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As installed wind generation capacities increase, there is a need to model variability in wind generation
in detail to analyse its impacts on power systems. Utilization of meteorological reanalysis data and
stochastic simulation are possible approaches for modelling this variability. In this paper, a combination
of these two approaches is used to model wind generation variability. Parameters for the model are
determined based on measured wind speed data. The model is used to simulate wind generation from
the level of a single offshore wind power plant to the aggregate onshore wind generation of western
Denmark. The simulations are compared to two years of generation measurements on 15 min resolution.

Igﬁords‘ The results indicate that the model, combining reanalysis data and stochastic simulation, can successfully
Reanalysis model wind generation variability on different geographical aggregation levels on sub-hourly resolution.
Simulation It is shown that the addition of stochastic simulation to reanalysis data is required when modelling
Stochastic offshore wind generation and when analysing onshore wind in small geographical regions.

Variability © 2020 Elsevier Ltd. All rights reserved.
Wind

1. Introduction

Wind power has grown rapidly over the last decade and is ex-
pected to grow even more in the future. Wind generation is
dependent on weather patterns and thus variable, which can cause
challenges to the planning and operation of power systems.
Consequently, understanding the behaviour of wind generation is
crucial in the analysis of modern power systems.

Wind generation variability needs to be modelled on different
geographical and temporal resolutions. Modelling of large
geographical areas is required, e.g., in interconnection expansion
planning, where wind generation in multiple countries is analysed
[1]. While hourly data may be sufficient in some applications,
higher temporal resolution is required, e.g., in voltage stability
studies, where short-term variability can affect the reactive power
support that wind turbines can provide [2]. In addition to model-
ling the overall probability distribution of wind generation accu-
rately, high temporal resolution applications require simulations
where also the ramp behaviour of wind generation is well
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represented.

Two popular approaches for modelling the variability in wind
are stochastic time series simulation and meteorological reanalysis
techniques. Stochastic simulations that replicate the important
spatiotemporal dependencies in wind speed or generation can be
carried out by fitting a time series model to available measure-
ments and simulating data from the model [3—6]. While stochastic
time series simulations can represent the important statistical
characteristics of wind generation, the simulations do not relate to
actual historical weather patterns, and behaviour in specific cases
cannot be verified directly. In addition, while modelling locations
without measurements is possible [6], assumptions on how cor-
relations depend on geographical distances are usually required,
and such dependencies may not be generally applicable.

The reanalysis approach is based on past weather but can be
applied on a specific set of current or future wind installations
[7—10]. The approach is straightforward in application as long as
reanalysis data are available. However, the approach depends on
wind speed distributions and spatiotemporal dependencies being
modelled accurately in the meteorological data set used as input.
The reanalysis approach can capture important spatiotemporal
dependencies in large-scale wind generation; however, wind var-
iations are smoothened because of spatial and temporal averaging
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effects in mesoscale models [11,12]. In addition, the temporal res-
olution of the reanalysis data, e.g., hourly, may not be high enough
for power system applications.

Models for building wind speed time series sampled with a high
frequency that capture the short- and long-term wind speed vari-
ability have been proposed in the literature and some are compared
in Ref. [13]. In Ref. [14], measured time series averaged every
10—15 min are coupled with realistic simulated turbulence
modelled using a turbulence spectrum. Sub-hourly variability of
wind speed is modelled using time series models and combined
with measured data in Ref. [15]. Measured and simulated data are
combined in Ref. [13]; however, the potential of using reanalysis
data instead of measured data is highlighted as a future option.

This paper proposes a combination of the reanalysis and sto-
chastic simulation approaches. In this novel approach for large-
scale simulations, the reanalysis data models the majority of the
spatiotemporal dependencies, while stochastic simulation models
the short-term variability not modelled by the reanalysis approach.
Stochastic wind simulation modelling [16—18], which is usually
applied on turbine or wind power plant (WPP) level, is combined to
the large-scale reanalysis data. Through the stochastic simulation,
realistic sub-hourly ramp behaviour is captured in the simulations.
In this way, the stochastic simulation model provides variability in
the frequency range where the reanalysis data is lacking, even
when downscaling is used.

The presented methodology allows large-scale simulation of
many WPPs. Both the spectral information of individual locations
and the dependencies between the locations using coherence
functions are considered. The individually simulated WPPs can
then be aggregated to the desired aggregation-level, e.g., regional
or country-wise. However, the individual simulation of WPPs al-
lows the simulation data to be used also, e.g., in power flow studies
where each node with wind power installations needs data that are
properly correlated with all the other nodes. This simulation of each
WPP differentiates the methodology, e.g., from Ref. [15], where the
spectral information is first taken to the aggregate level and time
series simulation is then carried out directly for the aggregate.

The Correlations in Renewable Energy Sources (CorRES) tool is
used for carrying out the simulations combining reanalysis data
and stochastic simulation (called fluctuations) [19]. The tool is
based on hourly mesoscale reanalysis data from the Weather
Research and Forecasting (WRF) model [20]. Wind speed mea-
surements from three locations are used to calibrate the spectral
parameters for the stochastic simulation part of CorRES.

The importance of adding fluctuations to the mesoscale time
series is tested for geographical areas with different sizes, going
from a single offshore wind power plant (OWPP) to the aggregate
onshore wind generation of western Denmark. Measured genera-
tion data covering two years with 15 min resolution are used for
validating the CorRES simulations. Simulations with and without
fluctuations are compared to the measured data to study the sig-
nificance of stochastic simulation in the different cases.

The paper is structured as follows. Section 2 introduces the
CorRES tool and Section 3 describes the selection of the spectral
parameters for its stochastic simulation part. Section 4 presents
simulation results for offshore and onshore wind generation in
Denmark and compares the role of stochastic simulation in the
different cases. Section 5 provides additional discussion and Sec-
tion 6 concludes the paper.

2. CorRES simulation tool
This section presents the CorRES simulation tool with its two

parts: the meteorological reanalysis data and stochastic simulation
of fluctuations. The section then shows how the two parts are

combined to provide the simulated wind speed output. CorRES can
be used to simulate the wind speed and/or wind power output at
specific locations and aggregated for a specific system level (e.g.,
regional or country-wise) [19]. Transformation from wind speeds to
power generation is presented in Section 4.

2.1. Meteorological reanalysis data

CorRES is based on meteorological data obtained from the WRF
model, a mesoscale modelling system [20], using the downscaling
method presented in Ref. [21,22]. The coverage of the
10 km x 10 km WREF grid for the analysed area can be seen in Fig. 1.
More information about the reanalysis data and WRF modelling in
CorRES is given in Refs. [10,19]. The WRF data are hourly, and linear
interpolation is used in-between the hourly WRF values.

Wind speed variations in the WRF data are smoothed due to
spatial and temporal averaging effects [11,12]. Additionally, as the
WRF data are hourly, inter-hour variations are not modelled.
Therefore, the short-term wind speed fluctuations are captured
through the stochastic model added to the WRF data as shown in
Sections 2.2 and 2.3. If fluctuations are not included, sub-hourly
values are obtained directly from the liner interpolation.

2.2. Stochastic model

The fluctuations are added to the WRF data to obtain realistic
sub-hourly simulations when using hourly reanalysis data. They
also model the short-term variability that may be lacking in WRF
data on hourly and even lower frequencies. The temporal behaviour
of fluctuations at each WPP is modelled by specifying a fluctuation
power spectral density (PSD) for each location. As has been shown
in Ref. [12], the wind speed PSDs at frequencies that lack variability
in the WRF data can be expected to follow

_
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Fig. 1. The meteorological data grid points for the analysed area.
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Smeso(f) :f(;%, (1)

where fis frequency and a, is the coefficient of the spectra. How-
ever, as the fluctuations are added to mesoscale reanalysis data,
they should not add variability on the frequencies where the WRF
data successfully capture the wind variability. The parameter f; is
introduced to specify the frequency range where the stochastic
simulation adds variability. Thus, the PSD for the stochastic simu-
lation, providing the additional variability to the mesoscale rean-
alysis data, is defined as

a
IR

In Fig. 2, the PSD of the WRF data with and without fluctuations
is presented. It shows that for f <f;, WRF provides practically all
variability, and for f > fy the fluctuations, modelled as in (2), in-
crease the PSD. In addition to (2), the fluctuation model in CorRES
considers turbulence, as shown in Ref. [18]; however, the addition
of turbulence PSD has a very small influence on the 10 and 15 min
resolution data studied in this paper and is thus not covered
further.

As multiple WPPs are analysed, the dependencies between lo-
cations are included in the fluctuation modelling. This is achieved
by specifying coherence functions between the WPPs. Coherence
function between two locations i and j is defined as shown in
Ref. [16]:

SAmeso (f) = (2)

vii(f) = e <Aij%)f7 (3)

where fis frequency, d;; is the distance between the locations, Vj is
average wind speed and A;; is the decay factor. Vj is calculated from
the WREF data for the different time steps. V; is defined as 10 min
mean wind speed [18]; in this paper, as hourly WRF data are used,
Vo is calculated using linear interpolation from the hourly WRF data
to get a representative approximate 10 min mean wind speed for
each time step (this is discussed more in Section 5). The decay
factor is specified as

Aij= \/(Alongcos(au))z + (Alatsin(au))z, (4)

where q;; is the inflow angle (as specified in Ref. [16]), Ajopg is the
decay factor when the flow is longitudinal (i.e., wind direction is
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Fig. 2. PSD of WRF data with and without the fluctuation PSD, as defined in (2); a; =
3-10~% and fy = 2170 h were chosen for this illustrative example. The WRF PSD was
estimated using Matlab function pcov [23].

from location i to j) and Ay, is the decay factor when the flow is
lateral [18]. Decay factor parameters Ajgng = 4 and Ajye = %’/S are

used, as suggested in Ref. [18].

Time series simulation from the specified PSDs and coherence
functions is carried out as shown in Ref. [18]. When calculating the
cross power spectral density functions using the PSDs and (3), the
delay time for wind field to travel from location i to j is also
considered, as shown in Ref. [16]. Fluctuations are simulated only
for frequencies higher than fj.

2.3. Combining the reanalysis data and the fluctuations
The simulated wind speeds for n locations vt = [vy ¢, ..., vn¢] are
Vvi= V\tNRF + v{lucts7 (5)

where vyVRF — pWVRF
flucts _
and v;us =

components of v}V’ are correlated in space and time, as are the
components of v?““s. This allows (5) to adjust the spatiotemporal
correlations of v, compared to v}VRF by specifying the correlation
structure of vflucts,

Fig. 3 shows time series of WRF data and simulations with
fluctuations using two different random seeds for an example
location. It can be seen that both simulations with fluctuations
follow the WRF data, but with additional short-term (or high fre-
quency) variability. The difference in random seed results in a
different fluctuation pattern around the WRF data; however, the
two fluctuation time series are simulated using the same spectral
parameters, so when long time series are simulated, they add the
same level of variability to the WRF data.

vWRF] are the WRF mesoscale wind speeds

[ilucts ..., vflucts] are the simulated fluctuations. The

3. Selecting the spectral parameters

This section shows the selection of the spectral parameters for
(2) based on wind speed measurements from multiple locations.
When the spectral parameters are selected, the wind speed
modelling part of CorRES is defined; the transformation to power
generation is presented in Section 4.

3.1. Measured wind speed data

Measured wind speed data from three locations are analysed.
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4 |——WRF + Flucts (rand. seed 2)
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Fig. 3. An example time series of WRF data and simulations with fluctuations using
two different random seeds (but with the same spectral parameters). The time series
have a 10 min resolution, with hourly WRF data linearly interpolated to reach the
intra-hour values.
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The locations and the available data are shown in Table 1. The
Hovsore and Risg data sets include measurements collected for the
DTU Online Meteorological Data base [24]. The Cabauw data set
includes measurements gathered at the Cesar Observatory located
in the western part of the Netherlands; the data are publicly
available in Ref. [25].

3.2. Impact of the spectral parameters

Wind speed fluctuations, modelled using (2), are dependent on
the two parameters, namely fy and a;. The parameters define the
intensity (a;) and the frequency range (fy) of the generated fluc-
tuations. Example time series of WRF data and simulations with
fluctuations are shown in Fig. 4. The two spectral parameter sets
show different fluctuation behaviour around the WRF data, with
parameter set B fluctuating more. This highlights how the modelled
wind speed fluctuations vary depending on the selected
parameters.

3.3. Finding the optimal parameters

The selection of the optimal fluctuation parameters for each
analysed wind speed location is carried out by comparing the
autocorrelation function (ACF) of the measured and simulated data
while varying both fy and a;. It has been shown that WRF data may
lack variability in frequency scales up to multiple hours [12]; in this
paper, f values from - to {1 were tested.

In [26], a; = 3x10~* has been suggested for an offshore location
in Denmark for modelling (1) for the frequency range of interest for
fluctuations. However, when fluctuations resulting from (2) were
applied in (5), the resulting v; showed too high variability for the
test locations when using 3x10~% Thus, a; values 1.5x107%,
2x107%, and 2.5x10~* were also tested.

The comparison of the different fy and a; values was carried out
by varying fy from 4 to -1 with a step of ;. and considering all the
a; values described in the previous paragraph. A simulation was
carried out for each location for each combination of these f; and a;
values and the ACF of the resulting simulated time series was
compared to the ACF of the measured data. The ACFs were
compared by calculating

2

K
RMSEacE = \/ZRO(pmeas(I’? — Psim(k)) ’ 6)

where peas(k) is the ACF of the measured data and pg;,, (k) is the
ACF of the simulated data for the studied location at lag k. ACFs are
compared up to lag K. K = 10 h was considered in the comparison,
as it is the time frame in which fluctuations are expected to have a
significant impact.

ACF was chosen as the comparison metric as there is a strong
link between the ACF of a time series and its ramp behaviour. Ramp
behaviour can be analysed at different lags k as

Table 1
The wind speed data.

Name Location Height [m] Time interval

4 years (2005—2008)
5 years (2000—2005)
6 years (2001—2006)

Hovsore (Denmark) 56.44° N, 8.15°E 80
Risg (Denmark) 55.69° N, 12.09° E 77
Cabauw (Netherlands) 51.97° N,4.93°E 80

All wind speed data have 10 min resolution.
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Fig. 4. An example time series of the WRF data and simulations with fluctuations. The
different fluctuation parameter sets are: A, where a; = 2x10~% and f; = %; and B,
where a; =3x10"%and fy = ﬁ . The time series have a 10 min resolution, with hourly
WREF data linearly interpolated to reach the intra-hour values.

V;',r(’<) =Vit — Vit—ks (7)

where v;; is wind speed of location i at time t and k is the lag of the
difference. The standard deviation (SD) of the difference at lag k,
when assuming that SD(v;;) = SD(vj;_¢) = 0y, is

SD (v (K)) = \/0% + 07 = 20040, = V20,/T = py, (8)
where p, = cor(v¢,vi;_k) is ACF(k) of v;;. As fluctuations have an
impact only on high frequencies, the overall wind speed SD of the
location, ¢,, is defined mostly by the mesoscale reanalysis data.
However, the fluctuations change significantly the ACF, as can be
seen in Fig. 5. As ACF is strongly linked to ramp behaviour (8), and
as it was considered important to model the ramp behaviour
accurately, minimizing (6) was chosen as the metric when choosing
the optimal fluctuation parameter set. Fig. 5 also shows that the
addition of fluctuations to the mesoscale WRF data is required, as

Correlation
o

S »

oo W

o
o
3

Different param. sets
Measured

Best fit param. set
—\WRF only

o
5y

065

Lag [h]

Fig. 5. ACFs of simulated wind speeds using different fluctuation parameter combi-
nations for the Hovsore dataset are shown in grey. ACF of the measured data is plotted
in blue and ACF of the best fit parameter set in red. ACF of the WRF data, with linear
interpolation to reach intra-hour values, is plotted in magenta. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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only using WRF data shows too high ACF values up to lags of
multiple hours.

3.4. The resulting spectral parameters

Table 2 shows the spectral parameters which provide the closest
fit to the measured wind speed data based on (6) for the three
analysed wind speed locations. It can be seen that for all locations,
the best fitting a; parameter is 2x10~%, with f; on average ﬂﬁ. As
quite similar fluctuation parameters show the best fit for all loca-
tions, the parameter set a; = 2x10~% and f; = 11@ is used for all
consequent runs presented in the paper. Further comparison of the
wind speed fluctuation parameters for individual locations is given
in Ref. [27]. The selection of the parameters is discussed in Section
5.

4. Wind generation simulation results

In this section, wind generation for different cases in Denmark
are simulated utilizing the CorRES tool presented in Section 2 and
the results are compared to measured data. The different cases
include the generation output of individual OWPPs and the ag-
gregation of onshore wind generation for different geographical
areas. With comparison to the measured data, the importance of
fluctuations is assessed in the different studied cases.

4.1. Data and CorRES simulation setup

The measured data considered in this section consist of wind
generation measurements gathered in Denmark. The data were
collected with a 15 min resolution (15-min averages) over two
years, 2010 and 2011. Offshore wind generation is measured on the
OWPP-level, while onshore wind generation is measured on
regional level; the regions are shown on a map in Fig. 6. Due to data
restrictions, details of the two OWPPs cannot be provided. For the
remainder of this paper they will be referred to as OWPP 1 and
OWPP 2.

Onshore wind power plant (WPP) installation data were taken
from Ref. [28]; installations until 2011 were used to model the years
2010 and 2011. Wind turbine types of the WPPs were linked to
power curve data from Ref. [29]. For OWPPs, wake effects were
modelled using the PyWake software [30]. All generation data are
standardized to values between 0 and 1, where 1 means generation
at installed capacity, by dividing the generation time series data by
installed capacity time series.

The remainder of this section is divided into three parts. In each
part, wind generation is simulated using the CorRES simulation tool
presented in Section 2, utilizing the stochastic model parameters
found in Section 3. The best fitting fluctuation parameter set found
in Section 3, i.e, a; = 2x10~* and fy = 1}, is used in all runs. The
simulations are compared to measured generation data; for indi-
vidual OWPPs in Section 4.2, for different onshore wind regions in
Denmark in Section 4.3 and for the aggregate onshore wind gen-
eration of western Denmark in Section 4.4. In all studied cases, each
WPP is simulated and the resulting time series are then aggregated
to the appropriate level of aggregation. As each WPP, rather than

Table 2

The best fitting fluctuation parameter sets for each analysed wind speed location.
Name a, fol1/h]
Hovsore 2x1074 1/10
Riso 2x1074 1/11
Cabauw 2x1074 1/9

Soingg®

DK1-Areat

Fig. 6. The analysed onshore wind regions in western Denmark.

each turbine, is simulated, the wind farm average block described
in Ref. [18] is used to capture the smoothening effect of the wind
farm. To assess the importance of fluctuations, simulations with
and without fluctuations are compared for each studied case. If
fluctuations are not added, linear interpolation of the WRF data is
used directly to reach the sub-hourly resolution wind speeds (for
each WPP individually).

4.2. Offshore wind generation

PSDs for the two analysed OWPPs are shown in Fig. 7, for

OWPP 1

Measured
———CorRES, no flucts.
—CorRES, with flucts.

PSD

0 0.5 1 1.5 2
Frequency [1/h]
OWPP 2
10° Measured

———CorRES, no flucts.
—CorRES, with flucts.

PSD

L L L

0 0.5 1 1.5 2
Frequency [1/h]

Fig. 7. Generation PSDs of OWPP 1 and OWPP 2 for the measured data and CorRES
simulations with and without fluctuations. The PSDs were estimated using Matlab
function pcov [23].
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OWPP 1
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g
@
% 0.1 Measured
2o
o) CorRES, no flucts.
2 CorRES, with flucts.
0 . : . . )
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Lag [h]
OWPP 2

Measured
CorRES, no flucts.
CorRES, with flucts.

1 2 3 4 5
Lag [h]

SD of difference
o o
- N
o e E—— E—

Fig. 8. Generation ramp SDs on different lags for the two OWPPs for the measured
data and CorRES simulations with and without fluctuations.

measured data and CorRES simulations with and without fluctua-
tions. The simulation with fluctuations shows PSDs similar to the
measured data for both locations, whereas without fluctuations the
PSDs are low for high frequencies compared to the measurements.
It is notable that variability is lacking for up to a few hours. Fig. 8
shows generation ramp behaviour for the same OWPPs for mea-
surements and simulations. The ramp SDs are visualized by plotting

SD(p;, (k) =SD(Pic ~ Pick): (9)

where p; ; is generation from location i at time t, on different lags k.
When fluctuations are not added, the ramp SDs are significantly
lower compared to the measured data, for lags up to a few hours.
The ramp behaviour of the simulation with fluctuations is similar to
the measurements for both OWPPs.

As can be seen in Table 3 and Table 4, without fluctuations the
15 min ramp SDs are significantly lower in the simulation
compared to the measurements. When fluctuations are added, the
ramp SDs are close to the measured data for both OWPPs. All
analysed 15 min ramp percentiles are too close to zero in “CorRES,
no flucts” compared to the measurements. When fluctuations are
included in “CorRES with flucts”, the ramp percentiles are on
average closer to the measured data; however, especially for OWPP
2, the 5th and 95th percentiles are somewhat too far from zero
compared to the measurements. This is discussed further in Section
5.

4.3. Regional onshore wind generation

Fig. 9 shows PSDs for the measured data and the simulations for
two example onshore wind regions (the regions can be seen on
map in Fig. 6). The simulation without fluctuations has less high
frequency components than the measurements. Addition of the
fluctuations provides simulated time series with PSDs similar to the
measured data. Fig. 10 shows the generation ramp behaviour of the
same regions. It can be seen that when fluctuations are not
considered, the ramp SDs are lower than in the measured data for
lags up to a few hours. However, the differences are smaller than for
the individual OWPPs analysed in the previous section. The ramp
SDs of the simulation with fluctuations are closer to the measured

Table 3
Descriptive statistics of OWPP 1 generation 15 min ramp behaviour.

15 min ramp statistic =~ Measured  CorRES, no flucts  CorRES with flucts
SD Oramp 0.390ramp 0.950ramp

5th, 95th percentile D5, Dos 0.38ps, 0.39pgs 1.19ps, 1.17pgs
1st, 99th percentile D1, Dog 0.36pq, 0.37pgg 0.87p4, 0.86pgg

The values are shown in relation to measured data; exact values for individual
OWPPs cannot be shared due to data restrictions.

Table 4
Descriptive statistics of OWPP 2 generation 15 min ramp behaviour.

15 min ramp statistic = Measured  CorRES, no flucts ~ CorRES with flucts
SD Oramp 0.430amp 1.050ramp

5th, 95th percentile Ds, Dos 0.43ps, 0.43pgs 1.31ps, 1.28pgs
1st, 99th percentile D1, Pog 0.38p1, 0.42pgg 1.00p1, 0.99pgg

The values are shown in relation to measured data; exact values for individual
OWPPs cannot be shared due to data restrictions.

Region 5
10° Measured
CorRES, no flucts
a CorRES with flucts
7]
o
0 0.5 1 1.5 2
Frequency [1/h]
Region 10
10° Measured
CorRES, no flucts.
a CorRES, with flucts.
(%)
o
0 0.5 1 1.5 2

Frequency [1/h]

Fig. 9. Generation PSDs for two example onshore wind regions for the measured and
simulated data. The PSDs were estimated using Matlab function pcov [23].

data. For region 10 shown in Fig. 10, the ramp SDs of the simulation
with fluctuations deviates somewhat from measured data for lags
higher than 2 h; this is discussed in Section 5.

Table 5 and Table 6 show that both the 15 min ramp SDs and the
analysed percentiles of “CorRES with flucts” are closer to the
measured data compared to “CorRES, no flucts”. The 5th and 95th
percentiles are slightly too far from zero in the simulation with
fluctuations for both regions; however, the 1st and 99th percentiles
are very similar to the measurements.

Table 7 shows that addition of fluctuations provides 15 min
ramp SDs closer to the measured data for all the studied onshore
wind regions. Although for some regions, such as 13 and 15, the
15 min ramp SD is somewhat higher in “CorRES with flucts” than in
the measured data, the ramp SDs are still closer to the measure-
ments than when fluctuations are not added.

4.4. Aggregate onshore wind generation

This section considers the aggregation of all the 15 onshore
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Region 5§
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®
&
5]
g 0.1
kel
%5 0.05 Measured
o CorRES, no flucts
n 0 ‘ ‘ CorRES with flucts|
0 1 2 3 4 5
Lag [h]
Region 10

SD of difference
o 2
BN w
o

Measured
b CorRES, no flucts
0 ) ‘ CorRES with flucts )
1 2 3 4 5

Lag [h]
Fig. 10. Ramp SDs for different lags for the two example onshore wind regions for the

measured and simulated data.

Table 5
Descriptive statistics of onshore wind region 5 generation 15 min ramp behaviour.

15 min ramp statistic ~Measured CorRES, no flucts  CorRES with flucts

SD 0.017 0.011 0.018
5th, 95th percentile —0.026, 0.026 —-0.015, 0.017 —0.030, 0.031
1st, 99th percentile —0.048,0.049 —-0.030, 0.032 —0.050, 0.050

Table 6
Descriptive statistics of onshore wind region 10 generation 15 min ramp behaviour.

15 min ramp statistic ~Measured CorRES, no flucts  CorRES with flucts

SD 0.019 0.011 0.020
5th, 95th percentile —0.029,0.029 -0.015,0.016 —0.033, 0.032
1st, 99th percentile —0.056, 0.057 —-0.030, 0.032 —0.058, 0.055

Table 7
Generation 15 min ramp SDs for the onshore wind regions.

Region Size (km?) Measured CorRES, no flucts CorRES with flucts
1 3385 0.017 0.010 0.018
2 3364 0.016 0.010 0.016
3 2544 0.018 0.011 0.020
4 3850 0.019 0.010 0.018
5 2782 0.017 0.011 0.018
6 2517 0.016 0.010 0.017
7 2460 0.018 0.010 0.018
8 4014 0.014 0.009 0.016
9 1329 0.045 0.014 0.045
10 2556 0.019 0.011 0.020
11 2114 0.016 0.010 0.016
12 2903 0.016 0.011 0.017
13 3605 0.015 0.010 0.019
14 2135 0.020 0.011 0.019
15 2367 0.018 0.012 0.021

The area sizes are calculated using the borders shown in Fig. 6. The sum of the areas
is 41924 km? (a more detailed area specification for western Denmark, considering
only land area, gives a total area of 33275 km?).

wind regions shown in Fig. 6, which means aggregate onshore wind
generation of western Denmark. Fig. 11 shows that when modelling
such aggregated level, the PSDs show some difference between the
measured data and the simulation without fluctuations. However,

10°
Measured
CorRES, no flucts.
CorRES, with flucts.
[m]
w
o
100 |
0 0.5 1 1.5 2

Frequency [1/h]

Fig. 11. Generation PSD for the aggregate onshore wind generation of western
Denmark for the measured and simulated data. The PSDs were estimated using Matlab
function pcov [23].
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Fig. 12. Ramp rate SDs for different lags for the aggregate onshore wind generation of
western Denmark for the measured data and the simulations.

the PSD at 11/h, the original resolution of the WRF data, is similar in
“CorRES, no flucts” and the measured data. The ramp behaviours of
“CorRES, no flucts” and “CorRES with flucts” in Fig. 12 are quite
similar; thus, the fluctuations do not have a significant role in this
simulation case.

A comparison of measured data and the simulations with and
without fluctuations is shown in Table 8. The measured data and
the two simulations have similar 15 min ramp SDs. For the studied
percentiles, the simulation with fluctuations is closer to the
measured data; however, even without fluctuations, the simulated
data shows 15 min ramp behaviour similar to the measurements.

It can be concluded that on the aggregate level of western
Denmark, the fluctuations add only little to the variability in the
WRF data. The WRF data can model most of the ramping behaviour
on this level of geographical aggregation when analysing 15 min
resolution data by applying simply linear interpolation to reach the
sub-hourly resolution. However, in both Fig. 12 and Table 8, the
simulation with fluctuations still shows results closer to the
measured data.

5. Discussion

The differences between the measured data and CorRES with
fluctuations for region 10 in Fig. 10 could be seen as a reason to
consider changing the fluctuation parameter set (a; and f;). How-
ever, the high frequency variability up to around 2 h is well
modelled by the selected parameter set. As fluctuations should
impact mainly high frequency variability, focus was given to dif-
ferences in ramp SDs up to around 2 or 3 h. Even though fluctua-
tions impact also higher lags (Fig. 5), variability for lags higher than
3 h depend also on the technical WPP parameters (such as hub
heights) and on the WRF model specification (e.g., roughness
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Table 8
Descriptive statistics of the aggregate onshore wind generation 15 min ramp
behaviour.

15 min ramp statistic Measured CorRES, no flucts  CorRES with flucts

SD 0.008 0.007 0.008
5th, 95th percentile —-0.013,0.013 -0.010, 0.011 —0.013, 0.013
1st, 99th percentile —0.024, 0.023 -0.018, 0.020 —0.022, 0.023

The land area of the analysed aggregate onshore area (western Denmark) is
approximately 33275 km?.

parametrization). Thus, rather than reconsidering the fluctuation
parameter set due to one region, it was considered that the WRF
model specification and the technical WPP parameters should be
checked first; this will be done in future research.

While the 15 min ramp SDs are modelled quite well in the
simulation with fluctuations in the analysed cases, the studied
percentiles are somewhat off compared to measurements, espe-
cially for the OWPPs as shown in Tables 3 and 4. Having the SDs
well modelled but the percentiles incorrect suggests that the ramp
distribution shape could be improved. This is further visualized in
Fig. 13, where “CorRES with flucts” shows PDF and cumulative
distribution function (CDF) closer to measured data compared to
“CorRES, no flucts”; however, the shape of the distribution is
somewhat different. Both analysed OWPPs show similar behaviour.
The generation ramp rate distribution in Fig. 13 is non-Gaussian
even though the simulated wind speed fluctuations have a
Gaussian shape; this is mainly because wind speed to generation
transformation (power curve) is highly non-linear. However, as the
resulting simulated ramp distribution shows a different shape
compared to the measured data in Fig. 13, simulation of non-
Gaussian wind speed fluctuations is planned for future research.
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Fig. 13. 15 min ramp rate PDFs and cumulative distribution functions (CDFs) for one of
the analysed OWPPs for measured data and the simulations.

When selecting the spectral parameters based on (6), multiple
combinations of a; and f;, give relatively similar RMSEacr values.
Eg., fo = 105 and fo = I show very similar RMSEacr, and even
changing a; slightly does not have a drastic impact on RMSEacr. The
selection of the two parameters is also correlated: if a; is increased,
a shorter frequency range (fy) can be selected to reach a relatively
similar RMSEacr [27]. Finding parameters that are in a strict sense
optimal is thus challenging. Added difficulty is that different
heights and meteorological years show somewhat different optimal
parameter sets [27]. However, the spectral parameters used in
Section 4 in the studied cases show a good fit to measurements.
Although technically possible, the fluctuation parameters f, and a,
were not set for each location separately when modelling wind
generation in Section 4. Rather, generally applicable parameters
were used. However, other significantly different geographical re-
gions may require different fluctuation spectra parameters, and
selection of location-specific parameters can be considered in
future work. In addition, possible time-dependency of the spectral
parameters can be considered; currently, the parameters fy and a;
are not assumed to depend, e.g., on hour of the day or month.
Parameter-dependency on height should also be considered.

It is important to note that the selection of the fluctuation
spectra parameters depend on the mesoscale data set used. If the
mesoscale data include more high frequency components, e.g., due
to using a newer reanalysis data set, less additional variability may
be required from the fluctuations. On the other hand, if reanalysis
data would be used directly without the downscaling described in
Section 2.1, more variability may be required from the fluctuations.
In general, the fluctuation parameter set should be recalibrated
whenever the meteorological data set is changed or if a very
different geographical area is analysed.

The presented methodology adds the fluctuations using sto-
chastic simulation based on PSDs and coherence functions; simu-
lation is carried out in frequency domain and the data are then
transformed to time series [18]. Similar simulations could be car-
ried out using ARMA-type models. The reason for choosing to
simulate based on PSDs and coherence functions is that informa-
tion is readily available on frequency domain. E.g. Ref. [12], de-
scribes variability in wind using PSDs, and turbulence is usually
defined using a spectrum. For applying autoregressive—moving-
average (ARMA) type models, such frequency domain information
would first need to be transformed to parameters of the ARMA type
model used. Reference [15] shows how this is achieved for uni-
variate data (either one plant or aggregate of many plants). How-
ever, in the presented methodology it was considered more
convenient that PSDs and coherence functions can be applied
directly.

The presented methodology is based on WRF data, which are
downscaled from the raw reanalysis data [21,22]. However, a more
detailed downscaling (and/or more accurate raw reanalysis data)
could provide the required additional high frequency information
missing in the WRF data used in this paper. This is something that
will be considered in future research. However, the presented
methodology allows simulation of even higher frequency data than
analysed in this paper; e.g., 5 min resolution data can be simulated
efficiently using the presented approach, whereas it could be
challenging to obtain 5 min resolution simulations over a large
geographical area using downscaling.

The coherence functions between locations were estimated
using (3), which depends on the mean wind speed Vj, (calculated
from the hourly WRF data using linear interpolation). As Vj is
defined as 10 min average [18], after the addition of the fluctua-
tions, (3) can change, as fluctuations impact the 10 min mean wind
speeds. However, this was not taken into account. The linearly
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interpolated WRF data were considered enough to estimate the
changes in the coherence functions on different mean wind speeds.

6. Conclusion

This paper has shown that a combination of meteorological
reanalysis data and stochastic simulation can successfully model
variability in wind generation on different geographical levels of
aggregation. A spectral parameter set was found for the fluctuation
model based on measured wind speed data from three locations.
With the calibrated fluctuation model, CorRES was used to simulate
wind generation time series for different cases in Denmark, going
from single OWPP to the aggregate onshore wind generation of
western Denmark. These simulations were compared to measured
data covering two years with 15 min resolution.

The results show that the fluctuations have a crucial role in
modelling ramp behaviour when analysing offshore wind genera-
tion with geographically concentrated OWPP installations. When
analysing individual onshore wind regions in Denmark (on average
2795 km? in size), the addition of fluctuations is required to accu-
rately model the short-term variability. On the level of aggregate
onshore wind generation of the whole of western Denmark
(approximate land area of 33275 km?), the WRF data can model
most variability seen in the measurements even without fluctua-
tions on the 15 min resolution using simply linear interpolation to
reach intra-hour values. However, also on this level of aggregation,
the simulation with fluctuations showed ramp behaviour closer to
the measured data.
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