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The use of microencapsulated phase change materials (MPCMs) is one of the most efficient ways of
storing thermal energy. When the microencapsulated phase change material (MPCM) is dispersed into
the carrier fluid, microencapsulated phase change slurry (MPCS) is prepared. Due to the relatively large
surface area to volume MPCM and its large apparent specific heat during the phase change period, better
heat transfer performance can be achieved. Therefore, MPCS can be used as both the energy storage and
heat transfer media.

This paper studies the thermal and rheological properties of a series of prepared MPCS. In the
experiment: MPCS fabricated by dispersing MPCM into water with an appropriate amount of surfactant.
The mass ratio of MPCM to water and surfactant was 10:90:1, 25:75:1, 35:65:1 in prepared MPCS
samples, respectively. Then the thermal conductivity and specific heat of MPCS were measured by the
Hot Disk. The melting/crystallizing temperature and fusion heat/crystallization heat of the phase change
materials were obtained from a DSC (differential scanning calorimetry) during the heating/cooling
process. Physical properties, such as viscosity, diameter and its size distribution of MPCS were investi-
gated by a rheometer and a particle characterization system. Meanwhile, the chemical structure of the
sample was analyzed using Fourier Transformed Infrared spectroscopy (FTIR).

The results showed that the thermal conductivity and the specific heat of MPCS decreased with
particle concentration for the temperatures below the melting point. Overall, the MPCS can be consid-
ered as Newtonian fluid within the test region (shear rate >200 s�1 and mass fraction <0.35). The
viscosity is higher for bigger particle slurries. The findings of the work lead to the conclusion that the
present work suggested that MPCMs can be used in “passive” applications or in combination with active
cooling systems; and it also provided a new understanding for fabricating microencapsulated phase
change slurry, it is for sure that to have a better potential for energy storage. Accordingly, it has
demonstrated that the MPCS fabricated in the current research are suitable for potential application as
heat transfer media in the thermal energy storage.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Phase change materials (PCMs) have long been used for thermal
energy storage due to the large amount of heat absorption/release
while undergoing phase changes, with only small temperature
variations [1e10]. Organic and inorganic materials are two most
common groups of PCMs [11]. Organic materials are further
described as paraffin and non-paraffin. Most organic PCMs are non-
corrosive and chemically stable, and have little or no sub-cooling.
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They are compatible with most building materials and have
a high latent heat per unit weight and low vapour pressure. But
they also have disadvantages in low thermal conductivities, high
changes in volume on phase change and flammability. In contrast,
inorganic materials (salt hydrate and metallic) have a high latent
heat per unit volume and high thermal conductivities, and are non-
flammable and low in cost in comparison to organic materials.
However, they are corrosive to most metals and suffer from
decomposition and sub-cooling, which can affect their phase
change properties. Therefore, In order to overcome these problems,
a new technique of utilizing microencapsulated phase change
material (MPCMs) in thermal energy storage system has been
developed. Microencapsulated PCMs provide a means to solve the
supercooling problem and interfacial combination with the
circumstance materials [12]. The main merits of microencapsulated
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Nomenclature

Cp specific heat capacity (kJ/(kg �C))
d, D diameter (m)
DHc heat of crystallization (kJ/kg)
DHf heat of fusion (kJ/kg)
k Thermal conductivity (W/(m �C))
m mass (kg)
Tm melting temperature (�C)
Tc crystallizing temperature (�C)
W mass fraction (�)

Greek letters
r density (kg/m3)
V the encapsulation efficiency (%)
m viscosity (Pa s)

Subscripts
b bulk
c microcapsule core
f fluid
p particle
w wall, water
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Fig. 1. FTIR spectra of microPCMs (DPNT06-0182 CIBA).
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phase change material (MPCM) over PCM are as follows: (1)
increasing heat transfer area; (2) reducing PCMs reactivity toward
the outside environment and controlling the changes in the storage
material volume as phase change occurs. The use of micro-
encapsulated phase change materials (MPCMs) is one of the most
efficient ways of storing thermal energy and it has received
a growing attention in the past decade [12e27]. Since MPCM was
developed, it had been mainly used in the textile [19,28e31] and
building applications [32e36].

Due to the low thermal conductivity of PCMs [10], a new
approach was proposed to improve the thermal performance of
the thermal system (e.g. the secondary refrigeration and air
conditioning loops). When the MPCM is dispersed into the carrier
fluid, e.g. water, a kind of suspension named as microencapsulated
phase change material slurry (MPCS) is formed [37]. Water is
normally used as the carrier fluid since it has no obvious negative
effect on fabricating MPCS and is cheap to get, although the carrier
fluid should have a high thermal conductivity and a large specific
heat capacity. In comparison of conventional phase change
material slurries (PCS), better heat transfer performance can be
achieved due to the relatively large surface area to volume of
MPCM. Therefore, it can be used as both thermal energy storage
and heat transfer media [38e43]. The thermal and physical
properties of MPCS are crucial for the MPCS system design, and
they are very different from those of the MPCM materials and
carrier fluids. These mainly include the thermal conductivity,
viscosity and specific heat. The optimum design of thermal energy
storage systems, which run with microencapsulated phase change
material slurry, requires a good knowledge of flow and heat
transfer characteristics of two-phase slurry involved in phase
change, in order to reduce the capital cost, system size, and energy
consumption [44].

The purpose of this study is to investigate the thermal and
rheological properties of the MPCMs. In this paper, a series of MPCS
were prepared for experimental test. The chemical structure,
morphology, microstructure, diameter and its size distribution,
thermal properties of the MPCMs and rheological properties of
MPCS were obtained from experimental measurements.
2. Experimental test

2.1. Investigated materials

� DPNT06-0182 (Ciba Specialty Chemicals, UK), properties of
microcapsule as given by the manufacture: it comprises 87.5%
paraffin wax and 12.5% crosslinked acrylic polymer shell (core/
shell ratio: 87.5:12.5).

� Micronal� DS 5008X (BASF, Germany), properties of micro-
capsule as given by the manufacture: it comprises a paraffin
mixture and highly crosslinked polymethyl methacrylate
(PMMA) shell; formaldehyde-free (core/shell ratio: 7:3).

2.2. Chemical composite analysis

Thechemical structurewasanalyzedusingPerkinElmer-Spectrum
100 Fourier transformed infrared spectroscopy (FTIR) with the KBr
sampling method.

2.3. Surface morphology and structure of microcapsules

Morphologieswere obtained by using a Cambridge instruments-
STEREOSCAN 90 scanning electron microscopy (SEM). A Reichert
JungePolyvar MET optical phase-contrast microscope was
employed to investigate the microstructure of the microcapsules.

2.4. Diameter measurement

The microcapsules size distribution from light diffraction was
performed using aMalvern Instruments-Hydro 2000S laser particle
size analyzer, and the mean diameters of the microcapsules were
determined.

2.5. Thermal properties of microcapsules

Differential scanning calorimetry (DSC) was performed to
determine the melting temperature and heat of fusion during the
heating process, crystallizing temperature and crystallization heat
during the cooling process by using a SETARAM Instrumentation-D/
SENSYS-2A differential scanning calorimeter, and all measurements
were carried out under an air atmosphere at a heating or cooling
rate of 0.2 �C/min. Thermal gravimetry (TG) analysis was applied to
measure the thermal stability of these microcapsules by a Polymer
laboratories-STA 1500. The Thermal conductivity and specific heat
of the MPCMs and MPCS were tested by using a Hot Disk
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Fig. 2. FTIR spectra of microPCMs (DS 5008X BASF).
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Instruments-TPS 2500S. The following sets of thermal property
models that used by previous researchers to MPCS were employed
in this study.

The density & specific heat of the microcapsules and the specific
heat of MPCS were calculated using mass and energy balance [38]:

rp ¼ Microcapsule mass
core mass

�
dc
dp

�3

rc (1)

CP;P ¼ ðCore mass$Cc þ Shell mass$CwÞrcrw
ðShell mass$rc þ Core mass$rwÞrp

(2)

CP;b ¼ WPCp;p þWwCp;w (3)

The thermal conductivity of the microcapsule was calculated
using the composite sphere approach [9]:

1
kpdp

¼ 1
kcdc

þ dp � dc
kwdpdc

(4)

The thermal conductivity of MPCS was calculated by Maxwell’s
relation [27]:
Fig. 3. SEM images of the microcapsules (DPNT06-0182 CIBA).
kb ¼
2kf þ kp þ 2W

�
kp � kf

�

2kf þ kp �W
�
kp � kf

� (5)

2.6. Rheology measurement

Rheological properties were measured by a rheometer (Malvern
InstrumentseKinexus Ultra). Three kinds of MPCS were prepared
for each sample with the mass ratio of MPCM to water and
surfactant: 10:90:1, 25:75:1, 35:65:1, respectively. The experiments
were conducted at four different temperatures (below and above
the melting temperature) for each MPCS.

3. Results and discussions

3.1. Microencapsulated phase change material

The FTIR spectra of the microcapsules (DPNT06-0182, CIBA) are
presented in Fig. 1. The alkyl CeH stretching vibrations are found
around 2900 cm 1. CeH stretching peaks of crosslinked acrylic
polymer are found around 1715 cm 1. The peak at 1466 cm 1 is due
Fig. 5. (a). Particle size distribution of microcapsules (DPNT06-0182 CIBA). (b). Particle
size distribution of microcapsules (DS 5008X BASF).
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Fig. 6. (a). DSC curves of microencapsulated PCMs (DPNT06-0182 CIBA). (b). DSC
curves of microencapsulated PCMs (DS 5008X). (c). DSC curves of microencapsulated
PCS (10% wt., 25% wt., 35% wt.) (DPNT06-0182 CIBA).
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to CeH bending and the peaks at 1170 cm 1 can be assigned to the
CeO stretching of the ester group. FTIR spectra show both char-
acteristic peaks of crosslinked acrylic polymer and paraffin wax.
Fig. 2 shows the FTIR spectra of themicrocapsules (DS 5008X BASF).
The strong alkyl CeH stretching vibrations are found around
2950 cm . CeH stretching peaks of PMMA are found around
1730 cm . The peak at 1463 cm is due to CeH bending and the peaks
at 1116 cm is associated with the CeO stretching of the ester group.
The spectra of the microcapsules show both characteristic peaks of
PMMA and paraffin mixture.

Fig. 3 shows the SEM images of the CIBA microcapsules with
various diameters. The diameters of sample are in the range of
10e100 mm. It is observed that the most of the microcapsules have
regularly spherical shape and smooth surface. The surfaces of the
microcapsules are compact without any disfigurement on the shells
of microcapsules. However, dimples exist on some of the micro-
capsules due to the volume contracting as paraffin crystallized.
Similar SEM images of the BASF microcapsules are also examined
(not shown here). Fig. 4 shows the optical phase-contrast micro-
graphs of the CIBA microcapsules. An obvious coreeshell micro-
structure can be distinguished from Fig. 4, where the bright circle
layer representing the shell around the droplets is visible, and
a core capsule of the paraffin mixture with dark color is obvious
within the microcapsule. These microcapsules exhibit a regularly
spherical shape without any obvious disfigurement on their
surfaces. Zhang et al. [18] indicated that morphology of the
microcapsules was greatly influenced by the stirring rate, emulsi-
fier content during the fabrication process.

The particle size distribution (PSD) of the CIBA microcapsules is
shown in Fig. 5(a). The PSD in volume shows multimodal distri-
butions of particle sizes ranging in the interval between 0.7 and
700 mm. However, the most of particle sizes are in the size range
from 10 to 100 mm. The average diameter of microcapsules was
40 mm. Fig. 5(b) shows the PSD of the BASF microcapsules, the
agglomerated secondary particles of the powder can disintegrate
under the effect of water. As it can see from Fig. 5(b), the PSD in
volume shows unimodal distributions of particle sizes ranging from
1 to 20 mm and the average diameter of microcapsules was 7 mm.
The stirring rate and emulsifier content have great effect on particle
size distribution [18].

The thermal properties of the microcapsules of CIBA & BASF and
the thermal properties of the MPCS of CIBAwere measured by DSC,
and their thermograms are presented in Fig. 6(a), (b) and (c),
respectively, and the melting and crystallization properties of all
samples are summarized in Table 1. It shows that there is only one
peak appearing in the DSC heating thermograms for both samples.
However, it is also found from Fig. 6(a) that two distinct peaks
appear in the cooling thermograms of the CIBA microcapsules.
Zhang et al. [45] indicated that the multiple peaks behavior on the
DSC cooling curves are not caused by the difference of the cooling
Table 1
Thermal properties of the MPCMs and the MPCS.

Sample name Tm (�C) D Hf

(kJ/kg)
Onset Tm (�C) Offset Tm(�C) Tc (�C)

a b

DHc

(kJ/kg)

CIBA sample 35.578 102.008 30.298 36.819 30.1 24.9 106.359
BASF sample 28.658 96.968 26.664 30.323 23.152 101.012
CIBA sample

MPCS
(10 wt %)

34.38 8.074 29.967 35.34 32.1 25.4 7.478

CIBA sample
MPCS
(25 wt %)

34.43 15.194 30.438 35.402 32.3 25.3 15.289

CIBA sample
MPCS
(35 wt %)

34.57 37.213 29.919 35.496 32.2 25.2 37.332
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rates in the measured range and they are mainly caused by the
difference in the average diameter. A similar cooling behavior has
been described for similar microencapsulated PCM systems in
which the supercooling crystallization phenomena occurred when
the diameter of microcapsules was smaller than 100 mm [12], the
authors stated that during the crystallization of the paraffin
mixture, the peak a is attributed to the heterogeneously nucleated
liquiderotator transition, whichmay be due to the crystallization of
paraffin mixture on the inner wall of the microcapsules, and the
peak b is attributed to the homogeneously nucleated liquidecrystal
transition. Yamagishi et al. [40] indicated that the supercooling
crystallization was caused by the decrease in the number of nuclei
in each microcapsule due to the reduced diameter. Fig. 6(c) shows
that all three thermograms of the MPCS of CIBA samples present
very similar melting temperature and crystallizing temperature to
the MPCM of CIBA. However, the heat of fusion and the heat of
crystallization of the MPCS were smaller than MPCM since the
addition of water changes the latent heat storage capacity of
MPCMs, and they are increasing gradually with the mass concen-
tration of MPCS. Overall, the phase change properties of the
microcapsules are mainly described with two important parame-
ters, encapsulated efficiency (V) and phase change temperature, Tc
and Tm. Especially, the heat of fusion of the microcapsules affecting
Fig. 7. (a). TG curves of microcapsules (DPNT06-0182 CIBA). (b). TG curves of micro-
capsules (DS 5008X).
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the working effect of the MPCM that strongly depends on the
encapsulated efficiency. Fig. 7(a) and (b) shows the weight loss
percentage of the microcapsules with CIBA sample and BASF
sample, respectively. It is notable that the CIBA sample has rela-
tively better thermal stability than the BASF sample.

3.2. Microencapsulated phase change material slurries

Figs. 8 and 9 show the effect of concentration (wt %) on the
thermal conductivity and the specific heat of the MPCS, respec-
tively, for CIBA and BASF products. The results showed that the
thermal conductivity and specific heat decreased with the increase
of concentration due to the lower thermal conductivities and
specific heat of the particles compared to the base fluid, water.
Overall, the prediction agrees with the experimental data fairly
well. It should be pointed out that the experimental test was carried
out at the temperatures below the melting point of the PCMs inside
the particles. For the case above the melting temperature of PCMs,
the story may be different due to the phase change, and this
warrants a further study for this problem in the future.

The rheological behaviors of the prepared MPCS with the mass
concentration varying from 10%, 25% and 35% were measured by
Kinexus Ultra Rheometer (Malvern Instruments Ltd), respectively.
The results showed that the shear stress linearly increased with
shear rate for 10% and 25% cases, therefore the slurry with
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concentration below 25% can be considered as Newtonian fluid,
and this well agrees with previous research by Charunyakorn et al.
[46]. Fig. 10 shows the relationship of shear stress and shear rate for
the MPCS of 25% at 5 �C and 30 �C, at which the PCMs are at solid
phase and liquid phase, respectively. It is observed that the rheo-
logical behaviors will not be influenced by the PCM phase change
process since the polymer shell of the microcapsules is always in
contact with the carrying fluid (not the PCM content inside the
shell). The dynamic viscosity of MPCS is very important for its flow
behaviors. In this paper, the viscosities of samples at different
temperatures and concentrations were measured by rheometer.
Fig. 11 shows the viscosities of MPCMs vs. shear rates for the
product of DPNT06-0182 CIBA at a given concentration 35% but at
different temperatures. The viscosity decreases as the temperature
rises, as expected. Also the viscosity exhibit a little shear thinning
effect, namely, it decreases with increasing shear rate. Overall the
MPCS can be considered as Newtonian fluid after 200 s�1 shear
rate, which is the minimal mean shear rate in the heat transfer
experiment because the dynamic viscosity values are constant as
the shear rates change. Fig. 12 shows the viscosity of slurries with
different particle concentrations at a given temperature of 5 �C. As
expected, the viscosity is higher with a higher concentration. Fig. 13
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presents the results for the product of DS 5008X BASF at concen-
tration of 25%. Similar trend is observed. Fig. 14 examines the
particle size effect on the viscosity of MPCS for a given particle
concentration and a given test temperature. The results showed
that the viscosity was higher for bigger particle slurries. Bearing in
mind, the increase of viscosity will increase pump energy
consumption, which will reduce the positive effect.
4. Conclusions

Experimental investigations have been carried out to investigate
two different kinds of microencapsulated phase change materials
(MPCMs) in terms of their thermal and rheological properties. The
results showed thatmostof themicrocapsuleswere spherical shaped
and had smooth surfaces, and the structure analysis demonstrated
thatMPCMshadbeen successfully fabricatedby theirmanufacturers.
Particle size distribution (CIBA sample: 10e100 mm; BASF sample:
1e20 mm) was quite satisfactory for using these microcapsules in
thermal energy storage and heat transfer. The heat of fusion of the
two samples was 102 kJ/kg and 97 kJ/kg, respectively. Both samples
showed very good thermal stability. Nevertheless, prevention of
supercooling crystallization phenomena of MPCM still needs more
intensive research, such as how to enhance the contents ofmaterials
in the fabrication process. In this paper, there were three kinds of
MPCSwere prepared for each samplewith themass ratio ofMPCMto
water and surfactant: 10:90:1, 25:75:1, 35:65:1, respectively. The
addition of water did not change the melting temperature and
crystallizing temperature of theMPCS samples. However, it changed
the latent heat storage capacity of MPCMs and it increased gradually
with the mass concentration of the MPCS. Overall the thermal
conductivity and the specific heat of MPCS decreased with the
particle concentration for the temperatures under themelting point.
The dynamic viscosity of slurries decreased with the temperature
rising. Overall theMPCS can be considered asNewtonianfluidwithin
the test region (shear rate >200 s�1 and mass fraction <0.35). The
viscosity was higher for bigger particle slurries. Finally, the results
concluded thatMPCMs thatused in this studyhavegoodpotential for
thermal energy storage purposes and it could be used for solar space
heating as well.
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