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a b s t r a c t

Simulation is of primal importance in the prediction of the produced power and automatic fault
detection in PV grid-connected systems (PVGCS). The accuracy of simulation results depends on the
models used for main components of the PV system, especially for the PV module. The present paper
compares two PV array models, the five-parameter model (5PM) and the Sandia Array Performance
Model (SAPM). Five different algorithms are used for estimating the unknown parameters of both PV
models in order to see how they affect the accuracy of simulations in reproducing the outdoor behavior
of three PVGCS. The arrays of the PVGCS are of three different PV module technologies: Crystalline silicon
(c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/mc-Si:H).

The accuracy of PV module models based on the five algorithms is evaluated by means of the Route
Mean Square Error (RMSE) and the Normalized Mean Absolute Error (NMAE), calculated for different
weather conditions (clear sky, semi-cloudy and cloudy days). For both models considered in this study,
the best accuracy is obtained from simulations using the estimated values of unknown parameters
delivered by the ABC algorithm. Where, the maximum error values of RMSE and NMAE stay below 6.61%
and 2.66% respectively.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The photovoltaic (PV) market has grown rapidly in recent years
worldwide, especially in developed countries, where this growth
has been exponential. One of the main reasons for the high growth
of the PV industry is the reduction of the cost of PV generation as
well as the improvement of the quality and performance of the
electronics associated with these generation systems. The moni-
toring and regular performance supervision on the functioning of
grid-connected PV systems is basic to ensure an optimal energy
harvesting and reliable power production at competitive costs.
Detecting faults in PV systems can minimize generation losses by
reducing the time inwhich the system is working below its point of
maximum power generation. In this context, the development of
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accurate automatic fault detection procedures is crucial [1e3]. Main
faults in PV systems are caused by short circuits or open circuits in
PV modules, inverter disconnections and the presence of shadows
on the PV array plane [4e6].

On the other hand, the integration of grid-connected PV systems
also requires the capability of managing the uncertainty related to
the fluctuating energy output inherent to these generation plants.
For this purpose, it is very important to develop accurate fore-
casting models in order to achieve an easy integration of PV gen-
eration plants into traditional power distribution systems [7,8].

Simulation plays a crucial role in both outdoor behavior fore-
casting and automatic fault detection of grid-connected PV sys-
tems. The precision of simulation results depends on the models
used for the main components of the PV system, especially the PV
module models [9,10]. Moreover, the accuracy of the PV module
models is strongly affected by the way of extracting their unknown
parameters. Several researchworks discussed the topic of PVmodel
parameters estimation, by applying different methods based on
analytical [11], numerical [12,13] and bio-inspired optimization
solution [14e20].
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Previous works investigated the accuracy of PV module models
focusing on the I-V curve of the PV module [21e24] or on the I-V
characteristic of a PV array [25]. The objective of this study is to
compare two PV array models to analyze the simulation of grid-
connected PV systems in real conditions of work. The accuracy of
the simulations in reproducing the actual behavior of the PV system
is evaluated by means of the results obtained from different
parameter extraction techniques based on five algorithms: Lev-
enbergeMarquardt algorithm (LMA), genetic algorithm (GA), par-
ticle swarm optimization (PSO), differential evolution (DE) and
artificial bee colony (ABC) algorithm.

The two PV array models included in this study are the five-
parameter model (5PM) [26,27] and the Sandia Array Perfor-
mance Model (SAPM) developed by Ref. [28]. Three real grid-
connected PV systems are included in the study to validate the
accuracy of the models. Each one of the PV systems is formed by PV
modules of different technologies: Crystalline silicon (c-Si), amor-
phous silicon (a-Si:H) and micromorph silicon (a-Si:H/mc-Si:H) in
order to outline differences in the prediction due to solar cell type.

The remainder of the paper is organized as follows: In Section 2,
the PV systems included in the study are described. The PV array
models and the parameters extraction techniques used in this
study are summarized in Sections 3 and 4 respectively. Results
obtained are shown in Section 5. Finally, conclusions are detailed in
Section 6.
2. Description of the PV systems

Three grid connected PV systems formed by PV modules of
different technologies were used in this study.

The first PV system is located in San Sebasti�an (Spain). The PV
array is formed by 30 c-Si PV modules with a peak power of
4.8 kWp connected to a single phase inverter.

The other two PV systems are sited in Ja�en (Spain). Each PV array
is connected to single phase inverter with AC nominal powers of
1.2 kW. One of the PV arrays is formed of 15 a-Si:H PV modules,
rated 60-W peak, and the second PV array consists of 8micromorph
PV modules, rated 110-Wp each. Main characteristics of the PV
systems and PVmodules forming the arrays are given in Table 1 and
Table 2 respectively.

The following parameters were monitored in the three PV
arrays: Current, voltage, power (DC and AC), cosine (4), frequency,
irradiance and module temperature with a sampling rate of
5 min.

In the PV system located in San Sebasti�an, the irradiance was
measured by using a calibrated solar cell installed in the plane of
the modules. The module temperature was measured using a Pt100
sensor fitted to the back of the module, in the middle of a cell. The
Table 1
PV systems description.

Main Parameters PV system 1

PV Module c-Si
Location San Sebasti�an (Spain)

Latitude: 43� 170 9.800 N
Longitude: 1� 590 55.4 00 W
Altitude: 41 m.

Nominal power 4.8 kWp
Modules per inverter 30
Modules in series (Nsg) 15
Strings in parallel (Npg) 2
Tilt - Orientation 20� e 9� East
Inverter Ingecon SUN 5

Single-phase inverter
5 kW
internal data acquisition card of the inverter recorded both
parameters.

The monitoring system included in the PV arrays located in Ja�en
consists of three SMA Sunny SensorBox devices, installed in the
same plane as the PV generators, capable to measure solar radia-
tion, module and ambient temperatures together with wind speed.
Two Pt100 RTD were pasted to the rear surface of the modules
under test to measure the cell temperature in each PV array. An
anemometer and a temperature probe were also available. All
sensors were supplied by SMA and connected to three Sunny
SensorBox devices. An additional irradiance sensor, aKipp & Zonen
CMP11 pyranometer, was also installed and connected to one of the
latter devices. The three of them were serially connected to the
inverters via a RS-485 bus and then to a SunnyWebbox, fromwhich
environmental and operation could be retrieved.
3. PV array models

As it has been previously mentioned, the two PV array models
included in this study are the 5PM [26,27,29] and the SAPM
developed by Ref. [28].

The 5PM, also called one diode model, is one of the most used in
simulation of PV modules and arrays. Moreover, root mean square
errors (RMSE) of 4.26% [3], 4.39% [30] and 5.12% [31] were reported
in the estimation of the energy produced by grid-connected PV
systems in simulations of dynamic behavior of c-Si PV generators by
using thismodel. On the other hand, simulations of a-Si PV arrays by
using the SAPM model have obtained errors below 4.1% on sunny
days [32]. In our approach, the model parameters are calculated by
means of parameter extraction methods having as main input data
daily actual profiles of module temperature, irradiance on the PV
array plane and output voltage and current of the PV array.
3.1. Five-parameter model

The 5PM of a solar cell includes a parallel combination of a
photogenerated controlled current source Iph, a diode, described by
the well-known single-exponential Shockley equation [33], a shunt
resistance Rsh and a series resistance Rs modeling the power losses.

The I-V characteristic of a solar cell is given by an implicit and
nonlinear equation as follows:

I ¼ Iph � Io

 
e

�
VþRsI
nVt

�
� 1

!
�
�
V þ RsI
Rsh

�
(1)

where Io and n are the reverse saturation current and ideality factor
of the diode respectively and Vt is the thermal voltage.
PV system 2 PV system 3

a-Si:H/mc-Si:H a-Si:H
Ja�en (Spain)
Latitude: 37� 470 14.3500 N
Longitude: 3� 460 39.73 00 W
Altitude: 511 m
880 Wp 900 Wp
8 15
4 3
2 5
30� e 0� South 35�e 0� South
Sunny Boy SB1200
Single-phase inverter
1.2 kW



Table 2
Main parameters of PV modules.

PV module Parameters PV system 1 PV system 2 PV system 3

Isc (A) 9.46 2.5 1.19
Voc (V) 22.2 71 92
Current at Maximum Power Point: Impp (A) 8.65 2.04 0.9
Voltage at Maximum Power Point: Vmpp (V) 18.5 54 67
Temperature Coefficient of Voc bVoc (V/�C) �0.084 �0.248 �0.280
Temperature Coefficient of Isc aIsc (A/�C) 4.60 � 10�3 1.40 � 10�3 0.89 � 10�3
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Eq. (1) can also be written as follows,

I ¼ Iph � Id � Ish (2)

where Id and Ish are the currents across the diode and shunt resis-
tance respectively.

The photogenerated current can be evaluated for any arbitrary
value of irradiance, G, and cell temperature, Tc, by using the
following equation:

Iph ¼ G
G*Isc þ ki

�
Tc � T*c

�
(3)

where G* and Tc* are respectively the irradiance and cell temper-
ature at standard test conditions (STC): 1000 W/m2 (AM1.5) and
25 �C, ki (A/�) is the temperature coefficient of the current and Isc
(A) is the solar cell short circuit current at STC.

Some PV modules are formed by parallel strings of solar cells
connected in series. However, most PV modules include one single
string of solar cells. Therefore, the model of the solar cell can be
scaled up to the model of the PV module using the following Eqs.
(4)e(8):

IM ¼ NpI (4)

IscM ¼ NpIsc (5)

VM ¼ NsV (6)

VocM ¼ NsVoc (7)

RsM ¼ Ns

Np
Rs (8)

Where subscript M stands for ‘Module’, Ns is the number of solar
cells connected in series and Np is the number of parallel branches
of solar cells forming the module.

Then, the output current of the PV module, IM, is obtained
rewriting Eq. (2) as follows:

IM ¼ Np

�
Iph � IdM � IshM

�
(9)

The diode current, IdM, included in Eq. (9) is given by:

IdM ¼ IoM

"
e

�
VMþIMRsM

n NsVt

�
� 1

#
(10)

where VM (V) and IM (A), are the output voltage and current of the
PV module respectively.

The saturation current of the diode IoM (A) depends strongly on
temperature and it is given by:
IoM ¼ IscMe

�
Ego
Vto

�Eg
Vt

�

Np

 
e

�
VocM

n NsVto

�
� 1

!
 
Tc
T*c

!3

(11)

where IscM and VocM are the short-circuit current and the open-
circuit voltage of the PV module respectively, Vto is the thermal
voltage at STC, Eg the energy bandgap of the semiconductor and Ego
is the energy bandgap at T ¼ 0 K.

The value of the energy bandgap of the semiconductor at any
cell temperature Tc is given by:

Eg ¼ Ego � agap T2c
bgapþ Tc

(12)

where agap and bgap are fitting parameters characteristic of the
semiconductor.

Finally, the current IshM, also included in Eq. (9) is given by the
following equation:

IshM ¼ VM þ IMRsM
NpRshM

(13)

The same procedure can be applied to scale up the model of the
PV module to the model of a PV array by taking into account the
number of PV modules connected in series by string, Nsg, and the
number of parallel strings in the PV array, Npg [27].
3.2. SAPM model

The SAPMmodel is an empirical model defined by the following
equations [28]. The PV array power at the maximum power point
(MPP), Pmp (W), is evaluated as follows:

Pmpg ¼ Impg � Vmpg (14)

where, Impg (A) and Vmpg (V) are the coordinates of the MPP of the
PV array.

The model uses the normalized irradiance, Ee, defined as
follows,

Ee ¼ G
G* (15)

Then, the current and voltage of the MPP of the PV array can be
calculated by using the following equations:

Impg ¼ Npg

h
Impo

�
C0Ee þ C1Ee

2
��

1 þ aImp

�
Tc � T*c

��i
(16)
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Vmpg ¼ Nsg

h
Vmpoþ C2NsdðTcÞlnðEeÞ þ C3NsðdðTcÞlnðEeÞÞ2

þ bVmpEe
�
Tc � T*c

�i
(17)

dðTcÞ ¼ nkðTc þ 273:15Þ=q (18)

where, Impo (A) and Vmpo (V) are the PV module current and
voltage of the MPP at STC, C0 and C1 are empirically determined
coefficients (dimensionless) which relate Imp to the effective irra-
diance, C0 þ C1 ¼ 1, aImp (�C�1) is the normalized temperature co-
efficient for Imp, C2 (dimensionless) and C3 (V�1) are empirical
coefficients which relate Vmp to the effective irradiance, d(Tc) is the
thermal voltage per cell at temperature Tc, q is the elementary
charge, 1.60218 � 10�19 (coulomb), k is the Boltzmann’s constant,
1.38066� 10�23 (J/K) and bVmp (V/�C) is the temperature coefficient
for module Vmp at STC.

The models contain several coefficients and parameters that
must be calculated because are not routinely provided by the PV
module’s manufacturer. For this purpose, we used the parameter
extraction techniques described in the following section.
4. Parameter extraction techniques

The parameter extraction techniques employed in this study are
based on five optimization algorithms that evaluate the model
parameters of the two PV array models in real conditions of work,
using as inputs daily profiles of solar irradiance and cell tempera-
ture together with monitored DC output current and voltage.

For the five-parameter model of the PV module, the model pa-
rameters: Iph, Io, n, Rs, and Rsh are evaluated by using Eqs. (3)e(13)
and actual daily profiles of monitored current and voltage at the
DC output of the three PV arrays included in the study, together
with actual daily profiles of G and Tc at the specific locations
detailed in Section 2.

Regarding the SAPM, the same idea is considered for the esti-
mation of the empirical coefficients of themodel parameters: C0, C1,
C2, C3, n, aImp and bVmp using Eqs. (15)e(18).

The objective function for optimization using metaheuristic al-
gorithms is defined as the RMSE of the error of all data points given
by Eq. (19) [19,34], where the N represent the number of measured
data, Vi and Ii represent the measured voltage and current of the
data point i.

SðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

½Ii� IðVi; qÞ�2
vuut (19)

where q ¼ f (Iph,Io,n,Rs,Rsh) for the five parameter model and q ¼ f
(C0, C1, C2, C3, n, aImp, bVmp) for the SAPM.

The parameter extraction algorithms implemented in MATLAB/
Simulink environment are executed until function S(q), given by Eq.
(19), is minimized. Figs.1 and 2 show the Simulink block diagram of
the 5PM and SAPM used in the parameter extraction procedures.
Thus, the result of the parameter extraction algorithms is a set of PV
module parameters for the 5PM and a set of empirical parameters
for the SAPM that allow the best approach to the real daily evolu-
tion of DC output current and voltage of the PV arrays.

Two parameter extraction methods are used in this study. The
first method is a numerical solution based on Lev-
enbergeMarquardt algorithm (LMA) detailed in a previous work
[12]. The second method is based on different metaheuristic algo-
rithms (GA, DE, PSO and ABC) which are described below.
4.1. Genetic algorithm

The Genetic Algorithm (GA) developed by John Holland in the
1970s is a technique for solving constrained and unconstrained
optimization problems inspired from the biological evolution.

The optimization function is encoded as arrays of binary char-
acter strings representing the chromosomes. The fitness of chro-
mosomes in the population is evaluated by the objective function
for each iteration. Fitter chromosomes are stochastically selected in
terms of the elitist strategy, which ensures the progeny chromo-
somes inherit the best possible combination of the genes of their
parents. Some of the chromosomes in the population are modified
via genetic operators like crossover and mutation, forming new
chromosomes for the next generation. The reason why GA applies
crossover and mutation may lie in their capability of avoiding local
optima in the searching process. Several researches applied GA to
extract the parameters of a PV model from measured IeV curves
[17,35].

In this paper, the genetic algorithm available in the Global
Optimization toolbox of MATLAB has been used for minimizing the
objective function Eq. (19) [17].
4.2. Differential evolution

Differential evolution (DE) was proposed by Rainer Storn and
Kenneth Price in 1997 [36]. Similar to other evolutionary algo-
rithms, DE is a population based, derivative-free function optimizer.
An advantage of DE over GA is that DE treats possible solutions as
real-number strings, and thus encoding and decoding are not
required.

The target vector x ¼ [x1, x2, …, xi] where i ¼ 1,2, …, NP repre-
sents a population of NP random candidate solutions. The vector of
the ith particle, xi indicates a series of parameters to be extracted,
e.g. xi ¼ [Iph,Io,n,Rs,Rsh] for the one-diode model and xi ¼ [C0, C1, C2,
C3, n, aImp, bVmp]. For a D-dimension optimization problem, a
random candidate solution is given by:

xlowj � xi;j � xupj (20)

where xj
low and xj

up are the lower and the upper limits of the jth
vector component respectively, i ¼ 1, 2, …, NP and j ¼ 1, 2, …, D.

After the initialization DE enters a loop of evolutionary opera-
tions: mutation, crossover and selection considering the maximum
number of generations tmax, where t ¼ 1, 2, …, tmax.

In the mutation step, for each xi at generation t, three vectors xr0,
xr1 and xr2 are chosen randomly from the set {1, 2, …,NP}\{i} to
generate a donor vector by:

vtþ1
i ¼ xtr0 þ F

�
xtr1 � xtr2

�
(21)

where F is a differential weight, known as scaling parameter, usu-
ally ranges in the interval [0, 1].

The crossover operation is used to decide whether to exchange
with donor vector. By generating a random integer index Jr 2 [1, D]
and a randomly distributed number ki 2 [0, 1], the jth dimension of
vi, namely ui,j, is updated according to:

utþ1
i;j ¼

(
vtþ1
i;j ; ki � CR or i ¼ Jr
xti;j; ki >CR and isJr

(22)

where CR is a crossover probability in the interval [0, 1]. The
crossover scheme formulated by Eq. (22) used in the present work
is called binomial strategy.

The selection operation, selects the best one from the parent



Fig. 1. Simulink block diagram for the 5PM.

Fig. 2. Simulink block diagram for the SAPM.
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vector xi
t, and the trial vector ui

tþ1 solution with the minimum
objective value, using the following expression:

xtþ1
i ¼

(
utþ1
i ; f

�
utþ1
i

� � f
�
xti
�

xti ; othewise
(23)

where f(x) is the fitness function to be minimized. Therefore, if a
particular trial vector is found to result in lower fitness value, it will
replace the existing target vector; otherwise, the target vector is
retained.

4.3. Particle swarm optimization

Particle swarm optimization (PSO) is a population based sto-
chastic optimization technique developed by Kennedy and Eber-
hart [16] and is inspired by the social behavior of bird flocking or
fish schooling.

PSO search possible solution in a search space by adjusting the
trajectories of particles. The best position encountered of the par-
ticle i is designed by pbesti. In a swarm of particles, there are N local
best positions, and the best solution is denoted by gbest.

The velocities and positions of particles, as well as the algorithm
parameters (inertia weight w and learning parameters a, b) are
firstly initialized. In an iteration t, thefitness of particles is evaluated
individually by theobjective function. Byattracted toward pbesti and
gbest, the particle moves according to the following expression:

xtþ1
i ¼ xti þ vtþ1

i (24)

where vitþ1 is the velocity, expressed as:
vtþ1
i ¼ wvti þ aε1

�
xti � gbestt

�þ bε2
�
xti � pbestti

�
(25)

a ¼ 1.5, b ¼ 2. The random vectors 31 and 32 are in the range [0,
1]. The w is the inertia weight, used to balance global and local
search abilities, it is considered constant and set equal to 0.9.

Finally, lower and upper boundaries are set to ensure that
particles are within the predetermined range. The PSO will
continue to search for better solutions until it meets the stopping
criterion.
4.4. Artificial bee colony algorithm

The artificial bee colony algorithm (ABC) is an optimization
algorithm inspired by the natural foraging behavior of honey bees.
It was successfully applied in the parameter extraction of solar cell
models [19,34]. In the ABC, there are food sources representing the
solutions of optimization problems and honey bees (classified into
employed bees, onlooker bees and scout bees) representing the
operations to the solutions. The employed bees investigate po-
tential food sources and share informationwith onlooker bees. The
food sources of higher quality will have higher possibility to be
selected by onlooker bees. If the quality of the employed bees’ food
sources is relatively low, they will change to scout bees to
randomly explore new potential food sources. Consequently, the
exploitation is promoted by employed and onlooker bees while the
exploration is performed by scout bees. The implementation of the
ABC algorithm in MATLAB is carried out by following the same
steps of given in the previous works [19,34,37].



Table. 4
Lower and upper boundaries selected for each PV module model parameter.

C0 [0e2] Iph [A] [0e10]
C1 [�1e1] Io [A] [10�7e10�11]
C2 [�10e10] n [1e2]
C3 [�10e100] Rs [U] [0e20]
aImp [�C�1] [10�4e10�2] Rsh [U] [50e105]
bVmp [V/�C] [�1e0]
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5. Results

The results of simulation of grid-connected PV systems in real
conditions of work were obtained under different weather condi-
tions: clear sky, semi-cloudy, and cloudy weather. The two PV array
models described above were used for forecasting the output po-
wer of the three different PV systems using the extracted param-
eters delivered by the five algorithms.

The adjustable parameters chosen for the GA, DE, PSO and ABC
algorithms and the lower and upper boundaries selected for each
parameter are summarized in Tables 3 and 4.

The optimization algorithms used in the parameter extraction
techniques evaluate the model parameters of the PVmodule; Iph, Io,
n, Rs, Rsh, in case of the 5PM, and C0, C1, C2, C3, n, aImp, bVmp, in case of
SAPM.

In the case of using the extraction method based on LMA, an
average number of 10 iterations are needed in order to find a set of
solar cell model parameters for an input data set corresponding to
one day of real operation of the PV array. On the other hand, for the
extractionmethod relied on themetaheuristic algorithms (GA, PSO,
DE and ABC) the average number of iterations is much higher, by
around 500 iterations are needed.

Moreover, the parameter extraction methods were applied for
each sample day separately, in order to get the optimal set of pa-
rameters of the two PV models that allows reproducing the real
behavior of the PV systems with best accuracy. As the extracted
parameters values obtained by the different algorithms are very
close to each other, it is decided to show the mean value of each
extracted parameter. The set of the extracted parameters are listed
in Tables 5 and 6.

In order to present the best variety of results, and see the per-
formance of the two models using real conditions of solar irradi-
ance and cell temperature, it was chosen to display the DC output
current evolution over the course of a clear sky day for PV system 1,
a semi-cloudy day for PV system 2 and a cloudy day for PV system 3.

Figs. 3e8 show the measured DC output current of the three PV
systems, compared with the simulation results obtained with the
two PV array models using the extracted set of parameters esti-
mated by the five optimization algorithms considered in this study.

As it can be seen in the figures, a good agreement is always
found between themeasured data and the SAPM simulation curves,
while the curves obtained with the 5PM are less close to the real
monitored curve. Moreover, it is found that a better agreement
between real and simulated curve is always reached in clear sky
days rather than in cloudy days. It is qualitatively noted that the
worse the weather conditions, the more difficult is for the models
to approximate real data as expected.

By comparing the optimization algorithms used for the esti-
mation of the unknown parameters of the two PV array models, it
can be clearly seen that the metaheuristic algorithms provide good
results compared to the LMA in all weather conditions and for both
PV models.

These considerations are confirmed by values of errors
Table. 3
Selected parameters of each algorithm

Algorithm parameters GA PSO DE ABC

Population (colony) size, (NP) 100 100 100 100
Inertia weight, (w) e 0,9 e e

a and b e 1.5 and 2 e e

Crossover probability (CR) e e 0.4 e

Number of onlooker bees e e e 50
Limit of scout bees e e e 420
Maximum number of iteration 1000 1000 1000 1000
calculated for the two PVmodels given in Tables 7 and 8. The values
quantify discrepancies between measured data (DC output current,
voltage and power) versus simulated ones predicted by the two PV
array models using the five algorithms (LMA, GA, PSO, DE and ABC).
Two metrics were used: The Route Mean Square Error (RMSE) [32]
and the NormalizedMean Absolute Error (NMAE) [10]. For the error
calculation an irradiance filter was applied to the data set. Only the
data corresponding to irradiance values above 200 W/m2 were
considered, since the inverters start working in these conditions.
Below this irradiance value, the PV systems are in an open circuit
configuration, and the resulting values are misleading.

The DC output power of the PV array is obtained as a product of
current and voltage in both real and simulated results.

As a general trend, the errors obtained in the case of SAPM
model were smaller than in the case of the 5PM for all PV systems
and weather conditions regardless of the solar cell technology.
Similarly, for each PV system the error decreases with improving
weather conditions: The error for clear sky day was smaller than for
semi-cloudy day, while for cloudy day the largest discrepancy was
always found, as anticipated from the inspection of Figs. 3 e 8.

The maximum values of RMSE and NMAE obtained for the
output power using the SAPM model were 6.02% and 2.40%
respectively. These values were provided by simulations based on
LMA of the PV system 1 with c-Si PV modules in a cloudy day.
Nevertheless, for the PV systems 2 and 3 based on different PV
module technologies, the RMSE and NMAE errors obtained for DC
output power were below 4% and 1.86 %.

On the other hand, in the simulations based on the 5PM the
maximum values of RMSE and NMAE obtained regarding the DC
output power were increased up to 13.55% and 5.30% for PV system
1 based on LMA. However, for the PV systems 2 and 3, even based
on the LMA, the obtained values of RMSE and NMAE were 6.99%
and 3.29 %.

The accuracy of the PV module models in reproducing the
behavior of the PV array under outdoor conditions of solar irradi-
ance and cell temperature depends also on the used methods for
parameters estimation. As it can be seen from Tables 7 and 8, the
metaheuristic algorithms provide lower values of RMSE and NMAE
than the numerical traditional method based on the LMA.

Considering the SAPM, the passage from using the LMA to GA as
a main algorithm of the parameter extraction, reduces the
maximum values of RMSE and NMAE of the DC output power to
5.84% and 2.35% taking into account all the PV systems andweather
conditions. This passage from LMA to GA also affects the accuracy of
the 5PM, where the maximum values of RMSE and NMAE of the DC
output power were reduced to 11.23% and 4.12% respectively.

The best accuracy of simulations using the SAPM was obtained
by using the ABC algorithm for the estimation of the unknown
parameters. The greatest RMSE and NMAE values obtained
regarding the DC power of the PV system 1 were 5.78% and 2.26%.
Otherwise for PV system 2 the errors values don’t exceed 3.13% and
1.61%, and for PV system 3 the best accuracy is achieved, whatever
the weather condition, the RMSE and NMAE are below 1.43% and
1.02% respectively.

On the other hand, for the 5PM, the best forecasting of the DC



Table. 5
Mean values of the main PV module parameters obtained from the parameter extraction algorithms for the 5PM.

PV system Day Weather conditions Rs [U] Rsh [U] Io [A] Iph [A] n

1 09/12/2013 Clear sky 0.662 660.011 1.07 � 10�8 8.7268 1.191
18/12/2013 Semi cloudy 0.701 651.880 1.14 � 10�8 8.7366 1.192
20/12/2013 Cloudy 0.701 651.894 1.14 � 10�8 8.7366 1.192

2 05/07/2012 Clear sky 5.771 25.96 � 103 2.32 � 10�7 2.2055 1.223
12/05/2012 Semi cloudy 7.321 20.34 � 103 4.90 � 10�7 2.2462 1.290
12/11/2012 Cloudy 8.010 21.31 � 103 1.20 � 10�7 2.2462 1.289

3 07/08/2011 Clear sky 12.354 3.358 � 103 8.82 � 10�9 1.0751 1.343
12/05/2012 Semi cloudy 17.915 2.365 � 103 7.92 � 10�9 1.0627 1.351
12/11/2012 Cloudy 19.796 2.865 � 103 1.36 � 10�9 1.0686 1.351

Table. 6
Average values of main parameters obtained from the parameter extraction algorithms for the SAPM.

PV System Day Weather conditions C0 C1 C2 C3 n aImp [�C�1] bVmp [V/�C]

1 09/12/2013 Clear sky 1.0438 �0.2000 2.0686 21.2425 1.1619 4.32 � 10�3 �0.1067
18/12/2013 Semi cloudy 0.9138 �0.0552 1.6104 10.9348 1.1613 4.32 � 10�3 �0.1168
20/12/2013 Cloudy 0.9762 �0.1468 2.0351 12.7702 1.162 4.32 � 10�3 �0.0554

2 05/07/2012 Clear sky 0.8887 0.0662 2.575 31.7208 1.2177 5.8 � 10�4 �0.2819
12/05/2012 Semi cloudy 0.9237 0.0500 2.995 43.1182 1.2459 5.8 � 10�4 �0.2692
12/11/2012 Cloudy 0.9208 0.0608 2.4241 20.0134 1.2466 5.8 � 10�4 �0.4632

3 07/08/2011 Clear sky 0.8229 0.0500 2.1346 18.999 1.3162 7.52 � 10�3 �0.2467
12/05/2012 Semi cloudy 0.7973 0.0400 2.7898 27.9781 1.3537 7.52 � 10�3 �0.3299
12/11/2012 Cloudy 1.0010 �0.1086 1.7077 7.8209 1.2941 7.52 � 10�3 �0.4998

Fig. 3. Evolution of the DC-current of the PV system 1 using SAPM for clear sky day (December 09th, 2013).

Fig. 4. Evolution of the DC-current of the PV system 1 using 5PM for clear sky day (December 09th, 2013).
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output power of the PV systems is also obtained from simulations
using the estimated parameters provided by the ABC algorithm.
Considering the worst weather condition, the RMSE and NMAE
values related to DC output power obtained for the PV system 1 are
6.6% and 2.67%. However, for the PV systems 2 and 3 the errors
values remain below 3.65% and 2.07%.
Finally, regarding the DC output current, the highest values of
RMSE obtained in clear sky and semi cloudy day, are below 2.91% in
case of SAPM and 3.42% in case of 5PM. In order to make the ob-
tained results more comprehensive, other machines learning used
for modeling the DC output current of PV arrays were considered.
Ameen et al. [13] reported RMSE of 5.67% in a work based on



Fig. 5. Evolution of the DC-current of the PV system 2 using SAPM for semi-cloudy day (May 12th, 2012).

Fig. 6. Evolution of the DC-current of the PV system 2 using 5PM for semi-cloudy day (May 12th, 2012).

Fig. 7. Evolution of the DC-current of the PV system 3 using SAPM for cloudy day (November 12th, 2012).

Fig. 8. Evolution of the DC-current of the PV system 3 using 5PM for cloudy day (November 12th, 2012).
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Table 7
Calculated RMSE (%) and NMAE (%) for the SAPM.

PV system Day Weather Error [%] LMA GA PSO DE ABC

I V P I V P I V P I V P I V P

1 09/12/2013 Clear sky RMSE 0.64 2.09 1.72 0.64 1.26 1.18 0.64 0.84 1.00 0.65 0.84 0.99 0.65 0.71 0.63
NMAE 0.27 1.43 0.77 0.25 0.97 0.58 0.26 0.62 0.45 0.26 0.62 0.45 0.27 0.48 0.25

18/12/2013 Semi cloudy RMSE 2.91 4.09 2.87 2.51 2.98 2.68 2.50 2.98 2.63 2.50 2.90 2.59 2.50 2.89 2.59
NMAE 1.29 2.11 1.12 0.86 1.83 0.97 0.83 1.84 0.94 0.83 1.70 0.89 0.83 1.69 0.91

20/12/2013 Cloudy RMSE 6.37 5.06 6.02 6.41 4.90 5.84 6.36 4.91 5.77 6.35 4.87 5.79 6.37 4.91 5.78
NMAE 2.43 3.51 2.40 2.54 3.34 2.35 2.44 3.34 2.26 2.44 3.32 2.27 2.44 3.35 2.26

2 05/07/2012 Clear sky RMSE 1.33 1.42 1.55 1.29 0.82 1.14 1.31 0.81 1.14 1.29 1.02 1.06 1.27 0.84 1.03
NMAE 0.46 1.48 0.78 0.53 1.23 0.70 0.47 1.29 0.58 0.51 1.73 0.55 0.53 1.47 0.52

12/05/2012 Semi cloudy RMSE 1.54 1.13 1.55 1.52 0.98 1.53 1.52 1.11 1.41 1.75 1.49 1.36 1.53 1.11 1.32
NMAE 0.62 1.67 0.88 0.59 1.50 0.88 0.59 1.90 0.87 0.75 2.68 0.85 0.61 1.89 0.83

12/11/2012 Cloudy RMSE 2.75 3.50 3.51 2.78 3.32 3.17 2.76 3.22 3.15 2.76 3.22 3.15 2.76 3.31 3.13
NMAE 0.70 5.91 1.84 0.68 4.59 1.65 0.69 4.32 1.62 0.68 4.31 1.61 0.69 4.57 1.61

3 07/08/2011 Clear sky RMSE 1.37 0.92 1.43 1.04 0.95 1.17 1.04 0.88 1.10 1.04 0.77 0.99 1.04 0.76 0.98
NMAE 1.25 0.56 0.78 0.90 0.64 0.66 0.90 0.56 0.59 0.91 0.64 0.51 0.90 0.61 0.48

12/05/2012 Semi cloudy RMSE 1.91 0.89 2.20 1.23 0.81 1.10 1.24 0.90 0.93 1.24 0.82 1.07 1.23 0.89 0.91
NMAE 1.70 0.81 1.07 1.05 0.68 0.49 1.08 0.82 0.43 1.07 0.68 0.48 1.07 0.81 0.41

12/11/2012 Cloudy RMSE 2.67 2.39 4.00 2.40 1.87 2.16 2.42 1.62 1.98 2.42 1.68 2.07 2.25 1.62 1.42
NMAE 2.12 3.27 1.86 1.75 2.34 1.09 1.79 2.04 0.66 1.75 2.08 1.06 1.75 2.04 1.01

Table 8
Calculated RMSE (%) and NMAE (%) for the 5PM.

PV system Day Weather Error [%] LMA GA PSO DE ABC

I V P I V P I V P I V P I V P

1 09/12/2013 Clear sky RMSE 1.78 1.39 2.29 1.76 1.39 2.23 1.75 1.39 2.22 1.75 1.38 2.21 1.75 1.38 2.21
NMAE 0.89 0.98 1.05 0.88 0.98 1.05 0.88 0.98 1.05 0.87 0.97 1.04 0.87 0.96 1.04

18/12/2013 Semi cloudy RMSE 3.42 3.93 4.96 3.37 3.84 4.88 3.37 3.80 4.05 2.84 3.82 3.72 2.55 4.84 3.69
NMAE 1.38 2.48 2.19 1.35 2.48 2.13 1.34 2.45 1.94 1.28 2.46 1.80 0.97 3.08 1.74

20/12/2013 Cloudy RMSE 10.34 4.92 13.55 9.34 5.80 11.23 7.73 4.87 6.96 6.41 6.29 7.79 5.60 4.91 6.60
NMAE 4.37 3.63 5.30 4.30 3.51 4.12 3.63 3.32 2.91 3.17 4.76 2.99 2.14 3.62 2.67

2 05/07/2012 Clear sky RMSE 1.35 2.07 2.43 1.34 2.07 2.42 1.34 2.06 2.41 1.34 2.06 2.40 1.34 1.38 2.09
NMAE 0.48 3.03 1.59 0.48 3.02 1.59 0.48 3.03 1.59 0.47 3.01 1.57 0.47 2.47 1.45

12/05/2012 Semi cloudy RMSE 1.60 2.98 3.51 1.60 2.92 3.41 1.60 2.28 3.13 1.60 2.27 3.13 1.61 2.12 3.07
NMAE 0.64 5.40 2.50 0.65 5.24 2.42 0.65 3.71 2.10 0.65 3.70 2.10 0.64 3.72 2.08

12/11/2012 Cloudy RMSE 4.13 3.24 5.01 3.16 3.25 4.86 2.44 2.98 3.98 3.70 3.24 4.60 3.50 3.14 3.64
NMAE 1.53 5.83 3.87 1.15 5.83 3.17 0.87 5.09 2.54 1.27 5.83 2.72 1.16 5.29 2.06

3 07/08/2011 Clear sky RMSE 1.91 2.44 3.32 1.90 2.43 3.31 1.91 2.16 1.57 1.83 1.92 2.12 0.85 2.31 1.28
NMAE 1.61 1.77 1.71 1.60 1.75 1.73 1.61 1.59 1.69 1.09 0.89 1.01 0.79 1.88 0.67

12/05/2012 Semi cloudy RMSE 1.66 2.68 3.53 1.72 2.09 3.36 1.67 1.97 3.34 1.65 1.95 3.17 1.66 1.95 3.02
NMAE 1.51 2.49 1.78 1.52 1.74 1.67 1.52 1.76 1.66 1.51 1.74 1.60 1.51 1.75 1.53

12/11/2012 Cloudy RMSE 5.36 5.10 6.99 3.44 5.10 4.84 2.53 2.36 2.63 2.12 2.52 1.89 2.09 2.53 1.78
NMAE 4.25 3.22 3.29 2.76 3.21 2.44 1.89 2.18 1.42 1.60 2.24 0.91 1.51 2.26 0.80
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artificial neural networks for forecasting the output current of a PV
array. Ibrahim et al. [38] published a novel machine learning con-
sisting in using random forests technique for modeling the output
current of a PV array, the RMSE provided is of 2.74%.

6. Conclusions

Two PV array models have been compared in this work for
simulation purposes: The 5PM and the SAPM. These models were
applied to reproduce the behavior of three grid connected PV sys-
tems with different topologies and solar cell technologies. The
models parameters were obtained from daily monitored profiles of
G, Tc, and output DC current and voltage of the PV arrays using five
different optimization algorithms (LMA, GA, PSO, DE and ABC).

The metaheuristic algorithms are more efficient than the
traditional LMA algorithm in estimating the unknown parameters
of both PV module models, essentially in bad weather conditions.
The GA provides high values of RMSE compared to the other bio-
inspired algorithms. The ABC algorithm is slightly more accurate
than the DE and PSO algorithms.

The 5PM allowed simulating the dynamic behavior of the PV
systems included in this study with an acceptable accuracy degree
for applications of supervision and forecasting of energy produc-
tion. The RMSE obtained in the comparison of the daily evolution of
main electrical parameters of the PV systems is below 8% in all
cases except the case of using LMA and GA algorithms to simulate
the c-Si PV module working in cloudy conditions. This effect can be
explained taking into account that the values of series, Rs, and
shunt, Rsh, resistances forming part of themodel parameter set vary
with the irradiance, whereas both parameters have been assumed
constant in the performed simulations. An advantage of the 5PM
lies in the physical meaning of the set of model parameters that
provides relevant information about the PV array and allows an
easy comparison between different PV modules.

On the other hand, the SAPM model is an empirical model
including a set of model parameters in which some of them have
little physical meaning. Nevertheless, the SAPM model showed a
high accuracy degree in the simulation of the PV systems behavior
independently of the solar cell technology. The RMSE values ob-
tained for the DC output power of the PV arrays in the simulations
stayed below 6.05% for the PV system 1 even in cloudy days. For the
PV system 2 this error dropped below 3.52%. However, for the PV
system 3 the RMSE values are below 4% even in cloudy days and
case of using LMA. The SAPM model demonstrated best potential
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for the simulation of PV systems in real operating conditions; this
holds even when using thin film technologies of PV modules.
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