicates that the regenerator is more advantageous in the LFC-based system. 494 

  (4) R365mfc provides the maximum ∆� (4.19~6.48 million USD), followed by 495 

MM and pentane. Notably, the regenerator has an inappreciable effect for R1233zd-E 496 

and negative impact (∆� is -5.61~-4.31 million USD) for benzene. Finally, it is less 497 

profitable to employ regenerator in territories with more abundant direct radiation 498 

resources such as Phoenix. 499 

 500 
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 509 

Appendix A. Calculation of the incidence angle 510 

When the PTC is north-south oriented with east-west tracking, the incidence angle 511 

] is calculated by [29] 512 

Z[\ ] = <1 − Z[\E �% Z[\E�%           (A.1) 513 

where �% is the solar altitude angle (°); �% is the solar azimuth angle (°). 514 

When the LFC is north-south oriented with east-west tracking, longitudinal 515 

incidence angle ]# and transversal incidence angle ]� are defined as [30] 516 

   Z[\ ]# = <1 − Z[\E �% Z[\E�%            (A.2) 517 

�:_ ]� = \^_ �%/ �:_ �%              (A.3) 518 

Definition of different angles are illustrated in Fig. A.1. For horizontal PTCs and 519 

LFCs, �% and �% are expressed by [31] 520 

\^_ �% = \^_ � \^_ � + Z[\ � Z[\ � Z[\ �      (A.4) 521 

Z[\ �% = �\^_ �% \^_ � − \^_ ��/�Z[\ �% Z[\ ��   (A.5) 522 

where � is the geographic latitude (°), −90° ≤ � ≤ 90°; � is the solar declination 523 

(°), −23.45° ≤ � ≤ 23.45°; � is the solar hour angle (°). 524 

� is defined by 525 
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 � = 23.45 \^_�360 EsFK�
�A; �      (A.6) 526 

where n represents the nth day in a year, 1 ≤ n ≤ 365. 527 

� is expressed by 528 

 � = 0.25�9¡C − 720�       (A.7) 529 

where 9¡C is the apparent solar time (min) and is determined by 530 

9¡C = 6¡C + �C − 4�¡6 − 66�      (A.8) 531 

where 6¡C is the local standard time (min); �C is the equation of time (min); ¡6 is 532 

the standard meridian for the local time zone (°); 66 is the local longitude (°), 533 

−180° ≤ 66 ≤ 180°. 534 

�C is determined by 535 

  �C = 9.87 \^_ 2¤ − 7.53 Z[\ ¤ − 1.5 \^_ ¤     (A.9) 536 

 ¤ = 360�_ − 81�/365       (A.10) 537 

 538 

Fig. A.1. Definition of the angles (for a collector aligned horizontally and in parallel 539 

to the North-South axis): solar altitude angle – �% , solar azimuth angle – �% , 540 

longitudinal incidence angle – ]#, transversal incidence angle – ]�.  541 
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 542 

Appendix B. HX area  543 

HTRI software, which is considered to be the industry’s most advanced thermal 544 

process design and simulation software [33], is used to estimate the heat transfer area. 545 

The heat transfer process is discretized into many subsections in which the 546 

thermodynamic properties of the working fluid are assumed to be constant. 547 

B.1 Single-phase heat transfer 548 

  The required area in the ^th subsection is expressed as 549 

9� = TH¥H△GH                           (B.1) 550 

where �  is the heat duty in the ^ th subsection; ¦  the overall heat transfer 551 

coefficient; △ C is the log-mean temperature difference. 552 

   ¦� is calculated as 553 

@
¥H = @

§W,H + ¨
© + @

§2,H                       (B.2) 554 

where � is the convection heat transfer coefficient of the fluid and subscript h and c 555 

represent the hot and cool fluid, respectively; � and ª are the thickness and the 556 

thermal conductivity of the tube wall. � is 2 mm in this work. 557 

  △ C� can be written as 558 

△ C� = �GW,H«foG2,H«f�o�GW,HoG2,H�
¬­ ®�uW,H«f¯u2,H«fuW,H¯u2,H °                   (B.3) 559 

  The convection heat transfer coefficient of the tube side is given by the Petuk-hov 560 

correlation [34] 561 

�����,� = ©
�H ± ²�·��·��

@E.�³²�´a.n®��J|o@°K@.(�µ               (B.4) 562 
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where ¶ is the Darcy resistance coefficient, and it is calculated by  563 

¶ = @
�@.sE#{��o@.AF�J                      (B.5) 564 

  The equation of the Reynolds number is: 565 

·¸� = �MLUz,H⋅�Hº                          (B.6) 566 

where »����,� is the tubeside velocity, being expressed as: 567 

»����,� = N�
¼H⋅�⋅½⋅4HJ

p
                     (B.7) 568 

where ¾ is the number of the tubes. 569 

  The equation of the Prandtl number is: 570 

�¿ = "À⋅¼H⋅º
©                       (B.8) 571 

The convection heat transfer coefficient for the shell side is [35]: 572 

 �%R�##,� = 0.36 ³ ©
�.Wz,,´ ³�.Wz,,∙�.Wz,,º ´(.;; ⋅ �¿f| ³ º

ºMLUz´(.@F
     (B.9) 573 

  B.2 Binary-phase heat transfer 574 

  For evaporation process, the coefficient in binary-phase region developed by 575 

Gungor and Winterton is used [36]  576 

¦� = 0.023 ÁÂ�@oÃ��Ä⋅Å Æ(.s �¿(.F ª
� Ç1 + 3000¤[(.sA + 1.12 ³ Ã

@oÃ´(.�; ³¼,¼0´(.F@È  (B.10) 577 

where ¤[ is the boiling number: 578 

¤[ = +
Â⋅�R..oR.,�                      (B.11) 579 

  For condensation process, the coefficient in binary-phase region is given by Shah 580 

[37]  581 

¦" = 0.023 ÁÂ�@oÃ��Ä⋅Å Æ(.s �¿(.F ª
� Á�1 − É�(.s + �.sÃa.ÊË�@oÃ�a.ap

��a.|� Æ         (B.12) 582 
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 Input: 1) Process conditions: mass flow 

rate,  inlet and outlet weight fraction 

vapor,  inlet and outlet temperatures, 

inlet pressures, fouling resistance; 2) 

Hot and cold fluid properties (derived 

from REFPROP or AP1700)

Calculate per i-section: △Ti, αh,i, αc,i, αtube,i, αshell,i, Nui, Rei, 

Ui, Ub, Uc

If over design of total area is approximately 5~10%

Calculate HX area of Asingle-phase and Abinary-phase

No

Yes

Assume: 1) Shell geometry: type, 

inner diameter;

      2) Baffle geometry: type, spacing;

3) Tube geometry: length

Output: Total HX area

 583 

                 Fig. B.1. Flow chart of the HX area calculation. 584 
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Table 16. Parameters of the HXs with regenerator for the five ORC fluids. 813 
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Fig. 1. Overview of the work. 816 
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Fig. 3. Flow diagrams for the two modes: (a) Mode 1; (b) Mode 2.  831 
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Fig. 4. Flow chart of the thermodynamic calculation.  833 
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Fig. 7. 
�� and !"�# in a typical meteorological day in Phoenix. 840 
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 Fig. 8. Reduced aperture area and the net profits for pentane.  842 
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Fig. 9. T-Q diagrams in HX1: (a) water-benzene; 853 

(b) water- cyclohexane; (c) water-R1233zd-E; (d) water-MM; (e) water-R365mfc 854 
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 Fig. 10. Reduced aperture area and the net profits for benzene. 856 
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Fig. 11. Reduced aperture area and the net profits for cyclohexane and R1233zd-E. 858 
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 Fig. 12. Reduced aperture area and the net profits for MM and R365mfc. 860 

 861 

 862 

Table 1. Summary of ORC with regenerator. 863 

 864 

 865 

 866 

 867 

              Application 

 Results 

Solar 

energy 

Flue gas/ Hot 
stream heat 
recovery 

Waste heat 

recovery 
Geothermal 

 
 
 

Improvements of 
thermodynamic 

indicators 

Thermal  
efficiency 

[3] [5] 

[7]   
[16] [17]  [19][20] [18] 

Exergy 
efficiency/  

Exergy 
destruction 

[3] [16] [12] [20] [18] 

Net power 
output 

[4] [6]  [16] [12] [19] [18] 

 
 

Improvements of 
thermo-economic  

indicators 

 Total cost 
rate 

   [9] 

Levelized 
energy 
cost 

[4]   [12] [18] 

Annual 
benefit 

[15]    

 Unfavorable in 
some certain 
conditions 

  
 [11] [14] [8] [10]  

 
 

Adverse/ No 
impact 

Net power 
output 

 [13] [14] [18]  

Levelized 
energy 
cost 

 [11] [16]   
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 868 

Table 2. Specific parameters of PTCs and LFCs in SAM. 869 

Terms PTCs LFCs 

Length, 6 150 m 44.8 m 

Aperture reflective area, 9"�# 817.5 m2 513.6 m2 

Peak optical efficiency, !�$�,( 76.77% 64.31% 

Heat loss coefficient, a( 4.05 

Heat loss coefficient, a@ 0.247 

Heat loss coefficient, aE -0.00146 

Heat loss coefficient, a� 5.65e-006 

Heat loss coefficient, aF 7.62e-008 

Heat loss coefficient, a; -1.7 

Heat loss coefficient, aA 0.0125 

 870 

Table 3. Incidence angle coefficients in SAM. 871 

c( 1.00 c(,¬c­Í 1.003 c(,ÎÏÐ­d 0.9896 

c@ 8.84e-4 c@,¬c­Í -0.00394 c@,ÎÏÐ­d 7.68e-4 

cE -5.37e-5 cE,¬c­Í 1.64e-4 cE,ÎÏÐ­d -2.20e-5 

  c�,¬c­Í -8.74e-6 c�,ÎÏÐ­d -1.24e-6 

  cF,¬c­Í 6.70e-8 cF,ÎÏÐ­d 0 

 872 

 873 
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 874 

Table 4. Values of constants for HX [40].  875 

Coeffi 

-cient 
ÑÒ ÑÓ ÑÔ ÕÒ ÕÓ ÕÔ ÖÒ ÖÓ ×Ø 

Value 4.3247 -0.303 0.1634 0.0388 -0.11272 0.08183 1.63 1.66 1.4 

  876 

Table 5. Specific parameters for the DSG system. 877 

Term Value Term Value 

Steam turbine efficiency, εÚÛ 0.75 
ORC condensation  

temperature, C@� 
35 °C 

ORC turbine efficiency, l	G 0.82 Price of PTC [42] 170 USD/m2 

Generator efficiency, l{ 0.95 Price of LFC [43] 120 USD/m2 

Pump isentropic efficiency, l� 0.75 Price of electricity [44] 
0.184 

USD/kWh 

Minimum temperature 

difference, ∆CN�� 
10 °C 

Reference ambient 

temperature,  C�   
25 °C 

Total volume of HTA 2500 m3 Reference wind speed, =>,��Ü 5 m/s 

Total volume of LTA 2500 m3 
Reference direct normal solar 

irradiation, 
��,��Ü 
800 W/m2 

Plant life time, 6C 20 years 
Steam turbine inlet 

temperature, C@ 
250 °C 

Heat discharge temperature, C; 250 °C 
Steam turbine outlet  

pressure, �E 
0.817 MPa 

 878 

 879 

 880 
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 881 

Table 6. Parameters of the bottom cycle under nominal condition with regenerator. 882 

Working 

fluid 

State 

point 

Pressure 

(kPa) 

Temperature 

(℃) 
Quality (%) 

 

 

Pentane 

10 1928.8 161.28 100 

11 97.70 87.11 superheated vapor 

12 97.70 46.07 superheated vapor 

13 97.70 35 0 

14 1928.8 36.07 subcooled liquid 

15 1928.8 67.71 subcooled liquid 

 883 

Table 7. Thermodynamic performance under rated conditions without/with 884 

regenerator. 885 

   Parameter 
 

   Case 

ÞßàÕ 

(%) 

ÞàÕ 

(%) 

ÞàÕoßàÕ 

(%) 

á� àÕ 

(MW) 

á� ßàÕ 

(MW) 

â� àÕ 

(kg/s) 

â� ßàÕ 

(kg/s) 

ãäåâ 

(MW) 

 Without 
regenerator 

15.78 9.77 23.92 4.08 5.92 20.18 68.67 41.81 

With 
regenerator 

18.37 9.77 26.25 3.72 6.28 18.39 72.87 38.10 

 886 

Table 8. Thermodynamic performance of the discharge process without/with 887 

regenerator.  888 

  Parameter           

  Case 

�	�� 

(h) 


� ��,� 

(kg/s) 


� 	��,� 

(kg/s) 

�� $� 

(kW) 

�� #�%% 

 (kW) 

!	��,� 

(%) 

�� 

(kWh) 

l� 

(%) 

Without 
regenerator  

With 
regenerator 

13.16 

12.29 

42.17 

45.13 

68.67 

72.87 

224.88 

243.13 

169.08 

183.24 

15.18 

17.66 

74906.2 

74191.6 

— 

61.99 
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 889 

Table 9. Parameter distribution of hot side water in heat discharge process for pentane. 890 

    Parameter 

  Case 

State 

point 
Pressure (kPa) Temperature (℃) Quality (%) 

 

 

Without/ with 

regenerator 

5 3976.2/ 3976.2 250/ 250 0/ 0 

6 3976.2/ 3976.2 46.07/ 77.71 
subcooled liquid/ 

subcooled liquid 

7 10.13/ 43.18 46.07/ 77.71 0.14/ 0.14 

8 10.13/ 43.18 46.07/ 77.71 0/ 0 

9 3976.2/ 3976.2 46.52/ 78.24 
subcooled liquid/ 

subcooled liquid 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 
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Table 10. Parameters of the HXs in design condition without/with regenerator. 904 

 905 

        Process data 

Without       

regenerator  

     With     

  regenerator 

HX1 HX2 HX1   HX2 HX3 

Shell side heat 

transfer coefficient, kW/m2·K 
17.17 0.99 17.16   1.15 0.46 

Shell ID, mm 1600 2100 1600   2000 1700 

Shell side velocity, m/s 4.87 6.78 4.17   6.42 42.21 

Tube side heat 

transfer coefficient, kW/m2·K 
2.28 13.81 2.19   13.72 0.91 

Tube length, m 13 14 13     14 10 

Tube side velocity, m/s 1.81 3.99 1.66    3.96 0.48 

Tube count 2550 4230 2550    3758 2894 

Overall heat transfer  

coefficient, kW/m2·K 
1.041 0.689 1.016   0.768 0.257 

Heat duty, MW 36.83 31.38 34.04   27.69  5.62 

Mean temperature 

difference, ℃ 
19.7 14.3 19.0     12.6 14.0 

Area, m2 1950 3490 1950    3102 1694 

Over design, % 8.58 9.72 10.66    8.73 8.68 

Cost, million USD 0.732 1.236 0.732   1.119 0.680 
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 906 

 907 

 908 

Table 11. Nominal conditions without/with regenerator for the five ORC fluids. 909 

Fluid 
ÞßàÕ 

(%) 

ÞàÕoßàÕ 

(%) 

á� àÕ 

(MW) 

á� ßàÕ 

(MW) 

â� àÕ 

(kg/s) 

â� ßàÕ 

(kg/s) 

ãäåâ 

(MW) 

Benzene 
(without) 

18.39 27.08 3.61 6.39 17.83 60.54 36.93 

Benzene 
(with) 

19.24 27.02 3.61 6.39 17.87 60.46 37.01 

Cyclohexane 
(without) 

17.46 25.42 3.84 6.16 18.99 61.94 39.34 

Cyclohexane 
(with) 

19.70 27.43 3.56 6.44 17.60 64.76 36.46 

R1233zd-E 
(without) 

15.13 24.54 4.60 5.40 19.67 152.12 40.75 

R1233zd-E 
(with) 

15.19 24.59 4.59 5.41 19.63 152.38 40.66 

MM 
(without) 

14.07 23.62 4.78 5.22 20.44 87.82 42.34 

MM 
(with) 

19.64 28.50 3.96 6.04 16.94 101.62 35.09 

R365mfc 
(without) 

15.25 23.45 4.16 5.84 20.59 129.52 42.65 

R365mfc 
(with) 

18.05 25.95 3.76 6.24 18.60 138.48 38.53 

 910 

 911 

 912 

 913 

 914 

 915 
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 916 

Table 12. Discharge process for the five ORC fluids. 917 

Working 

fluid 

æßàÕ 

(h) 

â� àÕ,ç 

(kg/s) 

á� èÔ 

(kW) 

á� éåêê 

 (kW) 

ÞßàÕ,ç 

(%) 

dW  

(kWh) 

ëì 

(%) 

Benzene 
(without) 
Benzene 
(with) 

Cyclohexane 
(without) 

Cyclohexane 
(with) 

R1233zd-E 
(without) 

R1233zd-E 
 (with) 

MM  
(without) 

MM  
(with) 

R365mfc 
(without) 
R365mfc 

(with) 

10.89 

10.13 

11.17 

10.69 

12.56 

12.55 

12.15 

10.37 

12.90 

12.13 

50.96 

54.77 

49.65 

51.91 

42.58 

42.65 

44.07 

51.61 

43.00 

45.73 

287.92 

291.94 

281.35 

280.31 

227.11 

228.02 

224.93 

278.69 

244.81 

247.55 

205.57 

221.40 

194.53 

208.68 

170.33 

171.02 

176.50 

208.50 

172.00 

184.75 

17.57 

18.36 

16.66 

18.84 

14.49 

14.55 

13.47 

18.73 

14.61 

17.33 

66474.2 

61736.4 

65677.8 

65833.9 

64949.3 

64953.9 

60653.0 

59683.3 

72117.0 

72671.6 

— 

44.97 

— 

60.95 

— 

6.48 

— 

71.75 

— 

61.18 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 
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 926 

Table 13. Parameter distribution of hot side water in the discharge process for 927 

benzene. 928 

 929 

Table 14. Parameters of the bottom cycle under design condition with regenerator. 930 

 931 

 932 

 933 

 934 

     Parameter   

   Case 

State 

point 
Pressure (kPa) 

Temperature 

(℃) 
Quality (%) 

 

 Without/with 

regenerator 

5 3976.2/3976.2 250/250 0/0 

6 3976.2/3976.2 95.62/113.67 
subcooled liquid/ 

subcooled liquid 

7 86.56/161.97 95.62/113.67 0.13/0.12 

8 86.56/161.97 95.62/113.67 0/0 

9 3976.2/3976.2 96.26/114.28 
subcooled liquid/ 

subcooled liquid 

Working 

fluid 

State 

point 

Pressure 

(kPa) 

Temperature 

(℃) 
Quality (%) 

 

 

Benzene 

 

10 728.08 161.28 100 

11 19.79 66.65 superheated vapor 

12 19.79 45.33 superheated vapor 

13 19.79 35 0 

14 728.08 35.33 subcooled liquid 

15 728.08 49.42 subcooled liquid 
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 935 

 936 

Table 15. Parameters of the HXs without regenerator for the five ORC fluids. 937 

    Process                 
        
       data 

Working       

  fluid 

Overall heat 

transfer  

coefficient, 

kW/m2·K 

Velocity, 

m/s 

(shell/ 

tube side) 

Heat 

duty, 

MW 

Mean 

temperature 

difference, 

oC 

Area

, m2 

Over 

design

, % 

Cost, 

million 

USD 

Benzen HX1 0.461 2.33/ 1.85 33.35 15.1 5198 8.74 1.671 

-e HX2 0.729 14.49/4.24 27.87 12.9 3151 6.15 1.134 

Cycloh

-exane 

HX1 0.758 3.63/ 3.30 34.65 16.3 2989 6.57 1.031 

HX2 0.120 41.22/2.86 16.76 34.6 4465 10.76 1.533 

 
R1233
zd-E 

HX1 1.163 5.14/ 1.13 35.45 24.5 1340 7.81 0.554 

HX2 0.679 2.24/ 4.14 30.83 13.0 3685 5.79 1.295 

MM 
HX1 0.768 4.78/ 3.59 36.77 19.8 2613 8.34 0.923 

HX2 0.513 31.43/4.34 31.31 16.7 3919 7.52 1.366 

R365m

-fc 

HX1 1.030 5.42/ 1.68 37.57 20.9 1845 5.96 0.701 

HX2 0.570 3.95/ 3.58 32.01 14.4 4267 9.30 1.472 

 938 

 939 

 940 

 941 

 942 

 943 
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 944 

Table 16. Parameters of the HXs with regenerator for the five ORC fluids. 945 

    Process                 
        
       data 

Working       

  fluid 

Overall heat 

transfer  

coefficient, 

kW/m2·K 

Velocity, 

m/s 

(shell/ 

tube side) 

Heat 

duty, 

MW 

Mean 

temperature 

difference, 

oC 

Area, 

m2 

Over 

design

, % 

Cost, 

million 

USD 

Benzen 

-e 

HX1 0.464 2.27/1.94 32.66 14.3 5198 5.96 1.671 

HX2 0.818 15.33/4.41 26.31 12.7 2671 5.12 0.989 

HX3 0.070 34.29/0.26 1.44 8.0 2736 6.95 0.957 

Cycloh

-exane 

HX1 0.782 3.21/3.79 32.11 14.7 2989 6.68 1.031 

HX2 0.814 28.72/3.92 25.85 12.4 2725 6.36 1.005 

HX3 0.060 41.90/0.16 4.19 14.8 4971 5.53 1.601 

 
 

R1233
zd-E 

HX1 1.163 5.10/1.11 35.38 24.5 1340 8.03 0.554 

HX2 0.756 4.33/4.88 29.80 12.5 3327 5.95 1.187 

HX3 0.421 37.14/1.07 0.13 10.1 63.3 103.4 0.129 

MM 

HX1 0.827 3.65/ 5.49 30.57 15.1 2613 6.64 0.923 

HX2 0.663 24.68/3.69 24.38 12.6 3151 7.67 1.134 

HX3 0.077 0.06/45.9 12.14 15.4 11098 8.58 3.473 

R365 

-mfc 

HX1 1.085 4.68/1.97 33.94 18.2 1845 7.33 0.701 

HX2 0.677 3.29/ 3.54 35.13 12.5 3513 6.76 1.243 

HX3 0.193 31.06/0.28 6.33 14.4 2424 6.63 0.903 

         

 946 
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Nomenclature     Abbreviation 

A 

a 

aperture/heat exchanger area, m2  

heat loss coefficient 

CEPCI 

 

Chemical Engineering Plant 

Cost Index 

AST apparent solar time, min DSG direct steam generation 

B coefficient HTA high temperature accumulator 

Bo boiling number HX heat exchanger 

C cost, $ /coefficient IAM incidence angle modifier 

c incidence angle coefficient LFC linear Fresnel collector 

Z$ specific heat capacity, kJ/(kg·K) LT lifetime 

D tube diameter LTA low temperature accumulator 

ET equation of time, min ORC organic Rankine cycle 

d hydraulic diameter, m P pump 

F correction factor PTC parabolic trough collector 

f Darcy resistance coefficient RC steam Rankine cycle 

G mass flux, kg/(m2·s) RC-ORC steam-organic Rankine cycle 

h enthalpy, kJ/kg RC steam Rankine cycle 

I solar irradiance, W/m2 SAM System Advisor Model 

K incidence angle modifier factor TV throttle valve 

LL longitude of local area, ° V valve 

LST local standard time, min ΔT temperature difference 

M mass, kg Subscript  



62 

 


�  mass flow rate, kg/s 0…15 number 

n nth day of a year a ambient 

P price/profit, $ av average 

p pressure, MPa b boiling, binary 

Pr Prandtl number BM  bare module 

Q heat, kJ c condensation 

q receiver heat loss, W/m/average 

imposed wall heat flux, kW/m2 

col 

d 

collector 

heat discharge 

Re Reynolds number DN direct normal 

SL 

 

T 

standard meridian for local time 

zone, ° 

temperature, °C 

e 

g 

in 

electricity 

generator 

inlet 

t time duration, h l liquid / longitudinal 

U heat transfer coefficient m mean 

» flow velocity, m/s M material 

v speed, m/s min minimum 

W work, kWh net net power 

��  work, kW nom nominal 

Y yield, $ OT ORC turbine 

� altitude angle, °/convection heat 

transfer coefficient, W/ (m2·K) 

opt 

out 

optical 

outlet 

� azimuth angle, ° p pressure 
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ª thermal conductivity, W/(m·K) r regenerator 

� solar declination, °/thickness, mm rated rated condition 

l device efficiency, % ref reference 

! efficiency, % s solar, single-phase 

] incidence angle, ° ST steam turbine 

� geographic latitude, ° t transverse angle 

Å kinematic viscosity, m2/s v vapor 

Ä density, kg/m3 w water/wind 

� solar hour angle, °   

É quality   

 948 



1) Temperature difference between the two accumulators is decreased by the regenerator. 

2) Solar aperture area and the heat discharge period are reduced for all the six fluids. 

3) Storage capacity is increased for cyclohexane, R1233zd-E and R365mfc.  

4) Cascade cycle efficiency is decreased for benzene. 

5) Net profits of +6.48 and -5.61 million USD are achieved for R365mfc and benzene. 
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