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saccharification
5 % solids, 20 FPU/g

Energy production
High Heating Values
(HHVs)

M2-3 143 g/L

_Cellic Cetec2

YG72 M1-4 60.2 g glucose/g Mi-4
M2'3 60-2 g glucose/g M2-3

HHVs M1-4 19.6 Mj/Kg
M2-3 19.1 Mj/Kg

Xylo-oligomers M1-4 9.4 g/ L Xylose 4.7 g/L (62.2 % Xylan recovery )

2.1 g/L ( 68.6 % Xylan recovery)
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Abstract

This work was focused on evaluating two mixturedigriocellulosic feedstock, forest
and marginal land resources, in order to co-procadie biofuel, oligosaccharides, and
glucose under a biorefinery concept. The selecifaenewable bio-mixtures was based
on different criteria, namely, territorial distritbon, fire risk during summer months and
total sugar content. The two mixtures were subuohitte autohydrolysis pretreatment
under non-isothermal conditions (in the range od 2@ - 240 °C corresponding to
severity of 3.71 to 4.82). Both mixtures were cormepain terms of fractionation
(cellulose and lignin recoveries and hemicelluleskibilization), analyzed for thermal
properties (high heating values) and for enzymatisceptibility of cellulose. The
highest xylan recoveries (62 and 69%), as xylosé wmylooligosaccharides, were
achieved for both mixtures in the liquid phase @ 2C. Autohydrolysis pretreatment
increased the high heating values of the two medyresenting an alternative use of
solid fraction as solid biofuel. Moreover, enzymasusceptibility of these pretreated
mixtures was also improved from 45 to 90 % of gkeoyield by increasing
pretreatment severity. This comparative study dblaydrolysis showed a suitable

process for the valorization of both mixtures withi biorefinery concept.

Keywords:
Multi-supply lignocellulosic biomass; AutohydrolgsiEnzymatic hydrolysis;

Biorefinery; Solid biofuel
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1. Introduction

In Portugal, the territory is divided in wood anadcultivated land (22 %); forest of pure
and mixed stands dPinus pinaster and Eucalyptus globulus (21 %); and farm land
(33 %), mainly composed by olive groves, vineyaeasl orchards, that generate
significant amount of lignocellulosic biomass (LCH). Approximately half of the
national territory (40 % to 50 %) consists of pgoils with no potential for profitable
agricultural use. On average, 60 % to 70 % of tial fires take place in forested and
uncultivated areas, resulting in a loss of rou@0® million Euros annually [2]. So far,
there is no sustainable alternative for the usknisfterritory and no viable solution for
forest biomass valorization [2]. Social and ecormimnefits could be achieved from
the utilization of these raw materials in orderdevelop the so-called bioeconomy,
which would boost the creation of new rural jobp [3

Forest and agricultural residues are the most itapbrsources of lignocellulosic
biomass [4]. LCB are the most abundant renewalsleuree in the world, generated at
high rate [5] and suitable for production of enerdpofuels, chemicals, paper,
pharmaceuticals and biomaterials [3, 6]. LCB arenposed by 50 % to 60 %
carbohydrates, namely, cellulose and hemicellubogk10 % to 30% of lignin, together
with non-structural components (including ashedraexives, pectin and proteins) in
lower proportions [7-9]. Nevertheless, the convarsof LCB into chemicals is one of
the main challenges for biomass processing duéeéo tomplex three-dimensional
structure, requiring multidisciplinary approachesathieve their integrated benefit [5].
The chemical utilization of LCB can be carried astng two different approaches: (i)
utilization as a whole (for example combustion,ifyegtion or pyrolysis), or (ii) using
methods based on the selective separation of itgoonents (cellulose, hemicellulose,

lignin) [3]. The latter process can be based ontistap processing, starting with
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separation of easily recovered fractions (extrastisnd hemicellulose) from the more
resistant ones (cellulose and lignin), which cohbtd further fractioned by means of
more aggressive treatments [5]. Hydrothermal paétnent has been successfully
applied to LCB. This eco-friendly process, also\Wnoas autohydrolysis, requires no
other reagents than water and high temperaturechwbnables a wide variety of
reactions without the need of a catalyst [10, JAQitohydrolysis provides several
advantages, such as: i) high hemicellulose recesgii) no catalyst is necessary; iii) no
equipment corrosion problems are expected; iv)estagf sludge handling and acid
recycling are avoided; v) enzymatic susceptibibify cellulose is improved [9]The
autohydrolysis reaction solubilizes selectively mathulose into oligosaccharides and
promotes lower liberation of compounds derived friognin and cellulose, as well as
hemicellulose degradation products [12]. The mamgounds found in the remaining
solid fraction are cellulose and sulfur-free ligni@ellulose can be subjected to
enzymatic hydrolysis to produce glucose, an imporitgout for biofuels [13] [12].

The use of feedstock mixtures rather than a simg¥e material can minimize the
problems related to biomass availability, seasongtrice volatility and storage. In this
work, broom Cytisus sp.), carqueja Genista tridentate), mimosa Acacia dealbata),
rockrose Cistus ladanifer), eucalyptus Eucalyptus globulus) and pine Pinus pinaster)
were identified as the most important sources m#dbfire cases in Portugal. Since the
security supply for biorefineries and the sustailitstof exploration are key factors to
ensure the industrialization of these systems,dine of this study was to evaluate
feedstock mixtures fractionation to supply a biovefy throughout the year to produce
bioenergy and value-added compounds. Two feedstoigkures were selected and
subjected to autohydrolysis treatment in the raofjd90 °C — 240 °C, in order to

evaluate and compare the pretreatment effect atidraation of feedstock mixtures by
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hemicellulose solubilization. Besides oligosacates| two other alternatives were
evaluated for valorization of pretreated feedstmcktures: solid biofuel production and

enzymatic saccharification of cellulose into glueos

2. Materialsand Methods
2.1. Raw materialsand criteria of feedstocks mixture

Lignocellulosic biomass collecting through the yeseas divided into four quarters,
considering the biomass front and 4" quarters (winter months) as mixture 1-4 (M1-4)
and from 29 and &' quarters (summer months) as mixture 2-3 (M2-3p WH-4 and
M2-3 were set with different lignocellulosic bionsas from forest ecosystems (A)
(namely, eucalyptus and pine) and from marginadl |éB) (namely, broom, carqueja,
mimosa and rockrose). The criteria for the formalabf (A) and (B) were taking into
account their proportion of territorial occupatidmsed on the National Portuguese
Forest Inventory [14]. These percentages were dersil to establish the proportion of
lignocellulosic biomass for M2-3. The collection lwblogical resources from marginal
land (B) during winter months {land 4" quarters) provide reduction of fire risks in the
summer months (2 and 3 quarters) therefore, a preference factor of 2:biofnass
from marginal land (B) to forest ecosystem (A) wassidered in order to establish the
M1-4 (Table 1). The percentage of eucalyptus ané present in M1-4 and M2-3 was
also based on area in the Portuguese territorghése species [15]. For the percentages
of biomass from marginal land, the weight ratio agidoroom, mimosa, carqueja and
rockrose was calculated as a function of total sugantent [1], since there is no
information available regarding territorial diswiion of biological resources from

marginal land.
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The mixtures M1-4 and M2-3 were prepared, homogehand then characterized as
described below. The raw materials resulting froome$t management practices,
namely, broom, carqueja, mimosa, rockrose, euaadyphd pine, were collected in the
Center Region of Portugal, from a location with teame type of soil. The

lignocellulosic biomasses included branches andswiith barks and leaves. The raw
materials were air-dried until moisture lower 5 fijled and sieved between 0.25 to
0.40 mm using a vibratory sieve shaker (40 and 66hnand stored in dry conditions

to avoid the self-biodegradation of the materialfteA that, the samples were
homogenized in a single lot to avoid compositioddferences among aliquots and

were stored in polypropylene bags at room tempezatu

Table 1- Proportion of the two mixtures from lignocellulosbiomass stablished by
quarter

Mixtures proportion (%)
Type Lignocellulosic resour ces
M1-4 M2-3
Pine @inus pinaster) 16.6 24.6
(A) forest ecosystems Eucalyptus Eucalyptus 18.8 27.9
globulus)
Total 35.4 52.5
broom Cytisus sp.) 18.8 13.8
mimosa Acacia
dealbata) 17.0 12.5
(B) blolog|c§| resources from carqyeja Genista 14.6 10.7
marginal land tridentata)
rockrosg Cistus 14.2 104
ladanifer)
Total 64.6 475
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2.2. Analysis of raw material

Analytical assays were performed according to thexgudures provided by National
Renewable Energy Laboratory (NREL), appropriated dimenergy production [15]:
moisture (NREL/TP-510-42621), ash content (NRELBI®-42622), extractives
(NREL/TP-510-42621) and quantitative acid hydrdysiith 72% w/w sulphuric acid
(NREL/TP-510-42618). The hydrolysates from acid rojy¢sis were analyzed by high
performance liquid chromatography (HPLC) for sugafscose, xylose and arabinose)
and acetic acid using the column Aminex HPX-87Hn¢libons: refractive index
detector; flow rate of 0.6 mL/min at 60 °C; 0.005HYS50O, as mobile phase) and HPX-
87P column for mannose and galactose analysis ifcmm&l refractive index detector;
flow rate of 0.6 mL/min at 85 °C; @ as mobile phase). The concentrations of sugars
and acetic acid were employed to calculate theetistof cellulose and hemicellulose.
The Klason lignin content was gravimetrically measufrom the insoluble solid
residue obtained after the quantitative acid hyaisl Analyses were carried out in
triplicate. The analytical methods used in this kvand the scheme of the whole process
are shown in Figure 1

2.3. Non-isothermal autohydrolysis pretreatment of the lignocellulosic mixtures

(M 1-4 and M 2-3): solid and liquid phases composition

The autohydrolysis pretreatment was performed I la stainless steel reactor (Parr
Instruments Company, Moline, lllinois, USA) equippwith a Parr PID temperature
controller (model 4848). Each sample (M1-4 or M2a@)s mixed at liquid to solid ratio
(LSR) of 8 kg of water/kg of oven-dry raw materia.autohydrolysis experiments, the
reaction media was stirred at 150 rpm and heatednbgxternal jacket, following the

standard heating temperature-time profile to rehehdesired maximum temperature,
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and the reactor was rapidly cooled-down throughewacirculation by an internal loop
(Figure 2).

For each mixture, several non-isothermal conditiomsre tested, reaching final
temperatures (fax) of 190, 196, 206, 216, 226 and 240 °C (pressuma f13 to 34
bar). The autohydrolysis experiments were carrietl iy duplicate. Once the target
temperature was reached, the media were immediatelgd and filtered.

The intensity of autohydrolysis pretreatments canekpressed in terms of “severity”
(S), defined as the logarithm ofplRL6], which was calculated using the expression,
Equation (1)Figure 1- Flow chart of whole process and analytical methasksd in this
work.(1)

So=10g Ry =109 [ Ry nearine t Ro coorine]

= l()g |:f i exp (%) dt ]

+logUtF exp(%) dt]
0

According to this equation, ¢Sincludes the combined effects of temperature and
reaction time along the periods of heating andingoln Eq. (1), #ax (min) is the time
needed to achieveykx (K), t= (min) is the time needed for the whole heatingliogo
period, whereas T (t) and T’ (t) represent the terafure profiles in heating and cooling
(Figure 2), respectively. Calculations were madsuasng the values reported in
literature foro and Trer (14.75 K and 373.15 K, respectively). The rangestotlied
temperatures was 190 °C to 240 °C correspondirsgverities (§ of 3.71 and 4.82,

respectively.
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Operational conditions were evaluated to maximiee doncentration of hemicellulose
derived compounds in liquid fraction and to impramzymatic susceptibility of the
glucan present in solid fraction.

The solid fraction was washed with distilled wased used to measure the solid yield
of the autohydrolysis stag®X, Kg autohydrolyzed mixtuelO0 KQ raw materis OvVEN-dry basis)
and analyzed for chemical composition as describe®@ection 2.2. An aliquot of
autohydrolysis liquid phase was filtered through @m membranes and used for direct
HPLC determination of glucose, xylose, arabinosetia acid, hydroxymethyl (HMF)
and furfural (F), using the same method specifibdva. A second aliquot was
subjected to quantitative acid posthydrolysis (v sulphuric acid at 121 °C for 20
min), filtered through 0.2 um membranes and analypneHPLC for oligosaccharides
quantification.

2.4. Enzymatic hydrolysis of solid fraction from autohydrolysis pretr eatment
Enzymatic hydrolysis (EH) of autohydrolyzed mixtsineere carried out at 50 °C and
pH 4.85 (0.05 N sodium citrate buffer) in 100 mUeBmeyer flasks with 50 mL of
volume in orbital agitation (150 rpm) using Cell&Tec2 (Novozymes, Bagsvaerd,
Denmark). The enzyme activity was 120 FPU/mL. (meas as described by Ghose
[17]). The conditions employed were 5 % of oven-gmytohydrolyzed mixtures,
enzyme to substrate ratio, denoted as ESR = 20d~Ridydrolyzed mixwurON dry basis.
The reaction time of enzymatic hydrolysis rangeafrO h to 72 h. At selected times,
samples were withdrawn from the media, centrifuddt#red and analyzed by HPLC
for glucose and cellobiose. The results achievetthenEH were expressed in terms of
glucose vyield (%) (%), calculated using the following Equation (2):

@)

[Glucose] + 1.053 [Cellobiose]
100

% Y.
% Yo- 1.111 f[Biomass]|
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Where [Glucose] is the glucose concentration (g{Oellobiose] is the cellobiose
concentration (g/L), [Biomass] is the dry biomaes (CB) concentration (g/L)f is
cellulose fraction in dry biomass (g/g), the mudidation factor, 1.053, converts

cellobiose to equivalent glucose. In all experirsgntllobiose was not detected.

2.5. Deter mination of higher heating values of autohydrolyzed mixture

Samples of dried biomass were analyzed for Higheaitidg Values (HHVS) using an
automatic adiabatic bomb calorimeter (Parr calor@mé&ype 6200), in accordance with
Jessup et al. [18]. The interior surface of the bamas washed with distilled water and
collected in a beaker. The bomb washings weretddravith a standard sodium

carbonate solution (0.0709 N).

2.6. Statistical analysis

Linear Discriminant Analysis (LDA) was computedngiSTATGRAPHICS Centurion
XVL.1, with a significance level of 5 %. The souscef variation for the raw material
composition were cellulose (as glucan), xylan, @@ acetyl groups, mannan and

galactan (as hemicellulose), Klason lignin, asimekextractives for M1-4 and M2-3.

3. Results and Discussion

3.1 Raw material mixturecriteria

Several lignocellulosic biomasses have been indallg studied to be used as raw
material for biorefineries, nonetheless, the awdity, seasonality, variability, price

volatility and storage of biomass supply may be tiegor constraints on the use of
these raw materials [12, 19]. In this work, the o$different biomass sources may

10
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overcome these problems. Thus, the analysis ofladidty, security supply and
seasonality (based on fire prevention) of lignadeic biomasses in Portugal were

considered for the mixture definition.

The total territorial area generating residues pi#thin the work focus corresponds to
52.5% of forest ecosystems (A) and 47.5% of biaalgresources from marginal land
(B). Since eucalyptus and pine are the main eces\stin Portugal that generate
residues with high potential for the biorefineriéisese two species were selected to
represent (A) [20]. Whereas their distribution ¢s@ding to territorial area [14], where
725 thousands (46.9%) of hectares correspond ® gmad 820 thousands (53.2%) of
hectares to eucalyptus. Regarding (B), the seleatrgeria was based on total sugars
content of broom (66.7%), carqueja (51.7%), mim{&a4%) and rockrose (50.2%)
[1]. Based on the different criteria, two differemtixtures, M1-4 and M2-3, were
established taking into account the higher fir&k ris Portugal during the summer
months (2% and 3 quarters) and the importance of collecting biatagresources from
marginal land during winter months®(and 4" quarters). In general, 60 to 70% of forest
fires occurs in woods and uncultivated areas [Hler&€fore, Table 1 shows the final

proportions of biomasses assembled for M1-4 and3M2-

The consideration of feedstock mixtures have bemvigusly studied only in few

works [12, 21, 22]. In some of these cases, ther@iof mixture were based on the
importance of these raw materials for the regimchsas mixture of eucalyptus, wheat
straw and olive tree pruning in Southern Europepared in different combinations to
be tested [12]. In other cases, the mixture wapgyesl in equivalent amounts (clover
and ryegrass) [23] due to its importance in managpsystems [23], as well three
relative proportions of wheat straw and clover-gragre studied [22]. Moreover, the

consideration of more than one species of cropsdstaand/or forest feedstock

11
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supplemented with energy crops (such as switchgtassicrease biomass yield have
been previously studied by Jensen et al., wheeedpecies were mixed (50/50 wt.%) in

10 possible combinations [21].

3.2. Chemical characterization of M 1-4 and M 2-3 mixtures

Chemical characterization (Table 2) of the two mmigs proposed was carried out
revealing a very similar composition, although ttentent of each fraction slightly
varied according to the contribution of the predoanit feedstock (described in Table

1),

Glucan was the polysaccharide found in higher arnand similar concentrations were
found in both mixtures. Among the hemicellulose poments, the xylan was found in
the highest amount in the two mixtures, reachindp8&)/100g-aw material Of M1-4 and

17.48 g/loogaw materia|0f M2'3.

Table 2- Chemical composition of feedstock mixtures (M1rtl dM2-3) (expressed in
g/100g of raw material in oven-dry basis + standdeViation on three replicate
determinations).

12
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Feedstock mixtures
Components
M1-4 M2-3
Cellulose (as Glucan) 34.17+£1.14 34.63+0.18
Hemicellulose
Xylan 16.58 + 0.62 17.48 £ 0.45
Arabinan 1.36+0.21 1.27 +0.03
Acetyl groups 2.13+0.01 1.95+0.29
Mannan 3.19+0.03 3.31+0.01
Galactan 1.43+0.02 1.26 £ 0.03
Klason lignin 1 31.76 £ 0.00
Ash 1.29+0.08 1.19+0.03
Extractives 10.51+0.10 9.23+0.31

Arabinan and acetyl groups were identified, althoug lower proportions in both
mixtures, approximately 2 9/100gy materis Mannan showed concentration around 3
0/1004d raw material fOr both mixtures and galactan was detected in émnwcentrations
approximately 1 g/100gw materiat Klason lignin was the second highest fractiornhie
mixtures, namely 30 % for M1-4 and 32 % for M2-3sh&s were quantified and
correspond to about 1 % for both mixtures. Extiadicorrespond approximately to 10
% in both mixtures. As seen in Table 2, there weresignificant differences regarding

chemical composition between M1-4 and M2p3/élue > 0.05).

Nevertheless, the study of mixture of different@ee is still scarce. Previous reports
already studied the species that compose M1-4 a2@ Mdividually, namelyAcacia
dealbata [24], Cytisus sp. [25], Pinus pinaster [5] and Eucalyptus globulus [26]. In

these studies, the cellulose content (as glucas)higher than 40 %, while M1-4 and

13
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M2-3 presented lower content of cellulose, arousd@ This fact can be explained due
to extractives content, as the mixtures comprisethdhes and twigs with bark and
leaves [27] , since the aim of this work was théegmal valorization of these

lignocellulosic resources.

Despite the similar composition of M1-4 and M243¢ toutcome of pretreatment could
be different due to their diverse origin (hardwostftwood and bush), making it

necessary to analyze the pretreatment effect dnrbottures.

3.3. Effect of autohydrolysis pretreatment on fractionation of M1-4 and M2-3

mixtures

The conditions of pretreatment (190 °C to 240 °@)enchosen based on reported data
by Romani et al. [9] and Silva-Fernandes et al].[Edr integral valorization of
biomass, all fractions should be considered [3lusThn this work, fractionation of two
mixtures was evaluated in order to recover the belniose as oligosaccharides and to
improve the enzymatic saccharification of cellulasel/or use the solid fraction as solid

biofuel.

3.3.1 Solid phase composition after autohydrolysis pretreatment

Chemical composition of solid phase after autohlydie pretreatment is shown in
Table 3. The solid yield (SY) decreased with seyaricrease and varied from 62.37 -
75.25 g /100 @aw materiafor M1-4 and 62.33 - 76.70 g/10Q4g materiafor M2-3, which is

in agreement with previous works under similar ¢oods for other hardwoods [11,

26].

14
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The glucan content varied in the range of 40.9¢ 0@ ggiucad100 g autohydrolyzed mixture
(on dry basis) for pretreated M1-4 and 41.07 - A& 4iucad100 Qautohydrolyzed mixturdON
dry basis) for pretreated M2-3. Thus, the percentEégylucan that remained in the solid
fraction was very similar after pretreatment fottbmixtures, presenting an average of
glucan recovery about 84.86 % and 88.68 % (expideaseg of glucan per 100 g of
autohydrolyzed mixture) for M1-4 and M2-3, respeely, which reveals the selectivity

of this pretreatment.

In addition, the content of lignin after pretreatrhgaried in the range of 35.76 - 47.82
and 37.04 - 44.56 gnin/ 100 Qautohydrolyzed mixurdf M1-4 and M2-3, respectively. The
average recovery was high for the two mixtures38% and 90.36% (expressed as g of

lignin per 100 g of autohydrolyzed mixture) for Mland M2-3, respectively.

15
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Table 3- Solid yield and chemical composition of pretreagetids and liquid fraction of mixtures M1-4 and N2fter autohydrolysis
pretreatment
Temperature (°C) or,S
C\(()irfllpc)joir:e?ns 190 or 3.71 196 or 3.93 206 or 4.15 216 or 4.38 226 or 4.60 240 or 4.82
M1-4 M2-3 M1-4 M2-3 M1-4 M2-3 M1-4 M2-3 M1-4 M2-3 M1-4 M2-3
Solid yield 7525+0.37 | 76.70+x1.31| 73.93+x254 | 75.8+%0.33 67.61+0.32| 71.24+x059| 621537 65.04+2.22 | 62.43+x4.11| 66.78+2.09 | 62.37+3.4 62.33 £ 2.09
Solid phase composition (g/100 g autohydrolyzed mixture on oven-dry basis)
Glucan 4096 +0.78 | 41.07+1.80 | 41.96+220| 4059+1.83| 4212+0.46 | 41.15%+0.49 47.0+1.14 46.69+1.64 | 44.09+0.09| 48.47+0.34| 43.13+0.40 | 48.03+0.06
Xylan 6.97 £0.93 6.64 +1.01 4.1+0.13 2.59+0.25 1.26 +0.16 2.30+£0.13 1.52 +0.01 2.72+0.16 - 0.72+£0.10 - -
Klason lignin | 35.76 +2.63 | 37.04+1.27 | 40.72+1.67 | 39.15+2.27 | 47.44+054 | 43.17+1.06 | 44.7+0.48 40.75+0.00 | 44.09+0.96 | 4353+0.45| 47.82+0.02 | 44.56 +0.09
Liquid phase composition (g/L)
GOS 2.36 £0.16 1.35+0.16 0.47+£0.14 1.51+0.15 - 1.72+£0.04 - 1.62+0.11 0.08 £0.02 0.87 £0.03 0.89+0.01 0.8+0.01
XO0S 10.82+0.52 | 10.51+0.06| 10.15+0.29 | 13.59+0.25| 9.35%0.09 14.33+0.19 | 5.68+0.15 10.37+0.69 | 0.23%0.03 0.95+0.01 0.33+0.00 0.49 £0.01
ArOS 2.92+0.12 0.92£0.05 - 0.09 £0.01 - - - - - - - -
AcGOS 412 +£0.12 2.09 +£0.00 2.81+0.03 2.31+£0.33 3.14+£0.14 2.17 £0.08 3.72+0.01 1.54 +0.03 3.7+0.11 0.52+0.03 - -
Glucose 1.18+0.01 0.98 £0.02 2.41 £0.02 1.13+£0.02 3.06 £ 0.00 1.07 £ 0.00 2.87 £0.00 0.97 £0.02 2.11+0.01 1.23+£0.00 0.63+0.23 0.6 £0.00
Xylose 0.51+£0.03 0.50+0.01 2.98 +0.02 1.63 +0.04 4.72+£0.01 2.11+£0.02 7.17 £0.00 3.45+0.10 7.94 £0.01 2.06 £0.00 0.28 £0.09 0.41 £0.00
Arabinose 0.66 £ 0.02 0.93+0.01 2.83+0.01 1.59 +0.00 4.09 £0.00 1.76 £0.01 2.22+£0.00 1.27 +£0.03 1.08 + 0.00 0.10 £ 0.00 0.12 £0.02 0.07 £0.00
Acetic acid - - 0.17 £0.00 0.85%0.05 0.36 £0.02 1.15+0.01 0.57£0.01 2.15+0.01 0.93+0.01 4.68 +0.01 4.85 +0.66 442 +0.01
HMF 0.06 £0.01 0.01 £0.00 0.08 £0.01 0.11 £0.05 0.19 £0.07 0.14 £0.05 0.32+£0.01 0.17 £0.03 0.58 £0.02 0.21+£0.08 1.13+£0.05 1.12 £0.05
Furfural 0.05+0.31 0.05 0.06 £0.02 0.19 £ 0.06 0.30 £0.03 0.21+£0.08 0.81 £0.07 0.31+£0.07 1.77 £ 0.06 1.09 + 0.06 2.35+0.07 291 +0.04
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*

GOS: glucooligosaccharides; XOS: xylooligosacchemid\rOS: arabinooligosaccharides; AcGOS: acetlips; HMF: hydroxymethylfurfural

17



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

However, lignin content followed a typical pattefor both mixtures, up to a
temperature of 206 °C the remaining lignin in tleidsfraction increased, from this
temperature forward, lignin content decreased andcreased again under the most
severe condition (240 °C). This behavior was alsaliesd by Moniz et al. with
autohydrolyzed rice straw where until 210 °C theaining lignin was close to 100 %
of the initial amount, from 210 °C onwards showedeareased around 30 % and it
increased again for the most severe conditions. [B8¢ lignin increase is common of
autohydrolysis pretreatment due to condensatiootioees between lignin, sugars and
degradation products (HMF and F) leading to thenfttion of insoluble compounds

that are quantified as Klason lignin [9, 29].

Under most severe conditions,;€8.15) glucan and lignin represent more than 84% of
the solid fraction, and the combined amounts ofseéh&actions matched the one
contained in the raw material. These results anepawable with the results obtained by
Silva-Fernandes et al. in which at the same caytstglucan and lignin contain 85% of

the solid fraction [12].

The hemicellulose in the pretreated mixtures, ngmellan showed a steadily decrease
with the severity of pretreatment and it was thesthwlubilized fraction, since it was
totally solubilized for both mixtures at temperasihigher than 226 °C. The same was
reported by Silva-Fernandes et al. in which undestnsevere conditions 93-95% of
xylan was solubilized in liquid phase [12]. Pateké studied a different pretreatment
(dilute acid pretreatment) to solubilize the hertidese fraction in which revealed that
almost, all the hemicellulose content was hydrallyzebtained only 0.4 % in the solid
fraction. However, this pretreatment is not ecoidig, since it requires an additional

detoxification step, increasing the process casf [1
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The data described above indicate that autohydsolyetreatment in an appropriate
process for the selective fractionation of both tom@s in which showed high
hemicellulose solubilization, directly proportiontd autohydrolysis severity, while

cellulose and lignin were usually retained in thkdsfraction.

3.3.1 Composition of liquid phase resulting from autohydrolysis pretreatment

Autohydrolysis process allows substantial fracttmma of components, namely
oligosaccharides, monosaccharides, acetyl grouws fremicellulose, and degradation

products of released sugars as furfural (F) anddxyanethylfurfural (HMF).

The liquid phase composition of the two mixturesl{¥ and M2-3) is presented in
Table 3, in which the products recovered were mred in three groups:
oligosaccharides (OS), including glucooligosacatesi (GOS), xylooligosaccharides
(XOS), arabinooligosaccharides (ArOS) and acetgupgs (AcGOS); monosaccharides,
as well as glucose, xylose and arabinose; and @wproducts such as organic acids

(acetic acid) and furans (HMF and F).

Based on the previous reports [9], the concentrat{on g/L) of the liquid phase derived
principally from hemicellulose fractions. Hencee tmain compounds were XOS and
xylose. The maximal XOS concentrations (10.8 g/t 4.3 g/L) were obtained at 190
°C and 206 °C for M1-4 and M2-3, respectively, espnting 47.7 % and 58.1 % of the
total compounds presented in the liquid phase. éfbex, at these conditions of
autohydrolysis pretreatment, 47.4 % and 59.8 %wdnxsolubilization was recovered
as XOS for M1-4 and M2-3, respectively. These rtsstin be compared with reported
data in literature using single biomass as fastvgrg Paulownia hardwood in which 60
% of the identified compounds in the liquid phaseravXOS, achieved at maximal

concentration, atgof 3.99 [11], and using a mixture of biomasses#yptus, wheat
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straw and olive pruning) in which 63-68 % of xylawas recovered as
xylooligosaccharides [12]. In addition, higher xgoconcentration was obtained from
the hydrothermal treatment of mixture of lignocelic materials (Bermuda grass,
Jasmine hedges and Date palm fronds) at 200 °C imdimidual treatment of

lignocellulosic biomasses (Bermuda grass or Dalen deonds) [13]. Nevertheless,
direct comparison with the literature is not sthafigrward since composition and nature

of biomass sources are not same.

At more severe conditionsyS4.15 the concentration of XOS decreased untithred
0.33 g/L and 0.49 ¢g/L for M1-4 and M2-3, respediveXOS started to degrade into
xylose, in which M1-4 achieved 7.9 g/L of maximallose concentration at 226 °C

(So=4.60) and M2-3 obtained 3.5 g/L a=34.38.

The highest xylan solubilization as a sum of xylasel XOS (62.2 % and 68.6 % for
M1-4 and M2-3, respectively) was obtained @i = 206 °C for both mixtures. This
result is consistent with Romani et al. [9] in whiat mild conditions (fax=210 °C)

76 % of xylan can be recovered as xylose and XOS.

Consequently, the highest furfural concentratiors @& g/L for M1-4 and 2.9 g/L at
So= 4.16. The highest HMF concentration was also doatnthe same severity, in which
1.1 g/L was obtained for both mixtures. Acetic a@sed the maximum apS 3.94 of
4.7 g/lL and 4.9 g/L for M1-4 and M2-3, respectiveljhe harsher conditions of
pretreatment led to an increase of inhibitor conmoisy as F, HMF, and acetic acid. The
concentration of F is higher than HMF, becausefitseis attributed to the degradation

of xylose while HMF is obtained through C6 degramtatnamely glucose.

As mentioned before, glucose was also presentwnalmounts varying between 0.6 to

3.1 g/L for M1-4 and 0.6 to 1.2 g/L for M2-3, whichpresented on average 3.6 % of
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glucan solubilization for M1-4 and 1.7 % for M2-Bhe results obtained in this work
are in agreement with reported data ugtaglownia tomentosa wood in which <4 % of
glucan was recovered in liquid phase [11]. As saeefable 3, M1-4 and M2-3 showed
differences in XOS and xylose concentration. Thi fvas probably influenced by the
intrinsic features of lignocellulosic biomass, €nM1-4 is composed by a higher
percentage of residues from bush (as broom, minoasgueja and rockrose) than M2-
3. Besides oligosaccharides, sugar degradationuptedacetic acid, extractives and
phenolic compounds are also solubilized to liqulthge (or autohydrolysis liquor)
during hydrothermal treatment [30]. The presencéhete non-saccharide compounds
in the hydrolysate decreased the purity of xylam@mccharides which should be
removed by physical and/or chemical means [31]. difference observed between the
two lignocellulosic mixtures could be related tdigher percentage of extractives in
M1-4 than M2-3. In fact, the solubilized fractionalculated as 100-SY) during the
autohydrolysis treatment was higher in M1-4 than-3/'able 3) showing differences
in their fractionation. The main fractions recowkne the liquid phase, xylose and XOS,
can be used for value-added compounds productiotyldsl, lactic acid and ethanol

obtained by fermentation and/or directly as prebif32-34].

As previously reported, atyhx = 206 °C, high percentages of hemicellulose were
removed but also primary degradation products (@ lAMF) were kept at relatively
low levels, which could be achieved by applyingtggatment conditions of moderate
severity. Although pretreatment improves enzymaiicess to cellulose for further
fermentation, it generates byproducts decompositidnch may affect negatively

fermentation [35].
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3.4. Energy production of pretreated M 1-4 and M 2-3 mixtures

HHVs of pretreated mixtures were analyzed in ortterevaluate the influence of
pretreatment and compare their behavior as soktl fThese results are displayed in
Figure 3. The untreated mixtures were analyzedsaweved HHVs of 17.23 MJ/kg and
17.26 MJ/kg for M1-4 and M2-3, respectively. HHV pifetreated samples increased
with severity, achieving maximal values of 20.4 kgJand 20.5 MJ/kg, for M1-4 and
M2-3, respectively. The results obtained in thisrkvare in agreement with reported
data using softwood chips in which the HHV of thiggimal wood was 17.9 MJ/kg and
with temperature increase (autohydrolysis pretreatinreached 20.5 MJ/kg [36].
Leaching processes with water and acetic acid aisie used to increase the HHVs of
six different biomasses (fast growing timber spe@ad oil pal biomass), achieving

values in the range of 16.52-18.47 MJ/kg [37].

This behavior is related to the increase of ligeamtent in the samples (Table 3) as a
consequence of temperature rise, since lignin pteskigher calorific value (20.4
MJ/kg) than cellulose (16.5 MJ/kg) and hemicellel¢$3.9 MJ/kg) [36, 38]. The HHVs
are higher for raw materials as hardwoods and saoftls than for non-wood biomass

being linearly related with lignin content [39].

The HHYV obtained in this work showed suitability thiese mixtures as solid biofuels
when compared with other biomasses [40]. Nevertisetee use of these mixtures as
solid biofuel for energy content in combustion @eg or the alternative use as glucose
source, for liquid biofuels production should beetally analyzed and evaluated, in

order to the overall net benefit [36].

3.5. Enzymatic saccharification of pretreated M 1-4 and M 2-3 mixtures
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Two mixtures of pretreated lignocellulosic biomagsautohydrolysis were also suitable
for glucose production, the main carbon sourcertmlypce several industrial products
(as bioethanol and chemicals). Thus, cellulosictiva can be saccharified for sugar
production using enzymes. Autohydrolysis pretreatmenproves the enzymatic
saccharification due to the structural alteratias, result of hemicellulosic fraction
solubilization. In this sense, the solid fractidstabined from autohydrolysis was used as
substrate in the assays of enzymatic hydrolys@der to evaluate the susceptibility of
pretreated biomass for glucose production. Timesmwf glucose yield for the two
mixtures in the selected autohydrolysis conditisnglied in this work (§ 3.71 - 4.82)

is displayed in Figure 4 (a) and (b). As seen iguFé 4, kinetics of enzymatic
hydrolysis followed a typical pattern. Therefor@lues of glucose yield obtained from
enzymatic hydrolysis in this set of experimentsenited to the Holtzapple empirical

equation (3) [41]:

3)

t
t+ ti)2

Yer = Yemax X

Where Yz is the glucose yield at tim& Yguax iS the maximum glucose yield
achievable at infinite reaction time, ahg (h) measures the reaction time needed to

reach 50% of glucose yield.

The representation of calculated and experimerat& (Figure 4) and the values of R
(Table 4) showed the goodness of adjustment toethpirical model. These results
showed that the severity of pretreatment incredsedglucose yield and reduced the
time of hydrolysis. The reaction time needed tacihe80% of glucose yield () was

lower for M1-4 than for M2-3, in all the cases, ept for the lowest (190 °C) and

highest (240 °C) Jiax. As evident in Figure 4, the harshness of pratieat had a
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positive effect on the susceptibility of pretreateidmass to enzymatic hydrolysis.
Glucose yield increased from 45.30 % to 89.94 % faoh 42.46 % to 81.78 %, for
M1-4 and M2-3, respectively, at 72h of enzymatidrimyysis (Table 4). Considering
only autohydrolyzedeucalyptus globulus wood, Romani et al. [42] reported a glucose

yield of 100% at Tjax> 210 °C.

There was a greater difference of glucose yielBak 196 °C between M1-4 (45.09%)
and M2-3 (73.70%) at 72h. On the other hand, M&athed glucose yield higher than

M2-3 at Tuax > 226 °C.

Table 4- Glucose concentration,z& and glucose yield, &7, at reaction time of 72 h,
maximal glucose yield, duax, time needed to achieve Y2 ofwax, tizand coefficient
of determination R

Tuax (°C) /'S Substrate Gr2(g/L) Y 672(%) Y amax (%0) ty, (h) R

M1-4 10.04 45.30 73.21 45.68 0.98
190 or 3.71

M2-3 9.44 42.46 48.15 10.47 0.95

M1-4 10.26 45.09 51.86 11.67 1.00
196 or 3.93

M2-3 16.21 73.70 100.0 39.11 0.96

M1-4 13.81 60.18 71.08 13.54 1.00
206 or 4.15

M2-3 16.47 73.72 100.0 35.61 0.97

M1-4 19.91 77.97 85.33 5.77 1.00
216 or 4.38

M2-3 21.15 85.54 100.0 23.45 0.97

M1-4 21.51 89.82 92.26 5.98 0.99
226 or 4.60

M2-3 19.59 74.43 87.26 21.25 0.96

M1-4 21.11 89.94 99.87 6.07 1.00
240 or 4.82

M2-3 21.34 81.78 81.28 1.93 0.99

An increase in the autohydrolysis severity)(8om 3.71 to 4.82 allowed glucose
concentration to increase from 10 g/L to 21 g/lpragimately, at 72 h of hydrolysis for

the two mixtures (Table 4). The similar behaviosweported by Dominguez et al. [11],
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using Paulownia tomentosa as biomass, where an increase in the autohydsolysi
severity from $ 3.31 to 4.82 allowed a five-fold increment in gise concentration to

27.5g/L at 120 h.

In general, enzymatic hydrolysis is an efficienbgess without generation of any toxic
waste and does not contain fermentation inhibitetsch reveals a promising strategy

to obtain higher glucose yield [43].

3.6. Overall balance of M1-4 and M 2-3

Considering the results obtained in this studyufgdg compares the fractionation effect
of autohydrolysis pretreatment on the two feedstatkxtures. The highest
hemicellulose solubilization (as XOS and xylosesvadserved at yax = 206 °C, as
glucose yield of enzymatic hydrolysis higher th&@§6for both mixtures (Table 4). As
seen in Figure 5, the value-added compound obtamedparated streams was of 19.1
kg of glucose for M1-4 and 24.1 kg of glucose fo28l Overall yield of glucose for
M1-4 and M2-3 was 50% and 63%, respectively. Thesalts can be compared with
reported data in literature using the same pretreat, in which 76% and 63% of
glucose yield at &= 4.13 were achieved from brewers’s spent grain @rd husk,
respectively [44]. At the same condition, overaéllg of xylose was 62% and 69% for
M1-4 and M2-3, respectively. The results obtained Xylose yield can be favorably
compared with data reported by Nitsos et al., tihined around 60% vyield (S.8 -
4.01) for poplar and grapevine, respectively [T9]e data described above indicate that
autohydrolysis at 206 °C is an appropriate prodesghe selective fractionation of
mixtures obtaining a solid fraction composed maibjy glucan and lignin, and high

solubilization of hemicellulose into the liquid e with minimum formation of
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degradation products. Cellulose was subjected nyreatic hydrolysis and could be
further processed for biological conversion intofbels, biochemical or biomaterials as
single or in combination with sugars obtained frilguid phase. The remaining lignin
can simply be used for co-generation of energy logefinery context or exploited for

other high value applications.

4. Conclusions

This work provides a comparative study of two bismaixtures in order to supply a
lignocellulosic biorefinery throughout the year,osling a suitable solution for the
utilization and valorization of forest and marginkEnd resources in Portugal.
Autohydrolysis was used for the fractionation oédd biomass mixtures, showing
differences on hemicellulose solubilization andyenatic hydrolysis of cellulose into
glucose. Nevertheless, under selected conditiomsimal hemicellulose recovery as
xylooligosaccharides and xylose was achieved far mixtures, allowing to operate at
same conditions independently of selected biomastira. The proposed multi-supply
raw materials biorefinery increases the sustaiitgtwf the value chain, in terms of the
biomass (not pressure in same renewable resowandsvoids forest fires. In addition,
an environmentally-friendly pretreatment is used tfee fractionation of multi supply
biomass in order to coproduce solid biofuels, dagxharides and glucose which may

be further converted to liquid biofuels or to ptath chemicals.
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Figure captions

Figure 2- Flow chart of whole process and analytical methagd in this work.

Figure 2- Heating and cooling temperature profiles of autivblysis assay carried out
at = 3.71 and 4.82. fer.temperature of referencé)0 °C.

Figure 3- Calorific value (MJ/kg) of raw material and pretred biomasses (M1-4 and
M2-3) at different Tyax .

Figure 4- Yield of glucose ¥ (%) at autohydrolysis conditionsgdx) in the range 190
°C to 240 °C for M 1-4 (a) and M 2-3 (b).

Figure 5- Overall balance of M1-4 (a) and M2-3 (b) for autdiolysis and
saccharification processing atudx = 206 °C (results expressed in kg/100kg raw
material) oven dry basis.
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Highlights

Efficient fractionation of two biomass mixtures was achieved by autohydrolysis
* Thehighest xylan recovery was obtained at severity of 4.15 for two mixtures
»  Severity of treatment increases High Heating Values of pretreated biomasses

e The increase of severity improves the enzymatic hydrolysis of pretreated
mixtures



