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Abstract

The aim of this paper is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear

hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding

surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinu-

soidal displacement. This paper formulates an optimal control problem to handle an objective function with competing

terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular

waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force,

thereby allowing the control focus to concentrate on either power absorption or load mitigation. The penalty weights

are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption

associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater

per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for “The

Berkeley Wedge” in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the

surge-restraining force, pitch-restraining torque, and PTO control force are shown.

Keywords: Asymmetric heave wave energy converter; power absorption control; structural load mitigation; nonideal

PTO efficiency; “Berkeley Wedge”

1. Introduction1

The Berkeley Wedge (TBW) [1, 2] is an asymmetric wave energy converter (WEC) that can also serve as a break-2

water. It consists of an asymmetric floater, a power take-off (PTO) system, and a support structure. The particular3

shape of the floater, depicted in Fig. 1, was designed to experience minimal effects from viscosity in heave motion.4

The mounting structure limits the motion of the floater to heave only. The PTO system implemented in the design5

is a linear permanent-magnet generator (LPMG) [3]. When the damping of the LPMG is matched with the heave6

radiation damping of the floater at resonance, there will be almost no reflected or transmitted waves and almost all of7

the incident wave energy will be absorbed by the LPMG. TBW can be used nearshore to provide electricity for local8

communities and act as a breakwater (concurrently) to protect the harbor with very minimal environmental impact.9

It can also be attached to offshore structures and floating platforms to provide electricity and protect the structure.10

Additionally, TBW can be installed near the floating bridges to reduce the wave loads on the structure and generate11

electricity or desalinate seawater. In a recent study [4], the particular asymmetric shape of TBW was implemented in12

a coaxial wave energy converter (consisting of a fixed inner cylinder and moving outer cylinder) to reduce the viscous13

effects on the heave motion of the outer cylinder. The experimental testing revealed that the shape of TBW reduced14

the viscous damping on the heave displacement of the outer cylinder by 70%, resulting in an increase in the heave15
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displacement of the outer cylinder by more than 300%.16

The success of such or similar future WEC technologies will require the development of strategies to increase17

their survivability in extreme waves (survivability condition) and control strategies to adapt device performance to18

maximize energy generation while mitigating hydrodynamic loads to reduce the structural mass and overall cost in19

operational condition [5]. Regarding survivability of WECs, a recent study [6] presents a novel and practical solution20

to increase their survivability in extreme breaking waves. In this study, to reduce the effects of the extreme breaking21

waves on TBW while maintaining its operational draft, a novel solution of using pressure-relief channel, allowing22

water to flow through TBW, is presented and tested. Additionally, balancing the objectives of operational condition23

offers an interesting design and control challenge. For example, these are in contrast to previous works that solved24

the optimal control problem when focused solely on maximizing the time-averaged power (TAP). The application of25

state-constrained optimization [7, 8] to WEC control has gained significant traction recently as it provides the abil-26

ity to include linear and nonlinear constraints. This optimization has been pursued using calculus of variations [7],27

model-predictive control [9–11], and pseudo-spectral methods [12–14]. If the PTO efficiency and structural loads28

are not considered, the optimum WEC trajectory follows that of complex conjugate control [15], which requires a29

substantial amount of reactive power when moving away from the resonance frequency. It is well known [16, 17] that30

the gains in power absorption when utilizing complex conjugate control can be counterbalanced by losses in the PTO31

accrued when reversing the energy flow to drive WEC motion and return energy to the wave system. It is possible that32

neglecting the conversion efficiency can lead to reduced or a net loss in the output power from the PTO resulting in33

a net flow of energy from the PTO to the WEC. Suboptimal strategies that eliminate reactive power, notably latching34

[18] and declutching [19], have been proposed, yet still do not include a load metric in the optimization. It can be35

expected that as the controller works to maximize the absorbed mechanical energy, the growth rate in structural loads36

may exceed the growth in TAP. To address this concern, this work incorporates the PTO control force and restraining37

loads in the objective function of the optimization routine. As a result, the optimizer must now balance the opposing38

contributions in an attempt to obtain the largest power-to-load ratio.39

This paper begins by reviewing TBW device concept and hydrodynamic properties that allow it to be a perfect40

absorber. This is followed by constructing the heave time-domain equation of motion to provide the preliminaries41

for extension into its spectral representation. The PTO unit is expected to have a limit on the stroke length, which42

will have an effect on the maximum absorbed power; however, this work also considers the use of a nonideal PTO43

unit, with a conversion efficiency less than 100%, and will discuss how the efficiency and PTO force coefficients44

can be used to calculate the net power delivered to the grid. The upper and lower bounds on the output TAP, surge-45

restraining force, pitch-restraining torque, and PTO actuator force are calculated while assuming that the WEC motion46

was constrained but remains sinusoidal. The upper bound was calculated by solving for the PTO spring and damping47

coefficient pair that maximized the output power, not absorbed power, while the lower bound assumes that the non-48

ideal PTO system consists only of a linear-resistive damper, and in both cases the PTO force coefficients are constant49

and continuous throughout the wave cycle. Next, pseudo-spectral control (PSC) theory is reviewed followed by incor-50

porating the surge-restraining force, pitch-restraining torque, and PTO actuator force into the optimization problem.51

Penalty weights are multiplied on the contributions to the objective function from the restraining and PTO loads to52

adapt the performance as desired. The effect of including the restraining loads on balancing power absorption and load53

shedding is first explored by varying the penalty weight magnitudes and comparing against the known performance54

bounds. The time history of WEC motion and PTO control force are presented to illustrate how per-unit increases in55

TAP can exceed the per-unit increase in restraining and PTO loads while having a minimal reactive power require-56

ment. Finally, the analysis will be extended to irregular waves to study the fatigue loads on the TBW foundation and57

PTO.58

2. The Berkeley Wedge59

TBW shape was designed to experience the smallest effect from viscosity when encountering incident waves and60

in motion. The motion of the floater (shown in Fig. 1 with a cross-section constant over the entire width) is restricted61

to heave only. The physical dimensions of the asymmetric floater were chosen to fit the model testing facility at the62

University of California at Berkeley. A detailed theoretical and experimental study [1] confirmed the effectiveness of63

the design in reducing the viscous effect on the motion of the device, thereby capturing almost all of the incident wave64

energy and providing a calm water surface leeward of the asymmetric floater.65
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Figure 1: The schematics of the problem with specified incident and radiated waves.

In this study, the authors examined TBW with a draft, d, of 0.7 m and a beam, b of 0.212 m at the water plane.66

The particular shape of the front of the floater (Fig. 1) can be obtained from the following equation.67

F (ȳ)=0.05926(ȳ+1)2+3.88147(ȳ+1)3−2.94074(ȳ+1)4 (1)

In Eq. (1), x̄ = F (ȳ) is a shaping function, and x̄ = x/b and ȳ = y/d are nondimensional scales. In this equation, ȳ can68

be shifted in height to obtain different drafts. The hydrodynamics coefficients for the asymmetric floater were obtained69

assuming a water depth, h, of 1.5 m while using the two-dimensional (2-D) potential-flow code RWYADMXA [20]70

and shown in nondimensional form in Fig. 2.71

To analyze the optimal energy extraction efficiency of TBW, the relation between the heave wave-exciting force,72

heave-radiated damping, and the far-field radiated wave amplitude is discussed. Far-field radiated waves are generated73

as a result of heave displacement of the floater. They propagate away from the floater (Fig. 2(a)), facing the positive74

(A+
2
ξ2ei(σt−kx)) and negative (A−

2
ξ2ei(σt+kx)) x-coordinate. It can be shown that the heave wave-exciting force can be75

obtained from the far-field radiated wave amplitude in deep water by using the Haskind Relation (see Appendix C for76

the derivation).77

X2 = i
ρg2

σ2
A−2 (2)

We can denote the geometry-hydrodynamic radiation factor, γ, to be the ratio of the left (A−
2
) and right (A+

2
) far-field78

radiated wave amplitudes.79

γ =
∣
∣
∣
∣

A+
2

A−
2

∣
∣
∣
∣ (3)

At this point, if we equate the work done by an oscillator on the fluid and the energy propagation associated with the80

far-field wave, we obtain the following expression (see Appendix C for details).81

|X2|2 =
2ρg2

σ

λ22

1 + γ2
(4)

With the above expression, we can obtain the optimal energy extraction efficiency for TBW, which will be discussed82

in later sections.83

3. Time-Domain-Heave Equation of Motion84

The one-degree-of-freedom time-domain-heave equation of motion is given by the following equation.85

mζ̈2 (t) = fe2 (t) + fr22 (t) + fh (t) + fd (t) + fm (t) (5)

where t is time, m is the mass of the WEC, ζ̈2 is the heave acceleration, fe2 is the wave-exciting heave force caused by86

the incident waves, fr22 is the wave-radiation force caused by heave motion, fh is the hydrostatic restoring force, fd is87

3
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Figure 2: Nondimensional 2-D hydrodynamic radiation and wave-exciting coefficients. The nondimensional values are defined as: σ̄ =

σ
√

b/g, µ̄22 = µ22/ρb2, λ̄22 = λ22/ρb2σ, X̄2 = X2/ρgb, φ̄2 = φ2/π, µ̄12 = µ12/ρb2, λ̄12 = λ12/ρb2, X̄1 = X1/ρgb, φ̄1 = φ1/π, µ̄32 =

µ32/ρb3, λ̄32 = λ32/ρb3σ, X̄3 = X3/ρgb2, φ̄3 = φ3/π

the drag force caused by viscous effects, and fm is the mechanical force applied by the PTO system.88

The heave hydrostatic restoring force is given by the following equation.89

fh(t) = −C22ζ2 (t) , with C22 = ρgb (6)

where ρ is the fluid density, g is the gravitational acceleration, b is the device beam length at the calm water line, and90

ζ2 is the time-varying heave displacement.91

The linear hydrodynamic wave-radiation heave force will be represented in the time domain using the Cummins92

equation [21] and is written according to the following equation.93

fr22(t) = −µ22 (∞) ζ̈2 (t) −
t∫

−∞

Kr22 (t − τ) ζ̇2 (τ) (7)

where µ22 (∞) is the heave-added mass at infinite frequency, and Kr22 is the heave radiation impulse response function,94

also known as the memory function because it represents the wave radiation memory effect caused by past WEC95

motions.96

The wave-exciting heave force can be written in the time domain as follows.97

fe2(t) =

∞∫

−∞

Ke2 (t − τ) η (τ) dτ (8)

where Ke2 is the heave wave-excitation kernel, which is noncausal, and η is the wave elevation.98

The drag force can be represented by either of the following equations.99

fd (t) =






−λvlζ̇2 (t)

−λvnζ̇2 (t)
∣
∣
∣ζ̇2 (t)

∣
∣
∣

(9)

where λvl is the linear-drag coefficient caused by the presence of viscosity, and λvn is the quadratic-drag coefficient,100

assuming they are not negligible. The final one-degree-of-freedom heave equation of motion can now be shown in the101

following equation.102
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(m + µ22 (∞)) ζ̈2 (t) = −C22ζ2 (t) − λvlζ̇2 (t)

−
t∫

−∞

Kr22 (t − τ) ζ̇2 (τ) dτ

+

∞∫

−∞

Ke2 (t − τ) η (τ) dτ + fm (t)

(10)

where the linear form of the drag force has been used.103

3.1. Time-Domain Solution in Regular Waves104

It is common practice to begin analysis under regular wave excitation in which the incident wave elevation is105

described using the following equation.106

η (x, t) = ℜ
{

−1

g

∂φ0

∂t

∣
∣
∣
∣
∣
z=h

}

= ℜ
{

Aei(σt−kx)
}

= A cos (σt − kx) (11)

where φ0 is the incident wave potential, A is the wave amplitude, σ is the wave angular frequency, k is the wave107

number, and i =
√
−1 is the imaginary unit. The time-harmonic heave response is modeled as follows.108

ζ2 (t) = ℜ
{

ξ2eiσt
}

(12)

where ξ2 is the complex amplitude of heave displacement.109

Under regular wave excitation, the radiation-convolution integral can be simplified to the following expression.110

fr22 (t) = −ℜ
{[

−σ2µ22 (σ) + iσλ22

]

ξ2eiσt
}

(13)

The wave-excitation-convolution integral can be written according to the following equation.111

fe2 (t) = ℜ
{

AX2 (σ) eiσt
}

(14)

For the time being, the mechanical force from the PTO system will be described by the following equation.112

fm (t) = −ℜ
{(

Cg + iσBg

)

ξ2eiσt
}

(15)

where Cg is the linear PTO-restoring coefficient and Bg is the PTO linear-damping coefficient. The frequency-domain113

expressions can be inserted into Eq. (10), leading to the heave displacement response amplitude operator as shown in114

the following equation.115

ξ2

A
=

X2
[

Cg +C22 − σ2 (m + µ22)
]

+ iσ
[

λ22 + Bg

] (16)

where λvl has been set to zero because results revealed in [1] saw minimal effects from viscosity.116

3.1.1. PTO Absorbed Power117

The TAP absorbed by the PTO can be calculated using the following equation.118

PT

A2
=

1

2
Bgσ

2

∣
∣
∣
∣
∣

ξ2

A

∣
∣
∣
∣
∣

2

(17)
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Equation (16) can be inserted into Eq. (17) to calculate the optimal PTO damping at each wave frequency. The optimal,119

unconstrained, time-averaged absorbed power and PTO damping for each wave frequency is given as follows.120

PT

A2
=

1

4

|X2|2
λ22

1

1 +

√

1 +

(
C22+Cg−σ2(m+µ22)

σλ22

)2

=
1

2

ρg2

σ

1

1 + γ2

1

1 +

√

1 +

(
C22+Cg−σ2(m+µ22)

σλ22

)2
(18)

Bg = λ22

√

1 +

(
C22 +Cg − σ2 (m + µ22)

σλ22

)2

(19)

where at resonance Bg = λ22, leading to the maximum time-averaged absorbed power [22]. Because these expressions121

do not consider motion constraints, it may be necessary to increase the PTO damping to remain under a given motion122

constraint. The required PTO damping is given as follows.123

Bg =






(

A|X2|
σ|ξ2|max

)2

−
[
C22 +Cg

σ
− σ (m + µ22)

]2





1/2

− λ22 (20)

where |ξ2|max is the maximum amplitude of heave displacement [23]. The instantaneous power absorbed by a power-124

take-off unit can be calculated as follows.125

P (t) =
Bg|iσξ2|2

2

+
1

2

[

|iσξ2|2|Bg − iCg/σ| cos (2 (ωt + ϕ) + ν)
]

(21)

PA± = 1 ±

√

1 +

(
Cg

σBg

)2

(22)

where ϕ is the phase angle of iσξ2, ν is the phase angle of Bg−iCg/σ, and PA± is the peak-to-average power ratio [23].126

As seen in Eq. (21), if Cg , 0, the instantaneous power will fluctuate between negative and positive values, indicating127

a bi-directional energy flow. When there is no reactive power, Cg = 0, the peak-to-average power ratio is 2 and the128

instantaneous power oscillates between 0 and 2PT . The reactive component is eliminated at the resonance frequency129

of the isolated floating body and the peak-to-average power ratio is minimized at 2; however, when away from the130

resonant frequency, the peak-to-average power ratio quickly increases, resulting in large swings in the bidirectional131

energy flow. The time-averaged reactive power, defined as the power that the PTO returns to the oscillating body, can132

be calculated as follows.133

PR =
1

T

∫ T

0

min [P (t) , 0] dt (23)

To provide a measure of efficiency for a given device, the TAP contained within a propagating wave must be134

known. The time-averaged wave power per-unit width, Pw, can be obtained from the following equation.135

Pw =
ρgA2

4

√

g

k
tanh kh

[

1 + 2kh
sinh kh

] kh→∞≈ 1
8π
ρg2A2T = 1

4

ρg2A2

σ

(24)

where h is the water depth.136

We denote Cw as the ratio of TAP absorbed by the PTO per the incident wave energy flux. Substituting the137

expression of heave wave-exciting force, Eq. (4), into the modulus of the expression for the heave-displacement138

response amplitude operator, Eq. (16), and using the maximum TAP condition, Bg = λ22, the expression for optimal139
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energy extraction efficiency as a function of the geometry-hydrodynamics factor, γ, is obtained using the following140

equation.141

Cw|opt =
1

1 + γ2
(25)

To obtain maximum extraction efficiency (Cw = 1), γ needs to be equal to zero. This is possible by having the right far-142

field radiated wave amplitude equal to zero (A+
j
= 0) and the left far-field radiated wave amplitude be finite (A−

j
, 0).143

For symmetric floaters, both right and left far-field wave amplitudes will be equal (A−
j
= A+

j
), so γ = 1, which results144

in Cw|opt = 0.5 if the maximum time-averaged absorbed power condition is satisfied. The graph of Cw|opt for TBW is145

shown in Fig. 2(b).146

3.1.2. Maximum Time-Averaged Absorbed Power Under Constrained Motion147

The maximum time-averaged absorbed power under motion constraints, while assuming sinusoidal motion, was148

explored in [24], which provides the following expression.149

PT =






1
8
A2|X2|2/λ22 δ > 1

1
2
A|X2|σ|ξ2|max − λ22σ

2|ξ2|2max δ < 1
(26)

δ =
σ|ξ2|max

A

2λ22

|X2|
(27)

where δ is the ratio between the constrained-to-optimal heave velocity, which is set by |ξ2|max, the maximum heave150

displacement amplitude. The associated PTO linear-damping coefficients are given as follows.151

Bg =






λ22 δ > 1
A|X2 |
σ|ξ2 |max

− λ22 δ < 1
(28)

Cg = −
[

C22 − σ2 (m + µ22)
]

(29)

where the PTO spring coefficient cancels the dynamic force contribution from the hydrostatic body-restoring coeffi-152

cient, mass, and hydrodynamic added mass, which is the basis of complex conjugate control [15].153

The capture width, defined as the ratio between the TAP absorbed by the PTO, PT , and the incident wave power154

per-unit width, Pw, is a metric used to evaluate the absorption efficiency of the device. The incident wave power is155

proportional to the incident wave amplitude squared, see Eq. (24). For unconstrained motion, which may also corre-156

spond to a very small incident wave amplitude, the capture width will be invariant to the incident wave height; whereas157

for a strongly constrained motion, which may also correspond to a very large incident wave amplitude, the capture158

width will be inversely proportional to the incident wave height and become less efficient from the hydrodynamic159

perspective.160

3.1.3. Nonideal PTO Units161

As discussed in [16, 17, 25], reactive control requires a two-way energy flow between the oscillating body and an162

energy storage system that will have losses associated with the energy flux reversal process. Considering a nonideal163

PTO unit, the peaks in the PTO instantaneous output power (P+) and reactive input power (P−) are given as follows.164

P± =






ηm
Bg |iσξ2 |2

2



1 +

√

1 +

(
Cg

σBg

)2




1
ηm

Bg |iσξ2 |2
2



1 −
√

1 +

(
Cg

σBg

)2




(30)

where ηm is the PTO mechanical-to-electrical efficiency. The effect on the time-averaged output power is more com-

plex because of the time-varying integration. The results from performing the integration over time were performed

7
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Figure 3: The effect on the mechanical-to-electrical efficiency power multiplier, e∗, the PTO coefficient power multiplier, g∗, and the PTO coefficient

ratio, G, for a range of ηm and G∗ values.

in [17, 25].

G =

∣
∣
∣
∣
∣
∣

Cg

σBg

∣
∣
∣
∣
∣
∣
, G∗ = arctan G

PO = ηm

Bg|iσξ2|2
2






1 +
1 − η2

m

η2
m

︸  ︷︷  ︸

e∗





2G∗ − sin 2G∗ − 2G
(

1 − cos2 G∗
)

2π





︸                                          ︷︷                                          ︸

g∗






(31)

where PO is the time-averaged power that is sent to the grid. The effect of G on e∗ and g∗ can be found in Fig. 3.165

The nonideal PTO peak-to-average power (to the grid) ratios can now be calculated using the following equation.166

PAηm± =






1+
√

1+G2
[

1+
1−η2

m

η2
m

(
2G∗−sin 2G∗−2G(1−cos2 G∗)

2π

)]

1−
√

1+G2

η2
m

[

1+
1−η2

m

η2
m

(
2G∗−sin 2G∗−2G(1−cos2 G∗)

2π

)]

(32)

3.2. Foundation Restraining Force and Torque167

The structural foundation must handle the surge force and pitch torque needed to restrain the WEC to move168

only in heave. This will require a mounting structure to be designed to withstand the surge-restraining force and169

pitch-restraining torque which can be achieved using vertical guides that are driven into the seabed or mounted to an170

existing structure [1]. The restraining force in surge, Xr1, and restraining torque in pitch, Xr3, are given as follows.171

A (Xr1 + X1) =
[

−σ2µ12 + iσλ12

]

ξ2 (33)

A (Xr3 + X3) =
[

−σ2
(

xgm + µ32

)

+ iσλ32

]

ξ2 (34)

where X1 and X3 are the complex surge wave-exciting force and pitch wave-exciting torque coefficients per-unit wave172

amplitude, µ12 is the surge-heave added mass, and λ12 is the surge-heave wave radiation damping, µ32 is the pitch-173

heave added mass, λ32 is the pitch-heave wave radiation damping, and xg is the horizontal center of gravity. The174

surge and pitch foundation reaction force and torque is affected by the radiation forces that result from the heave175

8



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

motion of the WEC, which can be controlled by the PTO. The surge-restraining force and pitch-restraining torque176

can theoretically be eliminated if the complex heave displacement and PTO force amplitude satisfy the following177

equations.178

ξ2

A

∣
∣
∣
∣
∣
fr1z

=
X1

−σ2µ12 + iσλ12

fm

A

∣
∣
∣
∣
∣
fr1z

=
{[

C22 − ω2 (m + µ22)
]

+ iσλ22

} ξ2

A

∣
∣
∣
∣
∣
fr1z

− X2

(35)

179

ξ2

A

∣
∣
∣
∣
∣
fr3z

=
X3

−σ2
(

xgm + µ32

)

+ iσλ32

fm

A

∣
∣
∣
∣
∣
fr3z

=
{[

C22 − ω2 (m + µ22)
]

+ iσλ22

} ξ2

A

∣
∣
∣
∣
∣
fr3z

− X2

(36)

The time-domain corollary of Eqs. (33) and (34) is given as follows.180

fr1 (t) = −
∞∫

−∞

Ke1 (t − τ) η (τ) dτ

+ µ12 (∞) ζ̈2 (t) +

t∫

−∞

Kr12 (t − τ) ζ̇2 (τ) dτ

(37)

181

fr3 (t) = −
∞∫

−∞

Ke3 (t − τ) η (τ) dτ

+
(

xgm + µ32 (∞)
)

ζ̈2 (t) +

t∫

−∞

Kr32 (t − τ) ζ̇2 (τ) dτ

(38)

3.3. Results from Fixed-PTO Coefficients182

Maximizing the output TAP, as described in Sec. 3.1.3, involves the PTO coefficients to be fixed in time yet adapted183

for a given wave amplitude and angular frequency. Performance bounds can be set for the TAP, surge-restraining force184

amplitude, pitch-restraining torque amplitude, and PTO control force amplitude, which have been plotted in Fig. 4.185

A benefit of the current design can be observed in the bottom plot of Fig. 4(c), where the heave amplitude and phase186

required for elimination of the surge-restraining force and pitch-restraining torque are presented. The surge and pitch187

components require a very similar amplitude and phase for elimination, which will lead to a reduction in both if188

only one contribution is heavily penalized in the controller objective function. It is expected that time-varying PTO189

coefficients might be able to assist in optimizing the time-averaged absorbed power while reducing loads, leading to190

device performance that sits between the maximum constrained and passive curves.191

4. Pseudo-Spectral Control (PSC)192

The discretization of the control problem is completed by approximating the heave velocity and PTO force with193

a linear combination of basis functions [13, 26]. The heave velocity, ζ̇2, and PTO mechanical force, fm, are approxi-194

mated by a zero-mean truncated Fourier series with N terms.195

ζ̇2 (t) ≈
N/2∑

j=1

ψc
j cos ( jσ0t) + ψs

j sin ( jσ0t) = Φ (t) ψ̂ (39)

fm (t) ≈
N/2∑

j=1

τc
j cos ( jσ0t) + τs

j sin ( jσ0t) = Φ (t) τ̂ (40)
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Figure 4: Performance bounds under a heave-displacement amplitude constraint of 0.1 m, a wave amplitude of 0.02 m, and a PTO efficiency of 85%.

The superscript p denotes passive energy harvesting (Cg = 0, Bg ≥ 0) and the superscript ηm denotes active energy harvesting (Cg , 0, Bg ≥ 0)

that maximizes Eq. (31). The superscript n denotes the natural heave motion (Cg = Bg = 0), whereas fr1z and fr3z denote the heave motion required

to eliminate the surge-restraining force and pitch-restraining torque. The nondimensional force and torque values are given by: f̄m = fm/ρgbA,
¯fr1 = fr1/ρgbA, and ¯fr3 = fr3/ρgb2A.
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where196

ψ̂ =

[

ψc
1, ψ

s
1, . . . , ψ

c
N
2

, ψs
N
2

]⊤
, τ̂ =

[

τc
1, τ

s
1, . . . , τ

c
N
2

, τs
N
2

]⊤
(41)

197

Φ (t) =
[

φ1 (t) , φ2 (t) , . . . , φN−1 (t) , φN (t)
]

=

[

cos (σ0t) , sin (σ0t) , . . . , cos

(
N

2
σ0t

)

, sin

(
N

2
σ0t

)] (42)

with the fundamental frequency given by σ0 = 2π/T and T is the chosen time duration. The heave equation of motion198

can be described as follows.199

M22ψ̂ = τ̂ + ê2 (43)

where ê2 is the Fourier coefficient vector of the heave wave-exciting force. The matrix M22 ∈ RN×N is block diagonal

with the following structure.

M
j

22
=

[

λ22 ( jσ0) α ( jσ0)

−α ( jσ0) λ22 ( jσ0)

]

for j = 1, 2, . . . ,N/2

α ( jσ0) = jσ0 (m + µ22 ( jσ0)) −C22/ ( jσ0) (44)

The heave velocity coefficients can then be determined explicitly from the control and heave wave-exciting force200

Fourier coefficients. This representation allows the time-averaged absorbed energy, PT , to be written as follows.201

PT =
1

T

∫ T

0

ζ̇2 (t) fm (t) dt =
1

2
ψ̂⊤τ̂

=
1

2

[

τ̂⊤
(

M−1
22

)⊤
τ̂ + ê⊤2

(

M−1
22

)⊤
τ̂

]
(45)

which is in the form of a traditional quadratic problem.202

4.1. Penalty Terms203

Penalty weights will be used in a mixed objective function to control the PTO force, surge-restraining force, and204

pitch-restraining torque.205

4.1.1. Surge-Restraining Force206

Load reduction will consist of limiting the forces on the WEC structure that are required to maintain the heave-

only constraint. The surge-restraining force has two contributions that arise from the surge wave-exciting force and

the radiation force that results from WEC heave motion. The equation for the surge-restraining force can be written

in a matrix form, similar to Eq. (43), as follows.

Φ (t) f̂r1 = −Φ (t) ê1 + µ12 (∞)Γψ̂ + Φ (t) (G12 − µ12 (∞) Γ) ψ̂

f̂r1 = −ê1 +G12ψ̂ = −ê1 +G12M−1
22 τ̂ +G12M−1

22 ê2 (46)

where ê1 is the Fourier coefficients of the surge wave-exciting force, G12 and Γ are block matrices given in Appendix207

B and Eq. (43) has been substituted in the last expression. To maintain the convexity of the quadratic problem,208

the time-averaged squared ℓ2-norm of the surge-restraining force vector was added to the objective function. The209

surge-restraining force penalty measure is given as follows.210

γ1

T
| fr1|2 =

γ1

T

∫ T

0

f̂⊤r1Φ (t)⊤Φ (t) f̂r1dt =
γ1

2
f̂⊤r1 f̂r1

≈ γ1

2

(

2

[

ê⊤1 G12M−1
22 − ê⊤2

(

M−1
22

)⊤
G⊤12G12M−1

22

]

τ̂

− τ̂⊤
(

M−1
22

)⊤
G⊤12G12M−1

22 τ̂

)

(47)

where γ1 is a penalty weight applied to the surge-restraining force. In the final expression for the surge-restraining211

force contribution, there are three constant terms independent of the PTO control force, which are left out of the212

optimization. See [14] for the full expression.213
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4.1.2. Pitch-Restraining Torque214

Similar to the surge-restraining force, the pitch-restraining torque has two contributions that arise from the pitch215

wave-exciting torque and the radiation torque that results from WEC heave motion. As with the surge-restraining216

force, the time-averaged squared ℓ2-norm of the pitch-restraining torque vector was added to the objective function.217

The pitch-restraining torque penalty measure is calculated as follows.218

γ3

T
| fr3|2 ≈

γ3

2

(

2

[

ê⊤3 G32M−1
22 − ê⊤2

(

M−1
22

)⊤
G⊤32G32M−1

22

]

τ̂

− τ̂⊤
(

M−1
22

)⊤
G⊤32G32M−1

22 τ̂

) (48)

where ê3 represents the Fourier coefficients of the pitch wave-exciting torque and γ3 is a penalty weight applied to the219

pitch-restraining torque.220

4.1.3. PTO Control Force221

The PTO force is the only control actuation, and in an effort to reduce computational time and force spikes, a222

penalty weight was placed on the time-averaged squared ℓ2-norm of the PTO force magnitude [9].223

βm

T
|τm|2 =

βm

T

∫ T

0

τm(t)τm(t)dt =
βm

2
τ̂⊤IN τ̂ (49)

where βm is a penalty weight associated with the control force magnitude and IN is the identity matrix of size N.224

4.2. Heave-Displacement Amplitude Constraint225

Constraints on the heave-displacement amplitude reflect the physical limits of the system. These limits are mod-

eled as inequality constraints.

Φ (t)Γ−1M−1
22 τ̂ ≤ 1(N×1)|ξ2|max − Φ (t)Γ−1M−1

22 ê2 , (50)

−Φ (t)Γ−1M−1
22 τ̂ ≤ −1(N×1)|ξ2|min + Φ (t)Γ−1M−1

22 ê2 . (51)

The constraints are enforced at specific time instants given by tk = kT/(N +1) for k = 1, 2, . . .N [26]. The constrained226

optimal control problem is now a convex quadratic program subject to linear constraints on the heave displacement227

amplitude. The impact of device motion and force constraints have been discussed in [27]; however, in this work no228

constraints were placed on the PTO control torque magnitude.229

4.3. Final Objective Function230

The objective function will be the sum of the time-averaged absorbed power, the squared ℓ2-norm of the surge-231

restraining force, pitch-restraining torque, and PTO control force. The four contributions to the objective function are232

not of the same units, and the interrelationship between them is complex. Therefore, the final objective function will233

consist of the following nondimensional quantities.234

J =
PT

Pw
︸︷︷︸

Cw

+ γ1

∣
∣
∣
∣
∣

fr1

ρgbA
︸︷︷︸

f̄r1

∣
∣
∣
∣
∣

2

+ βm

∣
∣
∣
∣
∣

fm

ρgbA
︸︷︷︸

f̄m

∣
∣
∣
∣
∣

2

+ γ3

∣
∣
∣
∣
∣

fr3

ρgb2A
︸ ︷︷ ︸

f̄r3

∣
∣
∣
∣
∣

2

(52)

5. Pseudo-Spectral Results235

For the regular wave simulations, the number of Fourier coefficients, N, was set to 100 while the fundamental236

frequency, σ0, was set as the wave frequency, and the electrical-to-mechanical efficiency, ηm, was set at 85%.237
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5.1. Effect of Penalty Terms238

Figure 5 verifies that the pseudo-spectral controller is achieving the desired results when considering the extremes239

of the tested penalty weights. As the control force penalty weight, βm, is increased the magnitude of the PTO control240

force and reactive power is reduced. As shown for the lowest penalty weight values (γ1 → 0 and βm → 0), the241

highest TAP input to the PTO is achieved; however, the greatest TAP input may not correspond to the greatest output242

power when including nonideal efficiency (ηm = 85%); see Fig. 5(b). In this range the surge-restraining force and243

pitch-restraining torque are slightly lower or equal to the values obtained when maximizing the WEC output power.244

This is a result of the amplification in heave displacement required to eliminate the restraining loads when the wave245

frequency does not coincide with the heave resonance frequency, refer to Fig. 4(c). However, the PTO control force246

and standard deviation in the output power are at minimum 10% greater when neglecting the PTO efficiency. Inclusion247

of the penalty weights in the optimization, not only reduce structural loads but are able to curb the additional power248

losses when utilizing a PTO unit with nonunity efficiency. For the largest values of γ1 and βm, reduction in the surge-249

restraining force and pitch-restraining torque, Fig. 5(c) and Fig. 5(d), is also followed by a corresponding decrease in250

the TAP. It is also possible to see an increase in the PTO force and reactive power requirement as emphasis is placed on251

reducing the surge-restraining force; see Fig. 5(e) and Fig. 5(f). The increase in PTO torque is a result of the amplitude252

and phase difference between the unforced (no PTO) and zero surge-restraining force heave motion; refer to Fig. 4(c).253

It can be observed that both above and below the resonance frequency the unforced heave amplitude of motion is lower254

than required for elimination of the surge-restraining force and pitch-restraining torque. As more emphasis is placed255

on reducing the surge-restraining force, the resulting increase in the PTO control force and reactive power imply that256

complete elimination of the restraining loads may not be desirable. These contour plots provide a clear design space257

that can be used to optimize power production, decrease structural loads, or achieve multiple combinations in between.258

The left column of Fig. 5 plots a set of results for a wave frequency below resonance. In this frequency range the259

contours follow nearly straight lines when viewing the γ1 and βm space. As shown in Fig. 4(b), the lowest structural260

force and torque are obtained when maximizing for the output TAP, but this requires an increase in the PTO control261

force. The penalty weights in the objective function are linear constants multiplied to the surge-restraining force and262

pitch-restraining torque, therefore a reduction in structural loads is counteracted by a proportional increase in the PTO263

control torque, leading to contours that are predominantly straight lines. In the right column of Fig. 5, results are264

provided at a wave frequency above resonance, in which the constant value contours have greater curvature. In the265

high-frequency region, the lowest structural loads are observed when TBW oscillates naturally (no PTO). A reduction266

in restraint loads can first be achieved by decreasing the influence of the PTO control torque. This reduction can be267

observed by moving vertically along a constant βm line; refer to Fig. 5(f). For example, by moving vertically along268

the βm = 1.0, the PTO control torque will initially decrease, which also leads to a reduction in the restraint loads.269

However, eventually the PTO control torque 0.8 contour swings back across the βm = 1.0 line, therefore the controller270

must now balance two load metrics that fight against one another.271

5.2. Time History of WEC and PTO272

Figure 6 plots the time history of the four points marked in the plots along the right column of Fig. 5. Near point 1,273

the maximum output power absorption is nearly recovered; near point 2, the surge-restraining force is prioritized at the274

expense of larger PTO forces and reactive power; near point 3, the controller attempts to maximize the output TAP with275

reduced PTO forces at the expense of larger restraint loads; and near point 4, there is roughly a 50%-60% reduction276

for all performance metrics compared to when the power output is maximized. As the penalty weights are reduced,277

the PTO control torque moves the heave velocity closer in phase with the heave wave-exciting force. This phase shift278

is accompanied by the greatest amplitudes in PTO control torque and pitch-restraining torque, but not for the reactive279

power. Marker 2 has the greatest reactive power requirement as the amplitude of motion required to eliminate the280

surge-restraining force is greater than the maximum power output heave profile. As the surge-restraining and PTO281

control force penalty weights are increased, the controller will first maintain a near optimum phase while reducing282

the amplitude of motion. However, eventually a greater phase shift is introduced by the controller to eliminate a283

larger proportion of the surge-foundation force that can be observed by comparing marker 2 and marker 4 in Fig. 6(a).284

Further reduction in the restraint loads will reveal an increase in the heave amplitude of motion and a corresponding285

increase in PTO control torque and reactive power. A larger reduction in restraint loads and PTO force, compared to286

the power output, can be achieved because of the ability of the controller to induce a phase shift in the heave velocity287

at the expense of bidirectional energy flow.288
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Figure 5: Sensitivity of performance metrics to penalty weights under a heave-displacement amplitude constraint of 0.1 m and a wave amplitude

of 0.02 m. The left column plots show the results for a wave period of 1.5 s (σ̄ = 0.62) and the right column plots show the results for a wave

period of 1 s (σ̄ = 0.92). The superscript ηm denotes the resulting performance from selecting the Cg and Bg ≥ 0 pair that maximizes Eq. (31). The

variable ωO is the standard deviation of the instantaneous power output.
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(f) Cumulative Output Absorbed Energy

Figure 6: Time history of WEC motion, PTO control force, PTO power, surge-restraining force, and pitch-restraining torque. The pseudo-spectral

control simulations were run with T = 1 s, A = 2 cm, a heave-displacement amplitude limit of 0.1 m, and varying penalty weights. The numeric

superscripts 1, 2, 3, and 4 in the legend refer to the numeric markers in the right column of Fig. 5. The superscript ηm denotes the performance from

selecting the Cg and Bg ≥ 0 pair that maximizes Eq. (31). The superscript p denotes performance from setting Cg = 0 and selecting the Bg ≥ 0

that maximizes Eq. (31). The superscript n denotes the natural heave motion (Cg = Bg = 0), whereas fr3z denotes the heave motion required to

eliminate the pitch-restraining torque. Ew is the cumulative absorbed energy when assuming perfect absorption.
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5.3. Power-to-Load Ratio289

To compare the results from PSC over a wider range of wave angular frequencies, a power-to-load ratio will be290

introduced as follows.291

PtL = Cw

(

Cw

f̄r1 + f̄m

) (

PO

ωO

)

(53)

χ =
PtL

P
ηm

tL

(54)

where ωO is the standard deviation of the instantaneous output power. The first term in Eq. (53) represents the net292

output power to the grid that is directly related to the economics of operation; however, the second term is included293

to temper the controller from allowing large structural loads, leading to greater steel thickness and higher capital294

costs. The third term was introduced to limit the PTO peak instantaneous power and control actuation effort, thereby295

minimizing the PTO power capacity requirements. The value of P
ηm

tL
is obtained by inserting the performance values296

into Eq. (53) that result from using the PTO spring and damping coefficient pair that maximizes the output power297

from a nonideal PTO (refer to Eq. (31)). In a similar fashion, the value of P
p

tL
is obtained by inserting the performance298

values into Eq. (53) that result from calculating the PTO damping coefficient (Cg = 0) that maximizes the output299

power of the nonideal PTO.300

Ideally, it is desired that χ > 1 as this provides the greatest power-to-load ratio. Several χ contours obtained from301

varying the combination of penalty weights γ1 and βm for the wave frequency of σ̄ = 0.92 are presented in Fig. 7(a).302

For penalty weight values in the space defined by γ1 < 0.4 and βm > 0.6, the contour values are favorable (χ > 1).303

Next, for all the points along the contour χ = 1.6, the surge-restraining force, pitch-restraining torque, PTO force, and304

energy capture were obtained and are plotted in Fig. 7(b). Although along the χ = 1.6 contour the power-to-load ratio305

does not change, the absorbed energy and structural loads can vary. Additionally, the maximum χ contour for each306

wave frequency and penalty weight combinations were analyzed as shown in Fig. 7(c). A greater PTO power input307

requires frequencies lower than the resonance frequency to obtain the maximum power-to-load ratio.308

To compare results across multiple wave frequencies, the maximum χ contours were calculated such that the309

enclosed areas were the same size but may differ in location in the γ1 and βm domain. The performance metrics310

along this χ contour were averaged for each frequency and the results are plotted in Fig. 8. It can be observed311

that the proposed PSC formulation is successful at providing power-to-load ratios that are equal to or greater than312

the baseline strategies with the largest values occurring about resonance; see Fig. 8(c). For the frequencies near313

resonance (σ̄ = 0.74), the power performance metrics for all strategies converge towards one another. This is to be314

expected—when oscillating at resonance, the spring and inertial terms cancel, which will not require a PTO spring315

coefficient to maximize energy absorption. However, it is interesting to see that PSC sacrifices a greater portion of316

power near resonance in return for greater reductions in the PTO torque and surge-restraining force; see Figs. 8(a)317

and 8(b). The greatest increase in the power-to-load ratio is observed at frequencies above resonance, whereas below318

resonance the power-to-load ratio from maximizing output power is nearly equivalent to PSC. The reason the power-319

to-load ratios are nearly equal is because below resonance the lowest restraining loads occur in conjunction with320

maximum output power (refer to Fig. 4), but requires the largest PTO force amplitude. The PSC optimizer concludes321

that further increase in power capture and reduction of the surge-restraining force and pitch-restraining torque is322

counteracted by the growth in PTO torque and the peak-to-average power ratios as shown in Fig. 8(d), which prohibits323

PSC from recovering the maximum power output.324

6. Time-Domain Solution in Irregular Waves325

The extension of psuedo-spectral control into the irregular wave environment will help evaluate the ability of the326

proposed control strategy to effectively reduce fatigue loads for both the WEC structure and PTO.327

6.1. Wave Spectrum Characterization328

The ocean water surface is exposed to variable winds and is typically very irregular. However, the surface can329

be considered as a superposition of multiple regular harmonic wave components. This linear superposition principle330
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Figure 7: Regular wave results for a wave amplitude of 0.02 m and wave period of 1.0 s (σ̄ = 0.92). The left plot consists of the constant χ contours

as calculated from Eq. (54). The middle plot includes the variation in power and load performance values along the χ = 1.6 contour in Fig. 7a. The

right plot consists of the maximum χ values for a range of wave angular frequencies.

was first introduced in hydrodynamics by St. Denis and Pierson [28], which allows an irregular wave surface to be331

described as follows.332

η (x, t) =

N∑

j=1

A j cos
(

σ jt − k jx + ε j

)

(55)

where N denotes the number of regular wave components used to describe the sea state and ε is a random phase angle333

between 0 and 2π. The wave number is related to the wave angular frequency through the dispersion relation. In334

this method the frequencies are chosen with a constant frequency step. As a result, the process will repeat after a335

time, Tr, given by Tr = 2π/∆σ [29]. Unless surface elevation measurements are available, irregular seas are generally336

described by a wave spectrum. The wave spectrum is defined as follows.337

S + (σ) dσ =
1

2
A (σ)2 (56)

For a given a wave spectrum, the wave amplitude associated for a specific wave frequency is given as follows.338

A (σ) =
√

2S + (σ) dσ (57)
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Figure 8: Regular wave results for a fixed wave amplitude of 0.02 m and varying wave period.

The Bretschneider spectrum [30] was chosen to apply PSC and is described by the following equation.339

S +(σ) =
5

16

σ4
p

σ5
H2

s exp

[

−5

4

(σp

σ

)4
]

(58)

where σp is the modal (peak) angular frequency of the wave spectrum and Hs is the significant wave height, tradition-340

ally defined as the mean wave height of the highest third of the waves. Relationships with the irregular wave statistics341

can be obtained by computing the spectral moments, mn, of the wave spectrum.342

mn =

∞∫

0

σnS +dσ (59)

The spectral moments can be used to calculate the following quantities of the irregular wave surface elevation.343

Hs = 4
√

m0 , Ha =
5

8
Hs, σ−1 =

m0

m−1

(60)
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where Hs is the significant wave height, Ha is the average wave height, and σ−1 is the mean energy angular frequency.344

The TAP available for a given irregular sea state is calculated using the following equation.345

Pw = ρg

∫ ∞

0

Vg (σ) S + (σ) dσ

=
ρg

2

∫ ∞

0

√

g

k
tanh kh

[

1 +
2kh

sinh kh

]

S + (σ) dσ

kh→∞≈ 1

2
ρg2m0σ−1

(61)

6.2. Pseudo-Spectral Optimal Control in Irregular Waves346

Optimization of WEC performance in irregular waves requires a modification in calculating the Fourier coefficients347

of the heave wave-exciting force, surge wave-exciting force, and pitch wave-exciting torque. The surface elevation348

described by Eq. (55) will be used to calculate the heave wave-exciting force as follows.349

fe2(t) = Φ(t)ê2

= Σ
N/2

j=1
A(σ j)

[

ℜ
{

X2(σ j)
}

cos
(

σ j t + ε j

)

−ℑ
{

X2(σ j)
}

sin
(

σ j t + ε j

)]

= Σ
N/2

j=1
A(σ j)

[(

ℜ
{

X2(σ j)
}

cos ε j − ℑ
{

X2(σ j)
}

sin ε j

)

cosσ j t −
(

ℜ
{

X2(σ j)
}

sin ε j + ℑ
{

X2(σ j)
}

cos ε j

)

sinσ j t
]

(62)

where the sum-difference trigonometric identities have been used in the second line. The above equation can be put

in matrix form as follows.

Φ(t)ê2 =

[

cosσ0t, sinσ0t, . . . , cos
N

2
σ0t, sin

N

2
σ0t

]

︸                                                       ︷︷                                                       ︸

Φ(t)





A(σ0)
(ℜ{X2(σ0)} cos ε1 − ℑ {X2(σ0)} sin ε1

)

−A(σ0)
(ℜ{X2(σ0)} sin ε1 + ℑ {X2(σ0)} cos ε1

)

...

A( N
2
σ0)

(

ℜ
{

X2( N
2
σ0)

}

cos εN/2 − ℑ
{

X2( N
2
σ0)

}

sin εN/2

)

−A( N
2
σ0)

(

ℜ
{

X2( N
2
σ0)

}

sin εN/2 + ℑ
{

X2( N
2
σ0)

}

cos εN/2

)





︸                                                                         ︷︷                                                                         ︸

ê2

(63)

which will have the same form for the surge wave-exciting force and pitch wave-exciting torque. The irregular wave-350

exciting Fourier coefficients can now be used in the controller routine; however, care must be taken in selecting σ0351

and N.352

The nondimensionalization of the objective function for the irregular wave case will need to be adjusted because353

the incident wave elevation is time varying. Therefore, the force and torque penalty measures will be nondimension-354

alized by the average wave elevation as follows.355

J =
PT

Pw

+ γ1

∣
∣
∣
∣
∣

fr1

ρgbHa/2

∣
∣
∣
∣
∣

2

+ βm

∣
∣
∣
∣
∣

fm

ρgbHa/2

∣
∣
∣
∣
∣

2

+ γ3

∣
∣
∣
∣
∣

fr3

ρgb2Ha/2

∣
∣
∣
∣
∣

2

(64)

6.3. Fatigue and Equivalent Load Calculations356

The inherent nature of irregular waves will lead to a variable-amplitude cyclic time series of forces and torques.357

In terms of fatigue, a variable-amplitude cyclic time series may be decomposed into individual load cycles using a358

rainflow cycle-counting algorithm [31], and it is assumed these individual cycles may be superimposed upon one359

another, according to Miner’s Rule. For this analysis, the fatigue damage will be presented in terms of an equivalent360

19



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

fatigue load, which is the constant-amplitude force or torque range that would, over the same number of cycles, cause361

an equivalent amount of damage as the original variable-amplitude stress time series [32]. The following definition362

will be used to calculate the equivalent load or torque.363

f eq =





C∑

i=1

f m

C





1/m

(65)

where C is the cycle count and m is a material property normally defined as the slope of the logarithmic S-N fatigue364

curve. For this analysis, m will have a value of 3, which corresponds to fatigue properties of welded steel [33].365

6.4. Irregular Wave Results366

For the irregular wave simulations, the number of Fourier coefficients, N, was set at 180; the fundamental fre-367

quency, σ0, was set at 0.1 rad/s; and the electrical-to-mechanical efficiency, ηm, was set at 85%. The power-to-load368

ratio used to evaluate PSC performance in irregular waves will be adjusted to account for the variable-amplitude force369

and torque time series as follows.370

PtL =Cw

(

Cw

f ∗
r1
+ f ∗m

) (

PO

ωO

)

,

χ =
PtL

P
ηm

tL

, f ∗r1 =
f

eq

r1

ρgbHa/2
, f ∗m =

f
eq
m

ρgbHa/2

(66)

In the regular waves analysis, results were presented in terms of peak forces and loads because of the harmonic nature371

of the waves. On the other hand, in irregular waves, peak power and peak loads is sea-state-dependent and can be372

susceptible to the selection of the random phase angle ε. Thus, it was decided to use the standard deviation per TAP373

and fatigue-equivalent loads in the power-to-load calculations. The PSC power-to-load ratios, for a range of peak374

wave frequencies is on average 50% higher than other methods as shown in Fig. 9(c). The location of the maximum375

χ contours in the γ1, βm domain for each peak frequency are shown in Fig. 9(d). These χ contours are clustered in376

the region bounded by γ1 < 0.06 and 0.3 < βm < 1.6, which has significantly less spreading compared to the regular377

wave simulations; refer to Fig. 7(c). Tighter clustering of the χ contours is a result of the energy contained within378

the sea state being spread across a larger number of wave frequencies. PSC must now account for a greater number379

of components of varying amplitudes and frequencies when optimizing the objective function. Thus, the influence of380

the wave frequencies above and below the peak frequency will have a greater influence on performance, resulting in381

greater overlap in penalty weights that generate the greatest power-to-load ratios.382

In contrast to the irregular wave case, PSC produces the greatest output TAP compared to the baseline strategies;383

however, PSC has the largest reactive power requirement even when the peak period coincides with the resonance384

period, as shown in Fig. 9(a). This is another consequence of the spreading of wave energy, which PSC is able to385

exploit compared to the passive and active PTO efficiency-conscious baseline cases. The baseline cases solve for386

the set of PTO coefficients that maximize the output power, but remain constant over the duration of the simulation387

[34]. These baseline cases will not be as efficient at extracting the wave power at frequencies away from the peak pe-388

riod, but do not require future wave forecasting. The larger reactive power requirement also increases the variance in389

instantaneous power, but allows PSC to limit the fatigue-equivalent loads; see Fig. 9(b). In fact, the surge-restraining-390

force-equivalent loads obtained from PSC are the smallest for most of the simulated peak wave frequencies. The PTO391

control torque is largest for PSC when the peak wave frequency is near the resonant frequency; however, at the lower392

and higher wave frequencies, the PSC PTO torque fatigue load is surpassed by the active PTO efficiency-conscious393

baseline strategy. In these ranges, the optimizer will shed more of the available wave power as increasing the energy394

capture will be counteracted by greater growth in the PTO and structural loads.395

396

7. Conclusion397

In this paper, pseudo-spectral optimal control was used to balance power absorption against structural loading for398

a novel WEC and breakwater, The Berkeley Wedge. The analysis revealed that the power capture efficiency increased399
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(c) Power-to-Load Ratio and Variance-to-Mean Power Ratio
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Figure 9: Irregular wave results for a fixed significant wave height of 0.1 m and varying peak period.

by more than 50% for lower and higher wave frequencies (σ̄ < 0.6 and σ̄ > 0.8), compared to results obtained400

from a passive PTO with a constant linear damper. However, as the wave frequency moves away from resonance,401

a greater reactive power component is required to achieve the highest power-to-load ratio. It was observed that for402

wave frequencies below resonance, the surge-restraining force and pitch-restraining torque are significantly lower, in403

the range of σ̄ ≤ 0.7, when maximizing the PTO output TAP. Thus, when operating below the resonance frequency,404

achieving the most favorable power-to-load ratios requires the use of a PTO unit that allows for bidirectional energy405

flow. The magnitude of heave motion required to cancel the surge-restraining force and pitch-restraining torque were406

shown to generally be larger than the natural body motion. As a result, a significant increase in the PTO control force407

and reactive power may be required to eliminate the restraining loads.408

The pseudo-spectral optimal control problem was extended by including the squared ℓ2-norm of the surge-restraining409

force, pitch-restraining torque, and PTO actuator force to create a multiterm objective function. The optimizer per-410

formance was found to be adjustable based on the values chosen for each separate penalty weight placed on the three411

load contributions. In addition, the penalty weights used in the objective function were observed to be successful at412

representing the additional losses accrued with a PTO that has a non-unity efficiency. It was discovered that because413
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of the WEC hydrodynamics, increasing the penalty weight associated with either the surge-restraining force or pitch-414

restraining torque would lead to a corresponding decrease in the other. Thus, penalizing one of the contributions in415

the objective function was sufficient to explore the power-to-load ratios. Simulations were first completed in regular416

waves where sample wave periods above and below the resonance frequency, with a wave amplitude of 0.02 m and417

maximum allowable heave displacement of 0.1 m, were presented to confirm the performance of PSC under a variety418

of penalty weights. When γ1 → 0 and βm → 0, the maximum PTO absorbed power was recovered with minimal419

reduction in system loads, but may not correspond to the location of greatest output power or power-to-load ratio. The420

case of γ1 → ∞ will lead to significantly reduced restraining loads; however, at the expense of greater PTO forces421

and reactive power requirements. In irregular waves, results from PSC provided an average 50% improvement in422

power-to-load ratio across the range of simulated peak wave frequencies, but requires the greatest reactive power of423

all the test cases. However, there was little growth in PTO and structural loads being comparable to or lower than the424

baseline absorption strategies. Furthermore, as a result of the sea spectrum spreading wave energy across multiple425

wave frequencies, the maximum power-to-load contours were more tightly packed than compared to regular waves.426

This work has highlighted some of the issues that arise when WEC control focuses solely on maximizing power ab-427

sorption as it is accompanied by proportionately greater structural and PTO loads that are likely to lead to a higher428

levelized cost of energy. In the future, pursuit of moderate gains in TAP from control strategies may be more favorable429

as the increase in power absorption may outpace the growth in structural loads.430
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Appendix A. Time-to-Frequency Domain Relations437

The relations between the time- and frequency-domain radiation coefficients were derived in [35].438

Kr22 (t) =
2

π

∞∫

0

λ22 (σ) cos (σt) dσ (A.1)

439

Kr22 (t) = −2

π

∞∫

0

σ
[

µ22 (σ) − µ22 (∞)
]

sin (σt) dσ (A.2)

where µ22 (σ) and λ22 (σ) are the frequency-dependent hydrodynamic radiation coefficients commonly known as the440

added mass and wave radiation damping.441

The relationship between the time- and frequency-domain excitation coefficients is given by the following equa-442

tion.443

Ke2 (t) =
1

π

∞∫

0

[ℜ{X2 (σ)} cos (σt)

−ℑ {X2 (σ)} sin (σt)
]

dσ

(A.3)

where X2 is the frequency-dependent, complex, wave-exciting heave-force coefficient, ℜ is the real component, and444

ℑ is the imaginary component.445
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Appendix B. Matrix Expressions446

The time-derivative matrix, Γ ∈ RN×N , is block diagonal with the following block structure.447

Γ j =

[

0 jσ0

− jσ0 0

]

for j = 1, 2, . . . ,N/2 (B.1)

Using a change of variables, the surge-pitch radiation convolution integral can be represented in matrix form as448

follows.449

fr12 (t) =

t∫

−∞

Kr12 (t − τ) ζ̇2 (τ) dτ = Φ (t) (G12 − µ12 (∞)Γ) ψ̂ (B.2)

where G12 ∈ RN×N is block diagonal with the following structure.450

G
j

12
=

[

λ12 ( jσ0) σµ12 ( jσ0)

− jσ0µ12 ( jσ0) λ12 ( jσ0)

]

for j = 1, 2, . . . ,N/2 (B.3)

Appendix C. Wave-Exciting Force and Far-Field Radiated Waves451

To obtain a relation between the wave-exciting force and the far-field radiated wave amplitudes (shown in Fig. 1 as452

A±
j
), we examine the fluid domain shown in Fig. C.10 [36]. In this figure, B, D, n, Σ f , Σh, Σ−, and Σ+ denote the

x

y

n

n

n

n
h

Σf

Σ-Σ+

Σh

+-

Figure C.10: Fluid domain boundaries and coordinate system.

453

body boundary, fluid domain, normal vector, free-surface boundary, bottom boundary, and the left and right far-field454

boundaries, respectively. By assuming small body motion, linearized water-wave theory, and time-harmonic flow, the455

velocity potential can be decomposed into incident, diffraction, and the j-th mode radiation potentials: φ0, φ7, and φ j456

with j = 1, 2, 3 for sway, heave, and pitch, respectively. With ζ j(t) = ξ je
iσt denoting the displacement of the body in457

the j-th mode, the total potential can be written as follows:458

Φ(x, y, t) =

ℜ






A[φ0(x, y) + φ7(x, y)]eiσt +

3∑

j=1

φ j(x, y)[iσξ je
iσt]






(C.1)

The potential components φ0, φ7, and φ j all satisfy the no-penetration boundary condition on Σh and the linearized459

free-surface boundary condition on the calm water surface Σ f . Furthermore, the radiation potentials must satisfy the460

far-field radiation condition which requires outgoing waves at the far-field boundaries Σ+ and Σ− located at x → +∞461

and x→ −∞, respectively:462

φ j =
g

σ2

cosh k(y + h)

cosh kh
A±j e∓ikx, x→+∞

x→−∞ , j = 1, 2, 3 (C.2)
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where A±
j

is the far-field radiation wave amplitudes per unit body motion amplitude at Σ+ and Σ−. The diffraction463

potential φ7 must also satisfy the far-field radiation condition. On the body surface, the boundary conditions for the464

radiation and diffraction potentials are465

∂φ j

∂n

∣
∣
∣
∣
∣B
= n j , j = 1, 2, 3 (C.3)

and466

∂φ7

∂n

∣
∣
∣
∣
∣B
= −∂φ0

∂n

∣
∣
∣
∣
∣B

(C.4)

where n = (n1, n2) is the unit normal vector and n3 = (r × n)3 with r being the position vector.467

For an incident wave in the form of Eq. (11), the incident potential is known and is given by468

φ0 =
ig

σ

cosh k(y + h)

cosh kh
e−ikx (C.5)

The wave-exciting force on a fixed body can be obtained from the diffraction problem [37]:469

X j = −iρσ

∫

B
(φ0 + φ7)n jdS

= −iρσ

∫

B
(φ0 + φ7)

∂φ j

∂n
dS , j = 1, 2, 3

(C.6)

Because φ j and φ7 both satisfy the same free-surface, bottom, and far-field boundary conditions, Green’s second470

identity can be applied to show that471

X j = −iρσ

∫

B

(

φ0

∂φ j

∂n
− φ j

∂φ0

∂n

)

dS , j = 1, 2, 3 (C.7)

We have removed the unknown diffraction potential from the expression for wave-exciting force. Similarly, by taking472

advantage of the fact that both φ0 and φ j satisfy the same boundary conditions except on the body and far-field473

boundaries, we can apply Green’s second identity again to show that474

X j = iρσ

∫

Σ−∪Σ+

(

φ0

∂φ j

∂n
− φ j

∂φ0

∂n

)

dS , j = 1, 2, 3 (C.8)

Finally, by using Eqs. (C.2) and (C.5), the integration in Eq. (C.8) can be carried out to obtain the expression for475

wave-exciting force:476

X j = i
ρg2

σ2
A−j as h→ ∞ , j = 1, 2, 3 (C.9)

This relation is known as the Haskind relation for this problem, which relates the wave-exciting force to the left477

far-field radiated wave amplitude. Thus, with forced oscillation of the body in calm water, we can obtain the wave-478

exciting force on the body in the presence of incident waves. The wave-exciting force can also be related to the479

radiation damping of the body. For heave motion ( j = 2), the radiation force is in the following form:480

F2(t) = −µ22ζ̈2(t) − λ22ζ̇2(t) (C.10)

where µ22 is the heave added mass, λ22 is the radiation damping, and ζ2(t) = ξ2eiσt is the heave displacement of the481

body. Because of the orthogonality of ζ̈2(t) and ζ̇2(t), only the damping part of the radiation force contributes to the482

time averaged work done on the fluid by the body:483

Ẇ =
1

T

∫ T

0

−F2(t)ζ̇2(t) dt =
λ22 | ξ2 |2 σ2

2
(C.11)
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Energy flux of the linear harmonic wave, per-unit wave front, is Ė = (1/2)ρgA2Vg, where Vg = g/2σ in deep water.484

Then, the combined energy flux of radiated waves through Σ+ and Σ− is given in terms of the far-field radiated wave485

amplitudes (A±
2
):486

Ė =
1

2
ρg | ξ2 |2

(

| A+2 |2 + | A−2 |2
)

Vg (C.12)

By equating Eqs. (C.11) and (C.12), the relation between the radiation damping and far-field radiated wave amplitudes487

can be established:488

λ22 =
ρg2

2σ3

(

| A+2 |2 + | A−2 |2
)

(C.13)

Equations (C.9) and (C.13) together give the relation between the wave-exciting force and radiation damping:489

| X2 |2=
2ρg2

σ

λ22

(1 + γ2)
(C.14)

where γ =| A+
2
/A−

2
| is the geometry-hydrodynamic radiation factor.490
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Highlights 

 Review of “The Berkeley Wedge” an asymmetric wave energy converter/breakwater device 

 Includes effect of power-take-off efficiency and force coefficients on power output 

 Use of pseudo-spectral control theory while including structural and actuator loads 

 Introduces a power-to-load ratio for evaluating wave energy converter performance 

 Losses in power capture were exceeded by reductions in structural and actuator loads 


