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a b s t r a c t

This paper presents a coupled dynamic motion response analysis of a floating wind turbine using an in-
house code, CRAFT (Coupled Response Analysis of Floating wind Turbine). Viscous drag forces on hori-
zontal pontoons are carefully calculated, and a nonlinear spectral method is applied to efficiently solve
the coupled tendon dynamics. Viscous drag forces and tendon dynamics are two important factors when
assessing a tension-leg platform (TLP)-type floating wind turbine in a time-domain simulator. The
analysis object is the NREL 5 MW Wind Turbine, which is supported by a three-leg mini-TLP platform.
Simulations of the free decay and response amplitude operator (RAO) tests are conducted using CRAFT as
well as FAST, another commonly used code. The obtained results are compared with experimental results
to verify the capability of CRAFT. Viscous drag force induces higher harmonic pitch resonance, which is
most prominent when the wave period is three times the natural period of the pitch and the wave height
reaches a threshold. Springing motion is identified and found to be caused by this resonant pitch motion.
Time-domain statistics show that extreme increases in tendon loads caused by springing as well as pitch
and tendon tension probability distributions are non-Gaussian in random sea states. In addition, the
resonant pitch motion is significantly reduced by aerodynamic damping.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Offshore wind energy is a promising renewable energy source,
and deep water zones provide steady and strong winds, which
promise stable, high-quality electrical energy production. An
offshore wind turbine supported by a floating platform is one of the
most cost-efficient choices for harvesting energy from high-wind
areas with water depths exceeding 50 m. However, because these
wind turbines are supported by a floating body, the response of the
system is simultaneously dominated by several coupled loads,
including the aerodynamic load, hydrodynamic load and mooring
line load. These coupled dynamic responses of a floating wind
turbine towind andwave loads are complicated andmust be solved
in a time domain to capture transient and nonlinear effects.

Among the compliant floating platforms widely used in the
offshore oil industry, tension-leg platforms (TLPs) provide steady
and Technology, Newcastle
ngdom.
motion because of the high stiffness of their tendon mooring sys-
tem, which generates wind power of good quality [1]. Independent
5 MW TLP-type wind turbine designs include designs by Concept
Marine Associates (CMA) [2], Massachusetts Institute of Technology
and Italian Enel group (MIT/Enel) [3], MIT and National Renewable
Energy Laboratory (MIT/NREL) [4], and University of Maine [5].
These designs represent a variety of displacements from846 tons to
12,187 tons, with stiffness provided by 3e8 tendons, and diameters
at the water line ranging from 4.5 m to 18 m. With these drastically
different mass and geometric properties, the dynamic response of
each wind turbine system is unique and must be analyzed using
suitable methods. Furthermore, because of their high stiffness, TLPs
are susceptible to high-frequency excitations that can produce
resonant heave and pitch motions and cause fatigue damage to the
tendons. Thus, these high-frequency excitations should be
observed in a time-domain simulator, and a coupled dynamic
analysis should be performed to verify its feasibility. There are
several possible sources of high-frequency excitations: aero-
dynamic loads caused by turbulent wind imposed on the rotor and
tower; second-order wave forces imposed on the platform; vortex-
shedding-induced lifting forces imposed on the tendons; and
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viscous drag forces imposed on the surface piercing column and
pontoons and tendons. Among these excitations, the hydrodynamic
loads exceed the aerodynamic loads, thus dominating the system
response. The viscous drag force is proportional to the square of the
wave height and causes a mean displacement of surge and pitch
motion that is proportional to the cube of the wave height [6]. Shen
et al. [7] showed that viscous drag force can induce nonlinear
higher harmonic vibrations in surge motion. Although the ampli-
tudes of higher harmonic surge components are small, they can
cause pitch resonance motion because of the inertial and hydro-
dynamic coupling between the surge and pitch if the frequencies of
the higher harmonics are close to the natural frequency of the pitch.
Furthermore, a strong interaction among the tower, platform and
tendons has been observed in previous numerical simulations.
Therefore, it is also necessary to analyze the coupled high-
frequency response of floating wind turbines supported by TLPs
because of the viscous drag force, especially in extreme sea
conditions.

In Shen et al. [7], the viscosity-induced high-frequency dynamic
responses in both regular and irregular waves were investigated.
Regular waves were examined using an analytical method, which
was difficult to achieve for irregular waves. Therefore, a numerical
analysis using FAST was applied, although FAST may not provide
quantitatively correct predictions of the resonant amplitude
because it adopts a quasi-static mooring model, which neglects
viscous drag forces on tendons and overestimates the pitch reso-
nant amplitude to some extent because the coupling between the
tendons' axial and transversal motions has a non-trivial contribu-
tion to the pitch damping. In addition, the experimental data pre-
sented in Steward et al. [8] indicated that the surge damping of a
TLP floating wind turbine is nonlinear and amplitude dependent,
which may be related to viscous drag, although this aspect is
partially neglected in FAST. For high-frequency motion, potential
damping caused by wave radiation is negligible, whereas aero-
dynamic damping and viscous damping are critical for determining
the pitch resonant amplitude. FAST v7 is a globally used code for
solving aerodynamic, hydrodynamic and control problems related
to floating wind turbines. Therefore, the simulation results with
respect to the linear responses given by CRAFT is compared with
those given by FAST v7 for verification purpose.

Additionally, tendon dynamics are also essential for deter-
mining the extreme dynamic response of TLPs. High-frequency
resonant pitching is responsible for tendon springing and ringing
phenomena, and the resulting high-frequency variations in the
axial tension may cause the parametric vibrations and Mathieu
instability [9]. Many scholars have studied the coupled dynamic
motion of TLPs and their tendons. Paulling and Webster [10] dis-
cussed these aspects and concluded that the coupling effect is
important. Ahmad [11] studied the coupled responses of TLPs by
retaining the nonlinearities caused by the drag force, variable
submergence, and large deformation and by randomly varying the
tether tension, and he showed that the heave response and tendon
tension are critically affected by the coupling between degrees of
freedom. Gadagi and Benaroya [12] studied the nonlinear dynamic
response of an axially loaded tendon via the finite difference
method (FDM). At low tension, the axial motion is mainly induced
by geometry; thus, the geometric nonlinearity caused by lateral
motion is important. Roald et al. [13] calculated the quadratic
transfer function for the second-order wave forces on a mini-TLP
and determined that these forces are an important source of
high-frequency excitation and likely contribute to tendon tension
variations. Chen et al. [14] applied a coupled dynamic analysis code
accurate to the second order to analyze the response of a mini-TLP
and solved the tendon dynamics using the FDM. These authors
compared the results predicted by a coupled analysis and those
predicted by an uncoupled analysis, which applied a quasi-static
mooring model with experimental results, and they showed that
the results of the coupled analysis were consistent with those of the
experimental findings, whereas the uncoupled analysis failed to
provide satisfactory predictions in the low- and high-frequency
regimes.

In this work, an in-house coupled dynamic analysis program
(CRAFT) for TLP-type floating wind turbines is presented. This
model accounts for the nonlinear tendon dynamics and viscous
drag force imposed on the horizontal pontoons. Free decay tests
and response amplitude operators (RAOs) are calculated and
compared with the results provided by FAST and model test results
from Koo et al. [5] and Stewart et al. [8] to validate the CRAFT
simulation results. The effects of viscous drag force, aerodynamic
force, and mooring models on the dynamic response of the surge,
pitch and tendon tensions in regular waves, random sea states and
joint wind-wave sea states are investigated using a frequency
domain spectrum analysis and time-domain statistical analysis.
Emphasis is placed on the coupled pitch resonance induced by the
viscous drag force and resulting springing and extreme loads.
2. Theory and method

2.1. Aerodynamic load

In this work, only steady-state winds are considered, and the
corresponding aerodynamic force results in a mean surge
displacement and is balanced by the horizontal component of the
tendon tension. A pitch moment is also induced, which causes an
increase in the tension on the windward side and decrease on the
leeward side. In addition, the aerodynamic force presents signifi-
cant damping of the pitch motion, which is crucial for reducing
high-frequency pitch resonant motion. Nevertheless, under
extreme sea conditions, the turbine is parked and blades are
feathered (90� pitch angle) to avoid large aerodynamic forces that
could substantially damage the blades. In such situations, aero-
dynamic damping is small compared with that of the operating
conditions.

Aerodynamic forces are calculated using the blade element
momentum (BEM) theory, which is a combination of blade element
theory and momentum theory. Although efficient, BEM theory
neglects radial aerodynamic interactions by assuming two-
dimensional flow at each radius; moreover, the derivation of mo-
mentum theory is based on quasi-static flow. Nevertheless, BEM
theory is sufficiently accurate for predicting mean wind forces
when the incoming flow does not vary rapidly with time.

A tip loss model, hub loss model and Glauert correction are also
adopted to fix the induction factor because of a finite blade number,
vortexes shed by the hub and turbulent wake, respectively. The
effect of dynamic stall is not taken into consideration in this work.
Further details regarding the theory and implementation of the
BEM theory can be found in Moriarty and Hansen [15] and/or
Burton [16].

The dynamic effect of aerodynamic loads induces additional
coupling between the surge and pitch motions of the platform. For
fixed rotor speeds and blade pitch angles, the local angle of attack is
almost linearly related to the relative incoming flow velocity,
whereas the magnitude of total relative velocity is approximately
unchanged because the dominant component is the tangential
velocity, which is determined by the rotor angular velocity.
Consequently, the lifting force on each blade element is almost
linearly related to the relative incoming flow velocity, which is
similar to the total thrust force as an integration of blade element
forces. As a result,
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FT ¼ Fsteady þ CTVdisturb; (1)

where FT denotes the rotor thrust force, Fsteady denotes the rotor
thrust force caused by steady-state winds without platformmotion

disturbance, CT ¼ vFT ðVÞ
vV

����
Vsteady

, and Vdisturb is the deviation of the

relative velocity from the steady-state velocity caused by surge and
pitch motion.

Assuming the mean wind direction is oriented in the positive x
direction, it follows that

Vdistrub ¼ � _x1 � _x5l; (2)

where x1 denotes the surge displacement, x5 denotes the pitch
displacement, and l denotes the distance between the rotor center
and a reference point that is assumed to be on the static water
plane.

Substituting (2) into (1) provides the following:

FT ¼ Fsteady � CT _x1 � CT _x5: (3)

Thus, the induced pitch moment is equal to

M ¼ FT l ¼ Fsteadyl� CT _x1l� CT _x5l
2: (4)

Eqs. (3) and (4) show that the presence of aerodynamic forces
introduces an additional coupling between surge and pitch. On the
right-hand side of (3), the first term results in a mean surge
displacement, the second term is the source of aerodynamic
damping for surge, and the third term represents the surge exci-
tation caused by pitch. Similarly, on the right-hand side of (4), the
second term represents the pitch excitation caused by surge and
the third term is the aerodynamic damping of pitch. This derivation
shows consistency with the experimental findings about aero-
dynamic damping presented in Koo et al. [5].

2.2. Hydrodynamic loads

Hydrodynamic loads are calculated using a hybrid potential-
Morison equation approach, wherein the inertial and radiation
forces are predicted using potential theory, and the viscous force is
approximated by the Morison equation. For large-volume struc-
tures, the potential flow and rigid body assumptions simplify the
problem while maintaining the accuracy of the predicted hydro-
dynamic loads. For smaller structural components, viscosity is
important because of flow separation, which results in a drag force
that is proportional to the square of the velocity.

By assuming that the wave amplitude and body motion are
small, the potential flow problem can be split into first-order, sec-
ond-order and higher-order problems with respect to the wave
height. According to first-order potential theory, the governing
equations of platform motion can be written as follows [17]:

X6
b¼1

h
Mab þ mabð∞Þ

i
€Xb þ

Zt

�∞

Labðt � tÞ€XbðtÞdtþ CabXb

¼ FDa þ FFKa þ FMa þ FVa ; (5)

where Mab represents the inertia matrix; mab represents the added
mass matrix of infinite frequency; Lab represents the matrix kernel
of convolution, which reflects memory effects of the free surface;
Cab represents the hydrostatic restoring matrix; FDa represents the
diffraction forces; FFKa represents the Froude-Kriloff (F-K) forces; FMa
represents the mooring forces; and FVa represents the viscous drag
forces imposed on the columns and pontoons.
The added mass, radiation damping, diffraction and F-K forces
can be determined from a frequency domain code such as WAMIT
[18]. Subsequently, an integral transformation is used to calculate
the convolution kernel. Mooring forces are determined from the
tendon dynamic equations. Viscous and inertial forces on the
structural components per length are calculated via the Morison
equation:

dF ¼ 1
2
rDCDjU � ujðU � uÞ þ 1

4
CMrpD2vU

vt
� 1
4
ðCM � 1ÞrpD2vU

vt
;

(6)

where U denotes the ambient wave velocity and u denotes the
velocity of the structural component induced by platform motion.
Only the viscous term is calculated and imposed on the column and
pontoons because the inertial terms are included in the added
mass, F-K forces, diffraction forces and radiation forces. Both the
viscous and inertial terms are calculated as hydrodynamic forces on
the tendons.

The added mass and drag coefficient of the tendons are CM ¼ 2.0
and CD ¼ 1.0, respectively [6,19]. The drag coefficient of the surface
piercing column is 0.7, and the drag forces on the three rectangular
sectional pontoons are also calculated, which is not performed in
FAST. The drag coefficients of sharp-edged bodies were investigated
by Bearman et al. [20], and their experimental results showed that
the drag coefficient is approximately 3.0 for a facing square and 5.0
for a diagonal square. Because the pontoon cross-sections are
rectangular, the average of the length and width is chosen as the
equivalent diameter. The relative velocity between a fluid particle
and structure is decomposed into a component perpendicular to
the cross-section and a component parallel to the cross-section,
although only the latter contributes to the drag force.

2.3. Tendon dynamics

Determining expressions for the positioning and dynamic ca-
pabilities of the tendons of TLP-type wind turbines is challenging.
The vertical and horizontal displacements of the tendons are
expanded as a superposition of a set of trigonometric basis func-
tions, and a set of nonlinearly coupled ordinary differential equa-
tions governing the expansion coefficients is derived from the
Lagrange equation. This method for solving partial differential
equations is commonly known as the spectral method (SM). The SM
usually has higher accuracy and resolution than the FDM or FEM
approaches for smooth solutions and assumes the same calculation
time. The formulation is presented as follows

uðx; tÞ ¼ u0ðtÞx
l

þ
XN1

n¼1

anðtÞsin
�npx

l

�
; (7)

vðx; tÞ ¼ v0ðtÞx
l

þ
XN2

n¼1

bnðtÞsin
�npx

l

�
; (8)

wðx; tÞ ¼ w0ðtÞx
l

þ
XN3

n¼1

cnðtÞsin
�npx

l

�
; (9)

where x represents the axial coordinate, with x ¼ 0 representing
the bottom end point connected to the anchor and x ¼ l repre-
senting the top end point connected to the fairlead; l represents the
length of the tendon; u, v andw represent the horizontal and ver-
tical displacements, respectively; u0, v0 and w0 represent the dis-
placements of the top end point, which are determined by the
platform motion; and an, bn and cn are the expansion coefficients.

The total kinematic energy can be written as follows



T ¼ 1
2
r

Z l

0

ð _u2 þ _v2 þ _w2Þdx

¼ 1
2
r

"
_u20l
3

þ _v20l
3

þ _w2
0l
3

þ
XN1

n¼1

_a2nl
2

þ
XN2

n¼1

_b
2
nl
2

þ
XN3

n¼1

_c2nl
2

þ
XN1

n¼1

ð � Þnþ1 _u0 _anl
np

þ
XN2

n¼1

ð � Þnþ1 _v0
_bnl

np
þ
XN3

n¼1

ð � Þnþ1 _w0 _cnl
np

#
;

(10)

M. Shen et al. / Renewable Energy 99 (2016) 800e812 803
where r represents the linear density of the tendon, and the dots
denote time derivatives.

The elastic potential energy caused by bending is much smaller
than that caused by elongation unless the axial tension decreases to
zero. Thus, bending energy is neglected, and the total elastic po-
tential energy is approximated as follows:

U ¼ 1
2
EA

Z l

0

ε
2dx; (11)

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2wx þ u2x þ v2x þw2

x � 1
q

; (12)

where E is Young's modulus, A is the section area, and ε is the axial
strain.

Because l[u z v[w, which is caused by the tendon's high
stiffness, it follows that 1[ux z vx[wx, which implies that the
nonlinear terms u2x and v2xshould be preserved during linearization
to retain the major contribution of the geometric nonlinearity. As a
result, the strain can be approximated to the leading order as
follows:

ε ¼ wx þ 1
2
u2x þ

1
2
v2x ; (13)

The elastic potential energy can be approximated as follows:
�
rl
2
þðCM�1ÞrwpD2l

8

�
d2bn
dt2

¼ð�Þnl
2pn

�
rþðCM�1ÞrwpD2

2

�
d2v0
dt2

�vW
vbn

þCMrwpD
2

4

Z l

0

dUy

dt
sin

npx
l

dxþCDrwD
2

Z l

0

�
Uy�vv

vt

�����Uy�vv

vt

����sin�npxl
�
dx;

(17)
U¼1
2
EA

Z l

0

�
wxþ1

2
u2xþ

1
2
v2x

�2

dx

¼1
2
EA

2
64w2

0
l
þ
XN3

n¼1

ðpncnÞ2
2l

þ
Z l

0

�
wxu2xþwxv

2
xþ

1
4
u4xþ

1
4
v4xþ

1
2
u2xv

2
x Þdx

3
75:

(14)

The potential energy caused by gravity and buoyancy can be
easily written and substituted into the Lagrange equation:
d
dt

�
vL
v _qk

�
� vL
qk

¼ Qk; (15)

where L¼ T� V is the Lagrangian; V is the total potential energy; qk
is the generalized coordinate, which is composed of the set of
expansion coefficients an, bn and cn in this study; and Qk ¼ vðdWÞ

vðdqkÞ is
the generalized force corresponding to qk. In addition, the imagi-
nary work dW corresponding to the imaginary displacement dqk is
calculated by applying the Morison equation to the hydrodynamic
force imposed on the tendon.

Combining equations (10), (14) and (15) and considering the
effects of gravity and buoyancy, the governing equations accurate to
the first order are as follows:

�
rl
2
þ ðCM � 1ÞrwpD2l

8

�
d2an
dt2

¼ ð � Þnl
2pn

�
r

þ ðCM � 1ÞrwpD2

2

�
d2u0
dt2

� vW
van

þ CMrwpD
2

4

Z l

0

dUx

dt
sin

npx
l

dx

þ CDrwD
2

Z l

0

�
Ux � vu

vt

�����Ux

� vu
vt

����sin�npxl
�
dx;

(16)
rl
2

d2cn
dt2

þ EAn2p2

2l
cn ¼ ð � Þnrl

2pn
d2w0

dt2
� vW

vcn
þ
h
ð � Þnþ1

þ 1
i �rwpD2 � r

	
gl

pn
; (18)

where rw is the density of seawater, D is the tendon outer diameter,
CM and CD are the mass and drag force coefficients, respectively, in
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the Morison equation, Ux and Uy are the horizontal components of
the wave velocity, and g is the gravitational acceleration.
W ¼ 1

2 EA
R l
0

�
wxu2x þwxv

2
x þ 1

4u
4
x þ 1

4v
4
x þ 1

2u
2
xv

2
x Þdx is the nonlinear

component of the elastic potential energy, whose partial de-
rivatives should be evaluated numerically at each time step. The
advantage of using the trigonometric expansion is that the fast
Fourier transformation technique can be used to significantly
reduce the calculation time. Structural dampingwas not considered
in this work because it is assumed to be small compared with the
hydrodynamic viscous damping.

Once the displacements of the top end point and their first and
second time derivatives are determined, the right-hand sides of
Eqs. (16)e(18) can be determined given a sea state. Subsequently,
the equations can be integrated using a time marching scheme to
the next time step.

Unlike the modal superposition method, which assumes small
deflection and linearization, the spectral method can simulate the
nonlinear interaction between axial and transversal motions to an
arbitrary order. The geometric nonlinearity of large deflection and
potential for instability are intrinsically included.
2.4. Procedure of the coupled numerical simulation

For simplicity, structural flexibility is not included in the model,
and the entire wind turbine and platform are modeled as a rigid
body. These assumptions result in a discrepancy in the natural
frequency of pitch motion. To remedy this situation, pitch inertia is
tuned to be larger than that calculated from the rigid body mass
distribution so that the pitch natural frequency is equivalent to
0.32 Hz.

At each time step, the axial force at the top end point of each
tendon is obtained by applying Eq. (13). The spectral expansion is
truncated at N ¼ 4 in this study, which means that a group of 12
coupled equations for each tendon are solved to determine the
motion and tension. A convergence test is conducted to confirm
that this number of equations is sufficient for obtaining good ac-
curacy. The rigid body accelerations are then solved from Eq. (5),
and the accelerations of the fairlead points are calculated assuming
that the platform is a rigid body. Because the right-hand sides of
Eqs. (16)e(18) are determined assuming a specified sea state and
motion history, they are integrated to the next time step using the
fourth-order Runge-Kutta method. The numerical stiffness of Eq.
(18) was carefully treated because of the high axial stiffness of the
tendons. The flow chart of the solver is shown in Fig. 1.
3. Description of the objective model

The floating wind turbine studied in this work is composed of
the NREL 5 MW Wind Turbine (see Table 1) and TLP proposed by
the University of Maine for use in the DeepCwind project [5] (see
Table 2). During the simulation, the waves and winds are in
alignment (see Fig. 2).

The total mass of the wind turbine is approximately equal to the
mass of the TLP, which indicates that the dynamic coupling be-
tween the turbine and TLP should be strong. A significant shift in
the pitch and roll frequencies from approximately 0.54 Hz with a
rigid tower to 0.32 Hz with a flexible tower, which is caused by the
coupling between tower bending and platform pitch motions, is
observed and described in Roald et al. [13] (See Table 3). Compared
with the platforms used in oil and gas industries, this TLP platform
is much smaller, which implies that the viscous effect is relatively
more important compared with that of typical offshore TLP
platforms.
4. Verifications

In this section, the CRAFT code is verified through a comparative
analysis with a TLP-type floating wind turbine, and published
experimental data presented in Stewart et al. [8] are adopted for the
verification. The experiment was implemented on a 1/50th scale
TLP type floating wind turbine model based on Froude scaling by
the University of Maine. All the experimental results were extrap-
olated to the full scale. In the surge free decay test, the platformwas
displaced the full scale equivalent of 4 m in the surge direction and
the surge displacement was recorded by an optical displacement
sensor located near the tower base [8].

4.1. Comparison of period and damping coefficients using free decay
cases

Damping is one of the most important factors affecting TLP-type
wind turbines. Experimental results have shown that quadratic
damping caused by viscous drag plays an important role in low-
frequency zones where radiation damping vanishes [8]. Surge
free decay is simulated by CRAFT and FAST and shown in Fig. 3.
CRAFT# denotes the free decay result without including the viscous
drag force effects on the pontoons, whereas FAST, approximates the
tendon mooring system by quasi-static mooring lines, which ne-
glects the inertial effect. To remedy this situation, the platform
mass applied in FAST includes the mooring mass listed in Table 2.
This is done by adding two third of the total dry mass onto the
platform. Because of the high tendon tension, the shape of the
tendon can be well approximated as a straight line, which indicates
the horizontal velocity of each element of the tendon is propor-
tional to its distance from the anchor. As a result, the equivalent
inertia is one third of the tendon mass if there is no ambient fluid
and it should be doubled accounting for the added mass effect in
water if themajority of the ambient fluid is assumed to be ideal. The
quadratic damping ratio caused by viscous drag force in both the
simulations and experiments were calculated using the method
proposed by Hoff [21] and are summarized in Table 4. The results
show that the lack of viscous drag in the numerical simulation leads
to a large underestimation of the surge free decay damping (see
Fig. 3 and Table 4.

The free decay results obtained using CRAFT show an
amplitude-dependent characteristic, which can be observed from
the free decay curve. The amplitude-dependent damping is also
indicated by the experimental results andmay have been caused by
the viscous drag force. Therefore, the CRAFT simulation results are
relatively close to the free decay curve obtained by the experi-
mental findings presented in Stewart et al. [8].

The natural period predicted by CRAFT is larger than that pre-
dicted by CRAFT#, which is caused by the damping effect of the
viscous force on the pontoons. The natural period predicted by
CRAFT# is larger than that predicted by FAST, which is believed to
be caused by the damping effect of the viscous force on the tendons.
The natural periods predicted by all three simulations are close to
that of the experimental results.

The overall damping in CRAFT is slightly lower than that in the
experimental decay results. This phenomenon has also been
observed for the OC-3 Hywind Spar wind turbine, where the hy-
drodynamic damping of the real platform motion is not fully
captured by summing the linear radiation damping and nonlinear
viscous drag forces [22].

Nevertheless, the free decay results, especially the natural
period and quadratic damping ratio, predicted by CRAFT are
consistent with the experimental findings, which confirms that the
viscous drag forces on the pontoons are critical to TLP wind tur-
bines and should not be neglected in numerical simulations.
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Fig. 3. Surge free decay test.
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4.2. RAO comparisons

Among all of six rigid-body modes of platform motion, surge
and pitch are the two most important motions because they
dominate the dynamic responses of the system. Thus, the capability
of CRAFT to capture the response characteristics of these two mo-
tions is verified in this section. Surge RAOs are calculated from the
CRAFT results for the white noise sea case and FAST results using a
series of regular wave tests. The experiment results are obtained
from the published results presented in Koo et al. [5]. The experi-
ment was implemented on a 1/50th scale TLP type floating wind
turbine model based on Froude scaling at Maritime Research
Institute Netherlands. The six degree of freedom motions were
measured by the optical tracking system [5]. The numerical and
experimental results are shown in Fig. 4.

As shown in Fig. 4, the wave frequency surge RAOs calculated
from these two approaches are comparable and consistent with the
experimental results. The effect of viscous force appears to be
insignificant in this case, which is mainly because the excitations
and motions in the RAO cases are small. The magnitude of the
viscous force is proportional to the square of the relative velocity;
therefore, both exciting and damping effects of the viscous force are
small, and the overall excitation and damping are dominated by
first-order potential forces and radiation damping. Therefore, no
significant difference is expected for surge RAOs where linear wave
forces dominate. This consistency among surge RAOs suggests that
both CRAFT and FAST can accurately predict the surge responses at
typical wave frequencies.

Pitch motion is another important motion, and pitch RAOs are
calculated for CRAFT and FAST. The results are shown in Fig. 5.



Table 1
Principal dimensions and mass properties of the NREL 5 MW wind turbine [5].

Item Unit Value

Power MW 5.0
Tower Top Mass (Hub, Blades, and Nacelle) kg 350,000
Rotor Diameter m 126.0
Tower Mass kg 249,718
Tower Height m 77.6
Tower CG (% from Tower Base) % 43.0

Table 2
Principal dimensions and mass propertiesa of the TLP [5].

Item Unit Value

Draft m 30.0
Mass kg 1361,000
Displacement kg 2840,000
Anchor Radius m 30.0
Water Depth m 200.0
Tendon Diameter m 0.6
Mass per Length (dry) kg/m 289.8

a With wind turbine and moorings.

Table 3
Natural frequencies of the TLP with rigid and flexible wind turbine blades and tower
[13].

Mode Natural frequency (rigid) [Hz] Natural frequency (flexible) [Hz]

Surge 0.0248 0.0248
Sway 0.0248 0.0248
Heave 0.9510 0.9467
Roll 0.5392 0.3191
Pitch 0.5399 0.3217
Yaw 0.0595 0.0595
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The responses close to the pitch resonant frequency (0.32 Hz)
predicted using CRAFTare much smaller than those predicted using
FAST. The peak in the pitch RAOs predicted using CRAFT is
approximately one-fifth of that predicted using FAST, and this dif-
ference may have been caused by the damping effect of the viscous
drag force on the tendons. To verify this inference, the viscous force
on the pontoons is removed, and the dynamic mooring lines are
replaced by linear restoring forces in CRAFT. The corresponding
results are shown with the dashed line and denoted as CRAFT* in
Fig. 5. The peak value predicted using this method is close to that
predicted using FAST, indicating that the discrepancy in the peak of
the pitch RAOs is indeed caused by the damping effect. Because
radiation damping vanishes at high frequencies, viscous damping
on both the pontoons and tendons is important and dominates the
resonant motions. The pitch natural frequency shifts from 0.319 Hz
to 0.323 because of the removal of the viscous force and change in
the tendon model. This difference is understandable because both
the viscous damping effect and tendon inertial effect act to
decrease the natural frequency.

Furthermore, the peak in the dashed line at low frequencies
Table 4
Natural periods and damping ratios of surge motion.

Average period Quadratic

Unit (s) (1/m)
CRAFT 40.04 9.30E-03
CRAFT# 39.88 5.70E-03
FAST 39.45 4.40E-03
Experiment 40.00 1.03E-02
does not indicate a large pitch response to wave exciting forces at
that frequency because this peak is caused by the inertial and hy-
drodynamic coupling with surge motion. Because white noise
contains excitation over a large frequency zone that includes the
surge resonant frequency, surge motion is resonated and exagger-
ated because of the lack of viscous damping, which results in a pitch
response at such low frequencies. Therefore, this effect is caused by
a faulty numerical model and further indicates the importance of
including viscous damping in the numerical analysis.

In conclusion, both the free decay and RAO tests indicate that
CRAFT is capable of providing quantitative results within a
reasonable level of accuracy for the viscous induced pitch motion
that is going to be discussed.
5. Discussion

In this section, pitch resonant motion induced by viscous drag
force is investigated. Unlike the first-order potential forces, the
viscous drag force is nonlinear and can cause higher harmonic
surge responses. Because surge and pitch are highly coupled mo-
tions for floating wind turbines, pitch resonant motion can be
excited if the frequency of one of the higher harmonic components
coincides with the pitch natural frequency.

The effects of viscous drag force and tendon dynamics are
studied by comparing the numerical simulation results obtained
using three different approaches, which are summarized in Table 5.
Approach 1 is the coupled dynamic analysis method applied in
CRAFT; Approach 2 replaces the dynamic tendonmodel with linear
restoring forces; and Approach 3 excludes the viscous drag forces
on the columns and pontoons, although these forces on the tendons
are preserved. The viscous force on tendons has been shown to be
necessary not only for its important effects on damping and exci-
tation but also for numerical stability.
damping Percentage difference ratio in Qudratic damping

/
9.7%
44%
57%
/

Fig. 4. Platform surge RAOs.
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5.1. Effects of higher harmonics

The magnitude and behavior of higher harmonic pitch re-
sponses differ, and these differences are investigated by analyzing
the pitch responses in regular waves with specified periods. Reg-
ular wave tests with wave periods of 9.33 s, 15.55 s and 21.77 s are
conducted, and their third, fifth and seventh harmonic excitations,
respectively, excite pitch resonant motion. The wave parameters
are listed in Table 6. An investigation of harmonics exceeding the
seventh order requires wave periods longer than 28 s, which is
seldom encountered within real sea states; thus, these orders are
not discussed herein.

The pitch PSDs near the pitch resonant frequency are obtained
after the transient motions because of initial conditions have
decayed, and they are shown in Fig. 6.

In all three cases, pitch resonantmotion is excited. In cases LC R1
and LC R2, the PSD predicted using Approach 1 is larger because the
viscous effects on the columns, pontoons and tendons are included.
The pitch PSDs predicted using Approach 2 are slightly smaller than
those predicted using Approach 1, which indicates that the viscous
forces on the columns and pontoons dominate the higher harmonic
excitations because these forces are larger than those on the ten-
dons because of their large cross-sectional areas. The viscous forces
on the tendons have an increasing damping effect and decreasing
excitation effect for increasing wave periods, which is indicated by
the pitch PSDs predicted using Approach 3. In cases LC R2 and LC
R3, the pitch PSDs are small, which means that the excitation effect
of the tendon viscous force is much smaller than that in LC R1. In
addition, in case LC R3, the pitch PSD predicted using Approach 2 is
larger than the pitch PSD predicted using Approach 1, which in-
dicates that the damping effect of the tendons overwhelms the
excitation effects. Moreover, the magnitude of the higher harmonic
pitch responses decrease for increases in the order. Therefore,
higher (exceeding the seventh order) harmonic pitch responses are
of less interest because of their small magnitudes.
5.2. Wave height effects

The dependence of higher harmonic responses on wave height
is investigated using a series of regular wave cases with fixed pe-
riods and increasing wave heights. All of the simulations are con-
ducted according to Approach 1. The peak value of the pitch PSD
Fig. 5. Platform pitch RAOs.
near the resonant frequency is determined based on the steady-
state pitch time history shown in Fig. 7. The left side of Fig. 7
shows the pitch PSD excited by regular waves with a period of
9.33 s and wave heights ranging from 1 m to 12 m using an interval
of 1 m. The right side shows that the PSD excited by regular waves
with a period 15.55 s and wave heights ranging from 1 m to 14 m.
Because the pitch resonant motion is induced by the nonlinear drag
force, it is anticipated that the pitch resonant amplitude should
grow nonlinearly with increasing wave height. The perturbation
analysis applied in Shen et al. [7] indicates that the pitch resonant
amplitude is proportional to a certain power of the wave height if
the wave height is small. In Fig. 7, a cubic function is found to fit the
first three data points that correspond to wave heights of 0 m, 1 m,
and 2 m, and the fit has good accuracy. This finding indicates that
the pitch resonant PSD is proportional to the wave height cubed or,
equivalently, that the pitch resonant amplitude is proportional the
wave height to the power of one and a half, if the wave height is
small. Therefore, the pitch resonance induced by viscous drag
grows more rapidly than the first-order motions and more slowly
than the second-order motions for increasing wave heights.

In the case of the third harmonic pitch response corresponding
to T ¼ 9.33 s (Fig. 7, left), the simulated results exhibit deviation
from the cubic function for wave heights exceeding 3 m. The PSD
does not continue to increase with wave height and reaches a
maximum at a wave height of approximately 9 m, decreasing with
further increases in wave height. This result indicates that the
strong nonlinear interaction between the pitch resonance and
viscous drag force becomes complicated whenwave heights are not
small; thus, the relationship between pitch resonant motion and
wave height cannot be simply described using polynomial func-
tions. One of the reasons for the decrease in the pitch resonant PSD
with increasing wave heights, which might appear contradictory at
first, is the amplitude-dependent damping effect of the viscous
force that can be observed by analyzing the quadratic drag term in
the Morison equation. According to the Morison equation (6),
viscous force is proportional to the square of the relative velocity:

dFDfðU � uÞjU � uj: (19)

Pitch motion is small because of the high stiffness of the ten-
dons; therefore, the induced structural velocity u is also small.
Therefore, u≪U holds under moderate and severe sea state condi-
tions, where U denotes the wave velocity. The viscous force can
then be decomposed into one component that is independent of
the structural velocity and another component that is proportional
to the structural velocity:

dFDfðU � uÞjU � uj ¼ jUjU � 2jUjuþ O
�
u2

�
: (20)

The second term on the right-hand side of Eq. (20) is always
opposite that of the structural velocity and represents a damping
force, whereas the damping coefficient 2jUj is proportional to the
ambient wave velocity. Therefore, as the wave height increases, the
damping effect of the viscous force also increases, implying that
when the wave height is small, the pitch resonant PSD increases
with wave height. When the wave height is sufficiently large, the
viscous damping effect becomes important and prevents further
increases in the pitch resonant PSD. In the case of fifth harmonic
Table 5
Simulation methods and settings.

Simulation approaches Approach 1 Approach 2 Approach 3

Tendon model Dynamic Linear Restoring Dynamic
Viscous force Included Included Excluded



Table 6
Wave parameters for the regular wave cases.

Wave period Wave height Higher-order harmonics

Case (s) (m) /
LC R1 9.33 5.0 3rd
LC R2 15.55 5.0 5th
LC R3 21.77 5.0 7th

Fig. 6. Pitch PSDs near the natural frequency (0.32 Hz) for the regular wave cases.
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pitch response corresponding to T ¼ 15.55 s (right), the consistency
between the pitch resonant PSD of large wave heights and cubic
function is improved, whereas the effect of damping is still
apparent, although it is not as pronounced because the pitch PSDs
continue to increase with increasing wave heights. The amplitudes
of the pitch PSDs in this case are much smaller than those excited
by the third harmonic excitation.
5.3. Pitch resonance and corresponding loads in an extreme sea
state

The pitch resonance induced by viscous drag is a highly
nonlinear process; thus, the response in an irregular sea state
cannot be predicted based on responses to a series of regular
waves; thus, such a response must be simulated independently. As
indicated in Fig. 7, the most dangerous case in a real sea state is
likely an irregular wave with a peak period of approximately 9.33 s
and significant wave height of approximately 9 m.

Therefore, an irregular wave generated according to the Jons-
wap spectrum with Tp ¼ 9.4 s, Hs ¼ 8 m, and g ¼ 2.2 are simulated
using all three approaches. The wave spectrum is truncated at a
frequency of 0.3 Hz, and wave components with frequencies higher
than 0.3 Hz are intentionally excluded from the simulation so that
the resonant pitch motion is purely induced by nonlinear viscous
forces. The corresponding pitch PSDs are shown in Fig. 8.

According to Fig. 8, the pitch resonant motion induced by the
third harmonic excitation is severe, and the peak in the pitch PSD at
the resonant frequency is approximately three times that at the
wave frequency. The total energy of the pitch resonant motion,
which is characterized by the area under the pitch PSD curve, is the
largest for Approach 1 and smallest for Approach 3. This finding is
consistent with the results for the regular wave case and indicates
that viscous forces acting on both the pontoons and tendons play an
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important role in resonant pitch motion.
The statistics for the surge, pitch, heave and tensions for tendons

#1 and #2 are summarized in Table 7. Because tendons #2 and #3
are in symmetrical positions, the statistics for tendon #3 are not
included in Table 7. The statistics include the skewness, which
describes the degree of asymmetry of a distribution around its
mean, and kurtosis, which describes the relative peakedness or
flatness of a distribution relative to a Gaussian distribution [23].

The results show that the standard deviations of the pitch and
tensions in tendons #1 and #2 predicted using Approach 1 and
Approach 2 are larger than those predicted using Approach 3,
which is caused by the excitation effect of the viscous force on the
columns and pontoons, which is anticipated based on a comparison
of the pitch PSDs in Fig. 8. The standard deviation of the tension in
tendon #1 is approximately twice that of the tension in tendon #2,
which is determined by the special position of tendon #1. The di-
rection from fairlead point #1 to the rotation center of the platform,
which is located at the center, is in alignment with the wave and
wind directions, whereas those from fairlead points #2 and #3 have
an angle of 60� relative to the direction of the waves and winds.
Thus, when the platform pitches, the resulting tension variation in
tendon #1 is doubled. Extreme loads are also important when
considering the survivability of TLPs in severe sea states. One of the
criteria for survivability is to avoid tendon slack. The minimum
tension for tendon #1 predicted using Approach 2 decreases to less
than one-fifth of its mean value, which is most likely a result of the
exclusion of tendon damping. This finding represents one of the
intrinsic limitations of linear mooring models. In addition, the set-
down characteristic of a tension leg-type mooring system cannot
be captured using linear mooring, which is illustrated in the
incorrect heave motion skewness and kurtosis predicted using
Approach 2. The kurtosis of the tension in tendon #2 is many times
larger than its statistical standard error when the viscous forces on
the columns and pontoons are simulated, which indicates that its
probability distribution deviates substantially from a Gaussian
distribution. The kurtosis of the pitch and tension in tendons #1
and #2 are all positive for Approaches 1 and 2 and negative for
Approach 3. This result indicates that viscous forces increase the
probability of extreme loads because a positive kurtosis indicates a
fatter tail in the probability distribution function compared with
that of a Gaussian distribution. The probability that the tension in
tendon #2 will deviate from its mean value by three times its
standard deviation is estimated by the ratio between the number of
occurrences of this event and total number of samples based on the
2500 s simulation. The result is a ratio of 0.0078 for Approach 1 and
0.0021 for Approach 3, whereas a value of 0.0027 is expected for a
Gaussian distribution. Therefore, viscous forces increase the
occurrence of extreme loads because they can produce higher
harmonic resonant pitch motions.

It is also worthy to note that there is little difference in the
standard deviations of the tendon tension predicted by these three
approaches, which means linear restoring models might be suffi-
cient for the prediction of linear responses despite the presence of
nonlinear responses. But when the tendon fatigue is of major
concern, linear model seems to be insufficient, noted that in Fig. 8,
Approach 2 underestimates the peak height near the resonance
frequency by about 30% comparedwith Approach 1. This can induce
the same amount of underestimation for the tendon tension if the
tendon is modeled as linear. Although including tendon dynamic
effect does not change the linear response a lot, it significantly
increases the pitch resonant response. The reason for this
discrepancy should be that natural frequencies of the tendon
transversal modes are much higher than the linear wave fre-
quencies but close to the pitch resonant frequency, so strong
coupling between pitch resonant response and tendon dynamic
response is expected.



Table 7
Statistics of motions and tendon tensions.

Approach 1 Surge (m) Heave (m) Pitch (deg) Tension #1 (N) Tension #2 (N)a

Mean �4.174E-02 1.080E-01 �2.710E-04 4.992Eþ06 4.998Eþ06
Std. 9.853E-01 6.645E-03 4.417E-02 9.901Eþ05 5.771Eþ05
Skewness �3.404E-02 �5.952E-01 4.361E-03 1.648E-02 1.276E-03
Kurtosis �1.013E-01 1.407Eþ00 2.472E-01 1.768E-01 5.796E-01
Maximum 3.532Eþ00 1.289E-01 1.633E-01 8.732Eþ06 7.389Eþ06
Minimum �3.092Eþ00 6.781E-02 �1.703E-01 1.300Eþ06 2.773Eþ06

Approach 2 Surge (m) Heave (m) Pitch (deg) Tension #1 (N) Tension #2 (N)

Mean �4.775E-02 1.152E-01 �1.715E-04 4.990Eþ06 4.996Eþ06
Std. 1.012Eþ00 5.266E-03 4.276E-02 9.652Eþ05 5.646Eþ05
Skewness �5.628E-02 8.840E-03 �3.471E-03 �3.253E-03 8.589E-03
Kurtosis �9.696E-02 �9.104E-02 2.293E-01 1.789E-01 4.884E-01
Maximum 3.574Eþ00 1.341E-01 1.639E-01 8.757Eþ06 7.280Eþ06
Minimum �3.151Eþ00 9.654E-02 �1.688E-01 9.599Eþ05 2.784Eþ06

Approach 3 Surge (m) Heave (m) Pitch (deg) Tension #1 (N) Tension #2 (N)

Mean �2.704E-03 1.081E-01 �1.090E-04 4.995Eþ06 4.996Eþ06
Std. 9.548E-01 6.451E-03 3.834E-02 8.937Eþ05 4.848Eþ05
Skewness 2.106E-03 �5.993E-01 1.616E-02 1.777E-02 �3.118E-02
Kurtosis �9.362E-02 1.427Eþ00 �1.440E-01 �4.452E-02 �7.156E-02
Maximum 3.143Eþ00 1.277E-01 1.321E-01 8.053Eþ06 6.709Eþ06
Minimum �3.577Eþ00 6.524E-02 �1.435E-01 1.884Eþ06 3.353Eþ06

a Tension #1 and #2 refer to tensions in tendon #1 and #2, respectively.
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5.4. Springing loads because of pitch resonance

Pitch resonance is likely to cause springing and ringing re-
sponses. The time history of the high-frequency component of the
tension in tendon #1 is determined by applying a high-pass filter
with a cutoff frequency of 0.24 Hz to the tension time history of
tendon #1. The results are shown in Fig. 9.

Tendon springing occurs at the resonant frequency of pitch
motion, and this strong springing load has significant impacts on
tendon fatigue life. Nevertheless, standard criteria have not been
decided upon to differentiate between springing and ringing [9].
Springing occurs when the extreme high-frequency tension does
not exceed five to six times the standard deviation and the kurtosis
of the high-frequency tension is less than or equal to 2.0 [24],
whereas ringing occurs if the extreme high-frequency tension ex-
ceeds seven times the standard deviation and the kurtosis of the
Fig. 9. High-frequency component of the tension in tendon #1.
high-frequency tension is greater than 2.0 [25]. Table 8 shows the
statistics for the high-frequency pitch and tensions in tendons #1
and #2.

According to this criterion, ringing is not observedwithin 3000 s
of simulation time because all of the extreme values are less than
four times the corresponding standard deviations, and none of the
kurtosis values exceed 2.0.

Ringing is more likely to be excited by highly asymmetric waves.
In this simulation, the irregular wave is generated based on the
superposition of airy waves, which results in a nearly symmetric
wave profile. Further investigations should be performed to
confirm whether the consideration of nonlinear waves and higher-
order potentials neglected in this paper may lead to ringing.
5.5. Effect of aerodynamic coupling

The effects of aerodynamic coupling on the pitch resonance are
studied by running simulations with and without winds. Here, the
steady-state wind velocity is 11 m/s, which is close to the rated
wind speed of the 5 MW wind turbine, and the rotor angular ve-
locity is fixed at the rated value of 12.1 rpm. The PSDs of the surge,
pitch, and tensions in tendons #1 and #2 are plotted and shown in
Fig. 10.

The surge PSDs exhibit small differences, which indicates that
the hydrodynamic loads dominate the surge response, and the
surge is slightly reduced by the damping effect of the winds. The
pitch PSD is slightly increased at the wave frequency in the pres-
ence of winds because of the aerodynamic coupling effect from
surge motion indicated by Eq. (4). Because the TLP is compliant
Table 8
Statistics of the high-frequency pitch and tensions in tendons #1 and #2.

Pitch (deg) Tension #1(N) Tension #2(N)

Mean 2.753E-06 6.454Eþ03 6.358Eþ03
Std. 2.858E-02 6.456Eþ05 3.235Eþ05
Skewness 7.295E-04 1.212E-03 �1.129E-02
Kurtosis 1.091Eþ00 1.062Eþ00 1.091Eþ00
Maximum 1.080E-01 2.471Eþ06 1.235Eþ06
Minimum �1.073E-01 �2.427Eþ06 �1.215Eþ06



Fig. 10. Comparison of the dynamic responses of the surge, pitch and tendon tensions with and without steady-state winds.

Table 9
Statistics of motions and tendon tensions for a wind velocity of 11 m/s.

Surge (m) Heave (m) Pitch (deg) Tension #1 (N) Tension #2 (N)

Mean 9.191Eþ00 �1.364E-01 8.566E-02 6.931Eþ06 4.036Eþ06
Std. 9.838E-01 5.362E-02 3.944E-02 8.892Eþ05 5.203Eþ05
Skewness �1.226E-01 �2.090E-01 4.524E-02 3.077E-03 2.177E-02
Kurtosis �5.148E-03 1.011E-01 1.568E-01 2.981E-01 3.267E-01
Maximum 1.264Eþ01 1.143E-02 2.342E-01 1.041Eþ07 6.150Eþ06
Minimum 5.978Eþ00 �3.620E-01 �5.970E-02 3.413Eþ06 2.071Eþ06
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against horizontal loads and stiff against vertical loads, surge mo-
tion is much more appreciable than pitch motion. Therefore,
although pitch motion causes an additional excitation force for
surge motion through aerodynamic coupling, as suggested by Eq.
(3), the excitation force is too small to be apparent. However, the
additional aerodynamic excitation force for pitch motion caused by
surge motion is sufficient to increase the pitch responses at the
wave frequency, although at the pitch resonant frequency, aero-
dynamic damping significantly reduces the pitch resonant motion.
The PSDs of the tension in tendon #1 show a similar trend with
those of pitchmotion. At thewave frequency, the PSD of the tension
in tendon #2 is reduced in the presence of winds. This result is
inconsistent to the behavior of pitch and tension in tendon #1,
which is likely to be attributed to the effect of changed natural
frequencies because of changed tension in tendon #2. The statistics
in the presence of winds are listed in Table 9.

The standard deviations of the pitch and tendon tensions are
reduced, which is anticipated based on their PSDs and caused by
the damping effect of the aerodynamic forces, which significantly
reduces the resonant motion. Both the maximum and minimum
values of the tension in tendon #1 increase and those of tendon #2
decrease because the pitch moment induced by the rotor thrust
force increases the mean value in tendon #1 and decreases the
mean value in tendon #2. In addition, variations in the tensions are
reduced because of aerodynamic damping, with the reduction
caused by the combination of these two effects, indicating that
aerodynamic forces mitigate the severity of extreme loads on ten-
dons, which is beneficial for survivability. These forces also change
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the dynamic response characteristics of the tendon system by
changing the mean tensions, which leads to changes in the natural
frequencies of the tendons' transversal motions. The natural
transversal frequencies of a tensioned beam increase with
increasing tension. Therefore, both the tension and natural trans-
versal frequencies of tendon #1 increase because of the pitch
moment induced by the rotor thrust, whereas those of tendon #2
decrease. This change causes different responses in tendons #1 and
#2 to the excitations at different frequencies. The first structural
natural period of the tendons is 3.69 s without an aerodynamic
load. In the presence of steady-state winds, the natural period of
tendon #1 decreases and nears the pitch resonant period, making it
more sensitive to pitch resonance. As a result, the kurtosis of the
tension in tendon #1 increases because of the pitch resonance,
whereas the natural period of tendon #2 increases and becomes
less sensitive to the pitch resonance, leading to a decrease in the
kurtosis.

6. Conclusions

This work presents the coupled dynamic responses of the surge,
pitch and tendon tensions of a TLP-type floating wind turbine
predicted using a newly developed time-domain code, CRAFT. The
capability of CRAFT has been verified by comparing its simulation
results with those predicted using FAST as well as with experi-
mental results.

The following conclusions regarding the pitch resonance
induced by viscous drag forces can be drawn from the simulation
results.

(1) The viscous forces on both the column and pontoons and
those on the tendons contribute to higher harmonic excita-
tion in the pitch resonance, with the former dominating the
response. The excitation effect of the viscous force on the
tendons decreases with increasing wave periods, and the
damping effect increases and overwhelms the excitation
effect.

(2) Higher harmonic pitch responses have much smaller am-
plitudes than those of the relatively lower harmonic re-
sponses, whereas both have a strong dependence on wave
height. Regardless of the order, the amplitudes of all higher
harmonic resonant pitch motions are proportional to the
wave height to a power of one and half when thewave height
is small. The amplitude of the third higher harmonic reso-
nant pitch motion increases with increasing wave heights for
small waves, reaching a maximum when the wave height
attains a threshold and decreasing with further increases in
the wave height. These responses are mainly caused by the
increasing damping effect of the viscous drag force.

(3) The third harmonic excitation produces well-defined pitch
resonance and tendon springing for a random sea state.
These motions are found to be highly nonlinear, and their
probability distributions deviate from that of a Gaussian
distribution. The probability of experiencing extreme loads is
also significantly increased because of springing.

(4) Aerodynamic loads provide significant damping for pitch
motion, which mitigates the severity of resonant motion and
also changes the dynamic response characteristics of the
tendons by changing their mean tensions. This is consistent
with the experimental findings in Koo et al. [5]. An additional
coupling between surge and pitch is observed, and it is
caused by the presence of aerodynamic forces. This effect
slightly increases the pitch response at the wave frequency.
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