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a b s t r a c t

Axisymmetric point absorbers are mostly designed as floating buoys that extract power from heave
motion. Power absorption limits of such wave energy converters (WECs) are governed by the displaced
volume of the buoy and its ability to radiate waves. In the case of fully submerged WECs, the power
performance becomes a function of additional variables including the proximity to the mean surface
level of the water, body shape and the maximum stroke length of the power take-off system. Placing the
body below the water surface increases its survivability in storm conditions but changes the hydrody-
namic properties of the WEC including maximum absorbed power. This paper investigates the differ-
ences between floating and fully submerged point absorber converters from the number of perspectives
including energy extraction, bandwidth, and optimal size for a particular wave climate. The results show
that when compared with floating converters, fully submerged buoys: (i) generally absorb less power at
longer wavelengths, (ii) have narrower bandwidth, (iii) cannot be replaced by smaller units of the same
total volume without a significant loss of power, and (iv) have a significant advantage as they can
effectively utilise several modes of motion (e.g. surge and heave) in order to increase power generation.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Intensive research on extraction energy from ocean waves
started in the 1970s [1]. Initially, attention was paid to the
terminator-type converters which were studied as two-
dimensional devices with an infinitely long body extension
perpendicular to the wave front (e.g. Salter's duck [2]). However,
due to the sensitivity of such prototypes to the direction of wave
propagation, researchers focussed on the concept of a point-
absorbing wave energy converter (WEC) [3] whose performance
does not depend on the angle of wave incidence. Thereafter, point
absorbers (PA) have become one of the most studiedWECs, making
up a large part of existing full-scale prototypes.

Generally, PAs are designed to operate on or just below the
water surface, extracting wave power from the heaving motion. As
opposed to submerged buoys, floating converters require less
installation and maintenance work under water. However, there
could be several very important reasons to keep the WEC fully
submerged (see Fig. 1):
u (N.Y. Sergiienko).
(i) to increase the survivability of the converter during storms
with large wave conditions;

(ii) when there is an unconditional requirement from the public
authorities to minimise visual impact of the wave power
generator, e.g. the buoy must not be visible from the shore.

Based on the fundamental equations of maximum power ab-
sorption for axisymmetric bodies, floating and submerged WECs
are able to extract the same amount of wave power provided un-
constrained motion amplitudes [3,4]. Thus, under this condition
the maximum capture width of the oscillating body does not
depend on its size, shape or submergence depth, but is governed by
themode of motion [5,6]. According to these findings, the body that
moves in surge and heave simultaneously can absorb three times
more power than a heaving buoy.

In practice, WEC motion should be constrained during large
waves, hence power absorption becomes dependent on the
maximum allowed oscillation amplitude and the wave excitation
force exerted on the converter [7,8]. As the latter is determined by
the shape, size and submergence depth of the WEC, it becomes
apparent that identical fully submerged and floating buoys cannot
capture the same amount of wave energy. It has been observed [1]
that submerged converters are poorer wave absorbers as compared
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Fig. 1. Schematic representation of the floating and fully submerged WECs that extract
energy from oscillations in heave.
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to the floating heaving buoys because their upper and lower por-
tions of the swept volume have different polarities during the
oscillatory motion. In addition, floating and fully submerged WECs
have distinctive low-frequency limits of the heave excitation forces.
As the wave frequency tends to zero, the amplitude of the heave
force on the floating body is limited by the hydrostatic stiffness
coefficient, whereas for the fully submerged converter the excita-
tion force approaches zero due to the diminishing water plane area
[5]. Subsequently, based on these findings and also taking into ac-
count the swept volume of the body, Budal [9] was able to
formulate power absorption bounds for floatingWECs that oscillate
in heave. This approach has been extended to the fully submerged
buoys where the expressions of the power limits for several basic
geometries are derived [10]. However, it may be concluded that in
the case of point-absorbingWECs, themain research focus has been
drawn to the floating buoys, while some features of submerged
converters still remain unclear or have not been sufficiently
explored.

The current paper provides a systematic comparison between
floating and submerged PAs by generalising existing knowledge
and providing an in-depth analysis. All results are based on the
linear wave theory assuming regular and irregular wave conditions
and infinite water depth. Background information and power ab-
sorption limits of heaving PA systems are presented in Section 2.
Key features of different control strategies are discussed in Section
3, followed by the methods of selecting the correct size of the
converter in Sections 4e5. Finally, the possibility of extracting po-
wer from additional modes of motion is reported in Section 6.
2. Power limits for regular waves

A body placed in water captures wave energy only when it
moves in an oscillatory manner and radiates waves in order to
counteract the incident wave front. Thus, the maximum amount of
power that can be removed fromwaves is defined by the radiating
ability of the body. This limit has been derived in Refs. [3,4,11] and
differs for motionmodes. Awell known equation characterising the
maximum absorbed power by an axisymmetric body in mono-
chromatic waves is [5]:

Pmax ¼ a
J
k
; (1)

where J ¼ rg2DðkhÞA2=ð4uÞ is the wave-energy transport per unit
frontage of the incident wave, a is a coefficient that depends on the
motion oscillation mode (a ¼ 1 for heave, a ¼ 2 for surge or pitch,
and a ¼ 3 when the body oscillates in heave, surge and pitch
simultaneously), k is the wavenumber, A is the wave amplitude, r is
water density, u is the wave frequency and DðkhÞ is the depth
function which is equal to 1 for deep water.

Maximum power in Equation (1) is obtained when the body
velocity is [5]:

buj;optðuÞ ¼
bF j;excðuÞ
2BjjðuÞ

; (2)

where bF j;exc is the wave excitation force on the body in mode j, and
Bjj is the radiation damping coefficient in mode j. However, the
amount of power in waves with long period is very high and in
order to absorb the absolute maximum, the body shouldmovewith
large amplitudes at high velocities which is not achievable in
practice. Thus, if

��buj
��< ��buj;opt

��, the amount of radiated power ðPrÞ
will be much smaller than the excitation power ðPeÞ and the
absorbed power will be limited by the latter:

P ¼ Pe � Pr � 1
2

����bF j;excbuj

����: (3)

According to Equation (3), Budal (as cited in Ref. [1]) showed
that the power extraction at low frequencies is limited by the swept
volume of the body, which is a collective term for the body physical
volume and the maximummotion amplitude. Thus, for the floating
body, the motion amplitude in heave is constrained by its vertical
dimension, such that jbs3j<V=ð2SwÞ, where V is the body volume, Sw
is the water-plane area of the body, and the subscript j ¼ 3 corre-
sponds to the heave motion. Therefore, the maximum velocity in
heave cannot be larger than jbu3j<uV=ð2SwÞ. Furthermore, the
heave excitation force is bounded by the integrated pressure force

over thewater-plane area of the body, which is
���bF3;exc

���< rgSwA. As a

result, the power absorption of the floating heaving buoy has two
boundaries:

(i) a high-frequency limit PA defined by the body's ability to
radiate waves (from Equation (1) assuming deep water
conditions u2 ¼ kg):

PA ¼ J
k
¼ rg2A2

4uk
¼ rg3

�
H
2

�2
4u3 ¼ c∞T3H2; (4)

where c∞ ¼ rðg=pÞ3=128, H ¼ 2A is the wave height, T ¼ 2p=u is
the wave period;

(ii) a low-frequency limit PB defined by the maximum swept
volume of the body, which applies when the velocity of the
converter is smaller than the optimal value due to physical
constraints:

PB;f ¼
1
2

����bF3;excbu3

���� ¼ rguVA
4

¼ c0VH
T

; (5)

where c0 ¼ ðp=4Þrg and the subscript f corresponds to the floating
case.

These boundaries have been derived for floating bodies that
move in heave only regardless of shape. In general, the PA-limit
depends only on the mode of motion and has the same expression
for submerged and floating bodies. With regard to the PB curve, the
power absorption limit of the fully submerged converter is strongly
dependent on shape and should be derived for each case under
consideration independently. Thus, for a spherical body with its
centre placed ds below the water surface, the PB-limit can be
expressed as [10]:



Fig. 3. Power absorbed by the floating and submerged spheres in regular waves vs.
wave period. Sphere radius is a ¼ 5 m, displacement in heave is constrained to 0:6a,
wave height is H ¼ 2 m. The dashed curve corresponds to the PA limit from Eq. (4), and
three dash-dotted curves show the PB bounds from Eqs. (5) and (6).

Fig. 4. Schematic representation of the floating and submerged truncated vertical
cylinders, hc ¼ a ¼ 5:5 m: (a) ds ¼ 0, (b) ds ¼ 0:5hc þ 1 ¼ 0:68a ¼ 3:75 m, (c)
ds ¼ hc þ 1 ¼ 1:18a ¼ 6:5 m.
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PB;s ¼ 4p3re�kds s3;max
VH
T3

; (6)

where the subscript s corresponds to the submerged case, and
s3;max is the maximum displacement of the sphere in heave.

To demonstrate the comparison between power limits for the
floating and submergedWECs, three spherical bodies with different
submergence depths have been chosen for the analysis as indicated
in Fig. 2. All spheres have the same physical volume of 524 m3

(radius is a ¼ 5 m) and the motion amplitudes are constrained by
s3;max ¼ 0:67a ¼ 3:3 m. Regular waves of height H ¼ 2 m are
considered. Hydrodynamic coefficients of all buoys have been ob-
tained using WAMIT [12]. It should be noted that a sphere which is
located in close proximity to the mean water level ðds ¼ 6 mÞ may
breach the surface of the water during operation. In this case, the
linear wave theory breaks down and thus provides only a rough
approximation of the wave-body interaction. Also, in this work the
wave parameters and dimensions of all WECs are selected such that
the Keulegan-Carpenter ðKCÞ number does not exceed p, thus
avoiding excessive viscous losses in the system and ensuring that
linear potential theory is considered valid [13].

The power extracted by the spherical WECs over the range of
wave periods, assuming optimal reactive control, is displayed in
Fig. 3. The most important difference between power absorption of
floating and submerged heaving systems is that the latter has a
faster decay rate at the low frequency range. Comparing Equations
(5) and (6), it is obvious that PB;f ¼ O ðT�1Þ, while PB;s ¼ O ðT�3Þ,
which leads to a decrease in power absorption at longer wave-
lengths. Moreover, due to the fact that the hydrodynamic pressure
on the body surface decays exponentially with depth, the presence
of expð�kdsÞ in Equation (6) shows a reduction of power for deeper
submergences. Consequently, the sphere submerged to 2a ¼ 10 m
extracts less power than that submerged to 1:2a ¼ 6 m. Whilst
smaller excitation forces from low-frequency waves increase sur-
vivability of the system under storm conditions it comes at the
expense of power generation.

The analysis will now be extended to cylindrical WECs with
volume of 524 m3, which is the same as for the spheres considered.
The height to radius ratio of each cylinder is set to 1 leading to
hc ¼ a ¼ 5:5 m. Three different submergence depths are examined
as shown in Fig. 4: one floating case, ds ¼ 0, and two submerged
cases with ds ¼ 0:5hc þ 1 ¼ 0:68a ¼ 3:75 m and
ds ¼ hc þ 1 ¼ 1:18a ¼ 6:5 m. The volume stroke in heave is set to
be equal to the structural body volume leading to the motion
constraints of s3;max ¼ 0:5hc ¼ 2:75 m.

In contrast to the sphere, a vertical cylinder has a non-convex
shape and if placed very close to the mean water level it will
experience resonant motion of the fluid above its flat top surface
[14]. This phenomenon causes a rapid change in the added mass,
damping coefficients and excitation forces at the restricted
Fig. 2. Schematic representation of the floating and submerged spheres of radius
a ¼ 5 m: (a) ds ¼ 0, (b) ds ¼ 1:2a ¼ 6 m and (c) ds ¼ 2a ¼ 10 m.
frequency range [15]. Therefore, the PB-bound for the submerged
cylinder has a more complicated expression than for the spherical
case (for full derivation see Appendix A):

PB;s ¼
p2argH

T
s3;max

�
2J1ðkaÞ

kJ0ðkaÞcoshðkd1Þ
� ae�kd2

�
; (7)

where d2 ¼ d1 þ hc, J0 and J1 are Bessel functions of the first kind of
order 0 and 1 respectively, k is the real solution of the dispersion
equation u2 ¼ gk tanhðkd1Þ, which can be approximated by
u2 ¼ k2gd1 using shallow water conditions for the water domain
above the cylinder.

The variation of absorbed power over the range of wave periods
for the three cylinders with different submergence depth is
demonstrated in Fig. 5. Similar to the spherical case, the absorbed
power of the submerged cylinders decays faster at longer wave-
lengths even though it cannot be clearly seen from Equation (7).
Comparing power for spherical and cylindrical bodies, it is inter-
esting to note that the performance of the cylinder placed close to
the mean water level ðds ¼ 3:75 mÞ is better than that of the
floating one within a particular range of wave periods
ð7 s< T <10 sÞ. However, if the cylinder is placed deep enough
below the water surface, the power absorption is poorer for the
submerged bodies across the entire frequency range as is shown for
the ds ¼ 6:5 m case on Fig. 5.
3. Control performance

In this section, differences between floating and submerged



Fig. 5. Power absorbed by the floating and submerged truncated vertical cylinders in
regular waves vs. wave period. Cylinder radius and height are hc ¼ a ¼ 5.5 m, heave
displacement is constrained to 0:5hc , wave height is H ¼ 2 m. The dashed curve cor-
responds to the PA limit from Eq. (4), and three dash-dotted curves show the PB bounds
from Eqs. (5) and (7).
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converters are analysed from the control point view. Also, fre-
quency domain analysis of power production is extended to the
irregular wave conditions in the time domain.

3.1. Optimal reactive control

Power levels presented in Figs. 3 and 5 show the average
absorbed power from reactively controlled WECs. In the frequency
domain, the maximum power output is achieved by applying
complex conjugate, or impedance matching, control [16]. The main
idea that underlies this control strategy is to tune the resonance
frequency of the system to the frequency of the incident wave by
means of the load (control) force exerted on the buoy. However,
despite the same control strategy applied to floating and sub-
merged converters, there is a principal difference between their
implementations which is governed by the presence (floating) or
absence (fully submerged) of the hydrostatic restoring force.

The natural frequency of floating converters is defined by the
hydrostatic stiffness that can bring a disturbed system to its equi-
librium position. Thus, it can be calculated utilising a simple
equation for the mass-spring-damper model:

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
mþ Aðu0Þ

s
; (8)

where C is the hydrostatic stiffness, m is the mass of the buoy and
Aðu0Þ is the value of the buoy added mass at the natural frequency.
However, in the case of fully submerged buoys the hydrostatic
stiffness is absent and there is no restoring force that would keep
the body submerged all the time (if body is lighter than water).
Therefore, the natural frequency of submerged heaving WECs ap-
proaches 0 ðu0/0Þ unless an external restoring force (spring) is
applied to the system. This also relates to the floating and sub-
merged bodies that move in surge as their natural frequencyu0/0.

In addition to the natural frequency, the hydrostatic stiffness
affects the optimal control force that is required for maximum
power absorption. If the buoy is constrained to move in heave only,
its motion in frequency domain can be described as [5]:

bZiðuÞbuðuÞ ¼ bFexcðuÞ þ bFptoðuÞ; (9)
where bFptoðuÞ is the control (power take-off) force applied to the

buoy and the intrinsic mechanical impedance of the system bZiðuÞ
has a form [5]:

bZiðuÞ ¼ BðuÞ þ ju
�
mþ AðuÞ � C

u2

�
: (10)

In order to absorb maximum power, the control force bFptoðuÞ ¼
�bZptoðuÞbuðuÞ should satisfy the optimal condition [5]:

bZptoðuÞ ¼ bZ�
i ðuÞ; (11)

where * denotes the complex conjugate. Assuming that the power
take-off system has a linear behaviour, where the machinery force
is proportional to the instantaneous position and velocity of the
buoy, the load impedance may be written as:

bZptoðuÞ ¼ BptoðuÞ � j
KptoðuÞ

u
; (12)

where Kpto and Bpto are the stiffness and damping coefficients of the
PTO system respectively. Thus, substituting Equations (9) and (12)
into Equation (11), optimal values of the control parameters are:

BptoðuÞ ¼ BðuÞ; KptoðuÞ ¼ u2ðmþ AðuÞÞ � C: (13)

It can be seen from Equation (13) that for the floating WECs, the
desired value of the PTO stiffness can take negative values
KptoðuÞ<0 for the range of wave frequencies when

C >u2ðmþ AðuÞÞ. However, for the submerged buoys the PTO
stiffness is always positive as C ¼ 0. This is a very important feature,
as the positive Kpto can be easily achieved by using a physical spring
component, while implementation of the negative stiffness re-
quires the reactive power flow through the PTO system which is
much more difficult to achieve in practice.

3.2. Power output in irregular waves

Regular wave results presented in Section 2 demonstrate the
fundamental differences between floating and submerged WECs.
However, the comparison of these systems should be conducted
under irregular wave time-series that more accurately represent
real sea states. Assuming that the PTO system comprises spring and
damping effects, the time-varying load force can be modelled
similarly to Equation (12):

FptoðtÞ ¼ �Bpto _zðtÞ � KptozðtÞ; (14)

where zðtÞ and _zðtÞ are the displacement and velocity of the buoy in
heave.

Depending on the control strategy, Kpto and Bpto can be tuned on
a sea state basis [17] or optimised in real time on a wave by wave
basis [18]. The latter strategy comes closest to the optimal reactive
control in terms of the power output [19], but it requires an accu-
rate plant model and future knowledge of the wave excitation
forces. Therefore, in this work it is assumed that PTO parameters
are tuned (optimised) for each sea state, which is easier to imple-
ment in practice but leads to a sub-optimal control method. Opti-
misation of PTO parameters is made using an exhaustive search
while allowing negative values of Kpto for floating converters. A full
description of the modelling routine and simulation set-up can be
found in Appendix B.

The performance of the spherical and cylindrical WECs over the
range of irregular sea states are shown in Figs. 6 and 7 respectively.
The power absorption is represented in terms of the relative



Fig. 6. Relative capture width of the floating and submerged spherical WECs in irregular waves with significant wave heights of (a) Hs ¼ 1 m, (b) Hs ¼ 2 m, and (c) Hs ¼ 3 m over the
range of peak wave periods. The sea states have been generated using a Pierson-Moskowitz wave spectrum.

Fig. 7. Relative capture width of the floating and submerged cylindrical WECs in irregular waves with significant wave heights of (a) Hs ¼ 1 m, (b) Hs ¼ 2 m, and (c) Hs ¼ 3 m over
the range of peak wave periods. The sea states have been generated using a Pierson-Moskowitz wave spectrum.

Fig. 8. Resonance bandwidth of the spherical WECs in regular waves of H ¼ 1 m
height: non-dimensional absorbed power vs. normalised wave frequency. Converters
of 5 m radius are tuned to reach resonance at the wave frequency of u0 ¼ 0:74 rad=s.
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capture width (a ratio of the absorbed power to the power that is
contained in the incident wavefront of a width equal to the char-
acteristic length of the converter). The overall trend is consistent
with regular wave results: floating WECs demonstrate better per-
formance across all sea states except several cases with Tp <6 s and
Hs ¼ 2 and 3 m, where motion of the floating converters has
already reached constraints. Also, previous findings, that the cyl-
inder placed closer to the mean water level ðds ¼ 3:75 mÞ can
generate more power than its floating counterpart at a range of
wave periods, have not been confirmed in irregular waves.

Another interesting observation is that a sphere submerged
deeper ðds ¼ 10 mÞ shows poorer performance across all sea states,
even though according to the regular wave results all buoys should
absorb the same amount of power up to wave periods of 7 s (see
Fig. 3). This may be caused by the control strategy applied to all
WECs which is not optimal a priori. So the performance of the
system with fixed control parameters (even if they are tuned for
each sea state) can be highly dependent on the WEC bandwidth.
3.3. Resonance bandwidth

Resonance (or absorption) bandwidth of the converter corre-
sponds to the frequency range where the absorbed power stays
within 50% of its maximumvalue. Thus, the broader the bandwidth,
the less need for control. Large structures such as terminators or
attenuators have broader bandwidth than point absorbers, and for
the latter, increase in size leads to the bandwidth extension [20].

For comparison between floating and submerged WECs, it is
necessary to understand the impact of submergence depth on the
system bandwidth. Consider the response of converters when its
resonance is tuned to only one wave frequency from the spectrum
as in Section 3.2. Fig. 8 shows the non-dimensional power ab-
sorption of spherical bodies of a ¼ 5 m radius with different sub-
mergence depths (ds ¼ 0, 6 m and 10 m) in regular waves of
H ¼ 1 m height with the mass of all buoys kept constant at
m ¼ 0:5rV . The power take-off damping and spring coefficients are
chosen such that each system reaches resonance at thewave period
of T0 ¼ 8:5 s ðu0 ¼ 0:74 rad=sÞ, allowing negative PTO stiffness for
the floating case. No motion constraints are considered. The power
absorption is presented as Pk

J with a maximum possible value of 1

for the heaving body. It can be seen that the resonance bandwidth�
Dures
u0

�
of the floating sphere is about 4 times wider than that of the

submerged one. Moreover, the deeper the body is submerged, the
narrower the resonance bandwidth becomes. This can be explained
by the fact that the resistance (radiation damping) of the converter
decreases as the immersion depth increases, which leads to a
narrow bandwidth of fully submerged buoys.

Results in Fig. 8 show how the performance of the WECs de-
teriorates when the converter resonance is tuned to only one fre-
quency from the spectrum. Similarly, consider a behaviour of the
same converters in irregular waves when fixed controller param-
eters are chosen to match only one sea state from the site wave



Fig. 9. Resonance bandwidth of the spherical WECs in irregular waves of Hs ¼ 1 m
significant wave height: non-dimensional absorbed power vs. normalised peak wave
frequency. Converters of 5 m radius are tuned to the sea state with a significant wave
height of Hs ¼ 1 m and a peak wave period of Tp ¼ 2p

up
¼ 10 s. All irregular wave time-

series have been generated using a Pierson-Moskowitz wave spectrum.

Fig. 10. Velocity (blue solid line) and excitation force (red dashed line) time series for
the spherical WECs of 5 m radius under the regular wave of H ¼ 2 m height and period
of T ¼ 9 s without any control: (a) floating and (b) submerged ðds ¼ 10 mÞ. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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climate. Thus, the non-dimensional power absorption of spherical
WECs in irregular waves of Hs ¼ 1 m significant wave height is
shown in Fig. 9. The fixed PTO stiffness ðKptoÞ and damping ðBptoÞ
coefficients are set such that each converter has maximum power
output at the sea state of Hs ¼ 1 m and Tp ¼ 10 s. So values of P in
the figure correspond to the absorbed power when one set of
control gains is used across all sea states, while for Pmax PTO pa-
rameters are optimised for each sea state. These results confirm
frequency response findings: changes in the sea conditions lead to a
more noticeable decrease in energy harvesting for submerged
converters than for the floating one. A difference in passband width
in Figs. 8 and 9 is due to the fact that bandwidth in regular waves
characterises deviations from optimal control, while its value in
irregular waves shows the sensitivity of the averaged absorbed
power to changes in the sub-optimal controller (even with opti-
mised parameters).

Overall, it is essential to apply optimal control to point absorbers
due to their narrow bandwidth, which is even narrower for sub-
merged cases as the bandwidth decreases with increased immer-
sion of the buoy.
Fig. 11. The generalised diagram of the wave energy converter control depending on
the location of its natural frequency with respect to the incident wave frequency.
3.4. Considerations for passive phase control

Optimal control uses bi-directional power flow to manipulate
the resonance frequency of the WEC, whereas there are other
control strategies that can improve the power output of the system
without the need for reactive power flow through the machinery.
Phase control, mostly represented by latching [21,22] and
declutching [23], achieves the optimal phase condition between
the buoy velocity and the wave excitation force by locking or
unlocking the buoy motion during parts of the oscillation cycle.
Thus, latching and declutching controls refer to the ‘bang-bang’
strategies where the machinery force is switching between some
constant and a very large value for latching and between zero and a
constant value for declutching.

Latching control shows the best performance when the incident
wave frequency is lower than the resonance frequency of the device
ðu<u0Þ [21]. In this case, the buoy velocity leads the excitation
force (see Fig. 10a) and there is only a small part of the cycle when
the buoy should be kept stationary to achieve an optimal phase
condition. However, when u>u0, the buoy velocity lags the exci-
tation force (see Fig. 10b) meaning that the buoy motion should be
locked for at least half of the cycle which is not practical from the
power absorption point of view. In contrast, the declutching control
strategy performs better with systems where the natural frequency
of the WEC is higher than the wave frequency ðu>u0Þ [23].

As already noted, the natural frequency of submerged
converters is always lower than the incident wave frequency,
whereas for the floating point absorbers its value lies at higher
frequency range. Therefore, it may be concluded, that the latching
control is more beneficial for the floating converter while
declutching is more suitable for its submerged counterpart. How-
ever, the latter may also take advantage of the optimal latching
control if to shift its resonance to the higher frequency range by an
additional physical spring. These results are graphically shown on
Fig. 11 along with findings on reactive control. Thus, choosing
among different control strategies for submerged converters it is
necessary to keep in mind their distinctive features from floating
ones.
4. Choice of a reasonable WEC size

In this section, appropriate sizes of the floating and submerged
WECs are studied for several generic body shapes assuming that all
buoys are optimally controlled at each wave frequency. Then, the



Fig. 12. Power absorbed by the (a) floating ðds ¼ 0Þ and (b) submerged ðds ¼ 1:87aÞ
spherical WECs of different radii vs. wave period. Wave height is H ¼ 2 m, motion of all
buoys is constrained by 0:67a. The black dashed curve corresponds to the PA limit from
Eq. (4).

Fig. 13. Shapes of WECs used in the Power-Volume analysis.
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obtained results are examined under irregular wave conditions.
According to the results presented in Section 2, floating and

submerged converters should be of different sizes in order to
capture the same amount of wave energy. Thus, using the upper
power absorption bounds PA and PB, it is possible to choose an
appropriate size of the WEC for a particular sea site. Falnes [1]
proposed a methodology of selection of the WEC size and power
take-off capacity according to the following steps:

Sea site /JT . Choose an appropriate sea site location and
determine a wave power threshold JT (kW/m) which is being
exceeded only one third of the year.

Spectrum /TpðTeÞ. Find the peak period, or the peak energy
period of the most frequent waves according to the sea site prob-
ability data ðTp or TeÞ.

JT ;TpðTeÞ/T ;H. Relate JT and Tp to the regular wave of period
T ¼ Tez0:858Tp (for the fully developed uni-modal sea) [24] with
the same wave power level. Determine the wave height of the

corresponding regular wave using the equation JT ¼ rg2H2T
32p .

T ;H/V . Calculate the body volume solving the equation
PA ¼ PB that results in:

V ¼ c∞
c0

HT4: (15)

The body chosen according to this approach will operate at full
capacity for at least one third of the year.

Now consider an example assuming that there is a need to select
a wave energy converter for the site where wave power level ex-
ceeds 34 kW/m about one-third of the year, a significant wave
height is Hs ¼ 2:5e3 m and the peak wave period is Tp ¼ 10 s. This
corresponds to the regular wave of H ¼ 2 m and T ¼ 8:5 s. Using
Equation (15) it may be calculated that the volume of the floating
converter regardless of shape should be 322 m3. In the case of the
submerged converters, the same methodology can be applied but
using different PB-bounds and expressing all parameters in terms of
the body radius. For the submerged sphere setting the maximum
displacement in heave as s3;max ¼ 0:67a, the submergence depth of
ds ¼ 1:87a should ensure the operation of the body remains under
water at all times. As a result, solving the equation PA ¼ PB;s (Eq.
(4) ¼ Eq. (6)) numerically with one unknown a, the size of the
submerged sphere should be 696 m3 for the same sea site, which is
more than twice the required volume of the floating converter.
Similarly, the volume of the cylindrical WECs should be 448 m3

using Equations (4) and (7), and setting hc ¼ a, ds ¼ 1:2a,
s3;max ¼ 0:5a.

To demonstrate the effect of the body size on power efficiency,
the power absorption curves for floating and submerged spherical
bodies of six different radii (3e8 m) are shown on Fig. 12a and b
respectively, where the displacement amplitude of all converters is
constrained by 0:67a and the ds distance for submerged WECs is
1:87a. The dotted vertical line and points on curves correspond to
the targeted wave period of T ¼ 8:5 s.

The data on Fig. 12 can also be represented in terms of the
Power-Volume correlation for the fixed wave period of interest.
Thus, in order to make the analysis more generic, the spherical case
shown on Fig. 12 has been complemented by three other body
shapes including a cylinder, an ellipsoid (oblate spheroid) and a
chamfered cylinder (see Fig. 13). Table 1 shows parameters of all
systems and the correlation between them. The maximum motion
of all bodies is chosen in a way that s3;maxzV=ð2SxyÞ ¼ V=ð2pa2Þ
meaning that all converters have the same volume stroke, where
Sxy is the cross-section area of the buoy in the horizontal xy plane.
The submergence depth is set such that the body of 524 m3 volume
at the maximally extended stroke has 1 m distance from its top
surface to the mean water level, for other sizes this distance is
scaled down or up according to the body radius. Hydrodynamic
parameters of mentioned geometries have been obtained using
WAMIT [12]. Mesh convergence has been checked and typical
models composed of approximately 2000 panels.

The dependence of the maximum captured power on the
structural volume of four bodies for the sea state of interest with
H ¼ 2 m; T ¼ 8:5 s is demonstrated on Fig. 14. The upper limit of
0.6 MW corresponds to the maximum of PA curve at T ¼ 8:5 s, and



Table 1
Parameters of the WECs from Fig. 13.

Parameter Notation Sphere Cylinder Ellipsoid Chamfered cylinder

Radius a r 1:1r r
ffiffiffi
23

p
z1:26r r

ffiffiffiffiffiffiffi
1:53

p
z1:14r

Height (vertical dimension) h 2a a a a
Volume V 4pa3=3 pa3 2pa3=3 85pa3=96
Submergence depth ds 1:87a 1:2a a 1:1a
Motion constraints s3;max 2a=3 0:5a a=3 0:45a

Fig. 14. Dependence of the absorbed power on the volume of WECs for the regular
wave of H ¼ 2 m; T ¼ 8:5 s. Parameters of all buoys are taken from Table 1. The hori-
zontal dashed line corresponds to the maximum power that can be captured from this
regular wave by an oscillating axisymmetric body. Markers show optimal volumes of
WECs chosen according to Falnes' methodology based on power capacity.

Fig. 15. Power-to-volume ratios vs. buoy volume normalised to the wavelength for
floating and submerged WECs.

Fig. 16. Levels of the averaged absorbed power (colour bars on the left) and relative
capture width (dark blue bars on the right) of the floating and submerged converters at
the irregular wave time-series of Hs ¼ 2:83 m and Tp ¼ 10 s. Parameters of all buoys
are taken from Table 1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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markers on each curve show the body volume chosen according to
Falnes' methodology. Thus, the size of submerged buoys designed
for the same sea site should be 1:4� 2:2 larger than the floating one
with approximately the same power capacity. Interestingly, that
among all submerged cases, a body with a cylindrical shape should
be the smallest while the spherical buoy should be the largest to
generate the same amount of power. The desired volumes of the
ellipsoid and chamfered cylinder are estimated to be somewhere
in-between.

In addition to the absolute values of power and volume, the
power-to-volume ratio is also of interest as it can be indirectly
related to the estimation of the converter cost [25]. It has been
observed that for the heaving point absorbers the smaller the
physical volume of the body, the larger the power-to-volume ratio
[26]. To demonstrate the impact of this relationship, it has been
calculated for five different systems based on the information from
Fig. 14. Power has been normalised according to the Froude scaling
law choosing the wavelength l ¼ 2p=k ¼ g=ð2pÞT2 as a length
parameter:

Pn ¼ P

l3:5
;Vn ¼ V

l3
; (16)

and is presented in Fig. 15. Thus, for the floating converters the
power-to-volume ratio decreases with an increase in WEC volume.
However, for submerged bodies there is a range of volumes where
this ratio takes the maximumvalue which shows the importance of
proper selection of the buoy size. Therefore, based on the
maximum value of the power-to-volume ratio, the size of the
submerged cylinder should be approximately 420m3, which is very
close to 448 m3 found using Falnes' methodology.
In order to investigate whether converters of the volumes found
above have similar power absorption potential, their performance
is investigated in the sea state with a significant wave height Hs ¼
H

ffiffiffi
2

p
¼ 2:83 m and a peak wave period Tp ¼ Te=0:858 ¼ 10 s. Thus,

the following buoy geometries are included in the irregular wave
analysis: a floating cylinder of 322 m3, a submerged sphere of
696 m3, a submerged cylinder of 448 m3, a submerged ellipsoid of
600 m3 and a submerged chamfered cylinder of 510 m3. All other
geometric parameters can be calculated using Table 1. It is assumed
that control gains are optimised on the sea state basis (see Equation
(14)) which are optimised to provide maximum power. As a result,
an averaged absorbed power and a relative capture width are
presented in Fig. 16. Colour bars on the left show the averaged
absorbed power, while dark blue bars on the right correspond to
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the relative capture width of each converter.
Despite the fact that all converters have been designed for this

particular sea site, they demonstrate power production levels lower
than expected from the regular wave analysis. This is due to sub-
optimal control applied to all cases, which once again demon-
strates the importance of the control strategy for the WEC devel-
opment. In addition, although all submerged converters have lager
volumes than their floating counterpart, their power absorption is
still around 1.2e1.5 times lower than that of the floating cylinder.
This means that fully submerged buoys should be even larger than
shown in Fig. 14 in order to match the total power of the floating
converter.

Overall, for the same power output submerged WECs should be
at least 1.5 times larger than their floating counterparts where the
exact volume ratio is the subject to control, shape, submergence
depth and other parameters.
Fig. 17. Power absorbed by (a) floating ðds ¼ 0Þ and (b) submerged ðds ¼ 1:87aÞ wave
arrays of the same total volume Vz524 m3 in regular waves of 2 m height. The radius
and number of units within the array is specified in the legend. Dash-dotted curves
correspond to the PB limit of the 5m-buoy. The displacement in heave of all converters
is constrained by 0:67a.
5. Array of small WECs vs. a large buoy of equal volume

According to the findings presented in Section 4, in particular
Fig. 15, floating wave energy converters of small size are more
beneficial when employed for wave power generation in compar-
ison with large ones in terms of the power-to-volume ratio. Ac-
cording to Budal's diagram (as cited in Ref. [1]), the volume in
Equation (5) does not necessary represent the size of one unit, and
it can be interpreted as a total volume of all converters within the
wave energy array. It has been shown that a compact array of small
buoys can capture much more power than a single WEC of equal
volume, with the advantage of having wider bandwidth [27],
however, this comparison was based on the floating truncated
cylinders that are tuned to their natural frequency of oscillation, not
optimally controlled.

A similar analysis for the fully submerged converters is per-
formed here but applying optimal control across the entire range of
wave periods. One relatively large spherical buoy of a ¼ 5 m radius
has a displaced volume of V ¼ 524 m3. This volume alternatively
can be formed using an array of smaller converters, e.g. 5 units of
3m-buoys, 125 units of 1m-buoys or 1000 units of 0.5m-buoys. Of
course, the same volume does not guarantee the same
manufacturing cost given the different surface areas, but produc-
tion of buoys in large quantities will inevitably lead to lower unit
manufacturing costs.

The amount of power extracted by each array in regular waves of
2 m height is presented in Fig. 17 for the floating ðds ¼ 0Þ and fully
submerged ðds ¼ 1:87aÞ cases of WECs, where all spheres have a
maximum stroke of 0:67a. The energy absorbed by each array has
been calculated by multiplying the power from an individual WEC
by the number of units within the array but neglecting to take into
account possible hydrodynamic interaction between buoys. As a
result, in the case of floating systems, smaller units have higher
power absorption than a single large buoy across the entire range of
wave periods.

This conclusion, however, is not applicable to the fully sub-
merged WECs as the performance of the array drops dramatically
with a decrease of the buoy size at long wavelengths. It seems that
the “small is beautiful” adage of Falnes [1] only applies to floating
WECs, not submerged. As a result, for sites with low frequency
waves using submerged converters it would be more beneficial to
design one large buoy that will have the best performance at the
targeted sea site than to consider smaller units of equal volume.

WECs chosen according to Falnes' methodology are designed for
one dominant wave of the particular sea site. However, due to the
irregular nature of oceanwaves and due to the fact that submerged
converters are effective power absorbers only within a specific
range of wave periods, it could be advantageous to form an array
from the buoys of several different sizes, similar to [28,29]. Thereby
each converter will target a particular wave frequency from the
spectrum while maximising the power absorption of the entire
farm.
6. Combination of modes

The combination of motion modes in wave power absorption is
attractive due to increased efficiency and bandwidth. For example,
Salter's duck [2] utilises surge, heave and pitch oscillations in order
to capture the maximum power available in the wave. Another
solution has been offered in Refs. [30e32] introducing three cables
connected to the spherical buoy in order to make the surge mode
controllable by the power take-off system. Therefore, the power
efficiency of submerged and floating WECs with different motion
modes is compared in this section.

Surging and heaving floating converters radiate different types
of waves that lead to different power absorption. According to
Equation (1) the PA-bound of the surging body is twice as high as
that of the converter that moves in heave only [5]. The low fre-
quency limits PB are also different for these motion modes where
Equation (6) describes heave oscillation, while an expression for
the surging floating sphere has a form of [10]:

PsurgeB;f ¼ 2p3rs1;max
VH
T3

: (17)

Analysing Equations (5) and (17), it is clear, that the PB-bound
for the surging body is O ðT�3Þ, while for the heaving body this
bound has a smaller decay rate and is O ðT�1Þ. These results are very
similar to the previous comparison of floating and submerged
heaving bodies meaning that the surging floating sphere is a poorer
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power absorber at long wavelengths than the same body that os-
cillates in heave. Comparing motion modes of the floating sphere
the following features should be outlined:

�PsurgeA ¼ 2PheaveA ;

�PsurgeB;f ¼ O
�
T�3

	
; while PheaveB;f ¼ O

�
T�1

	
:

Unlike floating converters, fully submerged buoys have almost
the same power efficiency from oscillations in heave or surge. Thus,
the PB-bounds for the surging and heaving submerged spheres
have the same expressions described by Equation (6) which has
been shown in Ref. [10]. Hence, for the fully submerged spherical
WEC:

�PsurgeA ¼ 2PheaveA ;

�PsurgeB;s ¼ PheaveB;s ¼ O
�
T�3

	
:

The difference in power efficiency between surging and heaving
spheres is demonstrated in Fig. 18. The sphere radius is a ¼ 5 m,
motion in surge (mode 1) and heave (mode 3) is constrained by
s1;max ¼ s3;max ¼ 0:67a ¼ 3:3 m, submergence depths are ds ¼ 0 m,
1:2a ¼ 6 m and 2a ¼ 10 m, wave height is taken as H ¼ 2 m. It can
be seen, that at longer wave periods heave motion is dominant for
floating converters showing that the power contribution from the
surge mode may be marginal for floating systems. In contrast, a
submerged sphere that oscillates in surge is more efficient across
the entire frequency range. Therefore, the power efficiency of the
submerged system may increase by two to three times due to the
additional controllable degree of freedom. Also, the ratio between
Fig. 18. The power absorbed by the surging and heaving spherical WECs of 5 m radius
with different submergence depth: (a) floating ds ¼ 0 and submerged (b) ds ¼ 6 m, (c)
ds ¼ 10 m. Motion amplitudes in heave and surge are constrained by
s1;max ¼ s3;max ¼ 0:67a ¼ 3:3 m. Wave height is set to H ¼ 2 m. The dashed curves
correspond to the PA limit from Eq. (4), and dash-dotted curves show the PB bounds
from Eqs. (5) and (6).
power levels from surge and heave does not change with a sub-
mergence depth as shown in Fig. 18b and c. It should be noted that
the surging floating sphere utilises only half of its volume to couple
with the fluid (at nominal depth), while for a submerged sphere the
total volume is involved in power absorption. This explains why the
power level of a surging floating sphere is lower than that of a fully
submerged one.

For comparison, similar plots are presented for the vertical
cylinder of hc ¼ a ¼ 5:5 m on Fig. 19. Motion constraints in each
mode are calculated as s1;max ¼ V=ð2SxzÞ ¼ pa2hc=ð4ahcÞ ¼ pa=4 ¼
4:32 m and s3;max ¼ V=ð2SxyÞ ¼ pa2hc=ð2pa2Þ ¼ a=2 ¼ 2:75 m in
order to have equal volume stroke [10] in surge and heave.
Interestingly, that for the vertical cylinder placed closer to the
water surface ðds ¼ 3:75 mÞ at higher wave frequencies surge is
dominant, while for low-frequency waves more power can be
absorbed from heave. When the cylinder is submerged deeper
ðds ¼ 6:5 mÞ, the situation is closer to the spherical case, where the
surging body captures more power across entire range of wave
periods. As a result, the power distribution between motion
modes for the fully submerged bodies depends on the submer-
gence depth and the aspect ratio of the converter and a clear trend
cannot be identified, as in the case of floating systems.

Based on this analysis, it may be concluded that employment of
several motion modes in power generation is more advantageous
for the fully submerged converters, while such a benefit for the
floating counterparts will be marginal.
7. Conclusion

The comparison between floating and fully submerged WECs
has been performed in order to identify main distinctive features
between the systems. The analysis has been carried out in regular
Fig. 19. The power absorbed by the surging and heaving vertical cylinders
ðhc ¼ a ¼ 5:5 mÞ with different submergence depth: (a) floating ds ¼ 0 and submerged
(b) ds ¼ 3:75 m, (c) ds ¼ 6:5 m. Displacements in surge and heave are constrained by
s1;max ¼ pa=4 ¼ 4:32 m and s3;max ¼ a=2 ¼ 2:75 m respectively. Regular wave height is
set to H ¼ 2 m.
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and irregular waves using a linear wave theory approximation for
axisymmetric point absorbers that extract wave energy from heave
or surge motion, or both.

Examples of two generic shapes (sphere and vertical cylinder)
have shown that the efficiency of submerged converters is poorer
than that of the floating ones at long wavelengths, while there is a
narrow range of wave periods where the performance of sub-
merged cylindrical buoys could be superior than that of its floating
counterpart. In addition, WEC bandwidth decreases as the sub-
mergence depth of the buoy increases indicating the need for
reactive control for the fully submerged converters. The absence of
the hydrostatic restoring force for the submerged buoys affects the
implementation of control strategies for this converter type. Thus,
floating converters may benefit from latching phase control,
whereas declutching is more suitable for submerged systems. To
achieve the same level of generated power, buoys placed under
water should be 1.4e2.2 times larger than those that operate on the
water surface. Thus, the size of the fully submergedWECs should be
chosen according to the targeted wave climate and cannot be
replaced by the array of smaller converters of equal volume. Finally,
submerged buoys would benefit more from multiple degrees of
freedom than their floating counterparts.

The above analysis may give the impression than submerged
buoys are less favourable energy converters. It should be noted, that
the main objective of this study is not to showwhichWEC is better,
but to clarify some differences in performance and design criteria.
While the current paper is restricted to axisymmetric buoy shapes,
there are some examples when submerged converters demon-
strated good power absorption abilities. Thus, several solutions of
maximising energy harvesting of submerged WECs have been
offered so far: (i) to use a device with a dynamically changing
volume (e.g. Archimedes Wave Swing device [33]); (ii) to keep the
body submerged as close as possible to the mean water level (e.g.
CETO system [34]); or (iii) to use a terminator body which inher-
ently has a broad resonance bandwidth (e.g. the Bristol cylinder
[35,36]). In addition, as previously mentioned, submerged con-
verters have a number of advantages which may be essential from
the economic perceptive.
Appendix A. Estimation of the upper bound of the absorbed
power for the submerged cylinder that oscillates in heave

The average power absorbed by the oscillating body can be
calculated as [5]:

P ¼ 1
2

����bFexc

��������bu����cos f� 1
2
B
����bu���2 � 1

2

����bFexc

��������bu����; (A.1)

where bFexc is the excitation force amplitude, bu is the amplitude of
the body velocity, f is the phase angle between the excitation force
and the buoy velocity and B is the hydrodynamic damping
coefficient.

The excitation force exerted on the body in the j-direction is:

bFexc;j ¼ �∬
S

bpðx; y; zÞnj dS; (A.2)

where bpðx; y; zÞ is the complex amplitude of the hydrodynamic
pressure on the body surface, nj is the unit normal to the body
surface pointing inside the water domain and dS is the surface
element of wet surface S.

Hals [10] showed, that the hydrodynamic pressure bp on the
body surface will never be larger than sbp0, where s ¼ 2,bp0 ¼ p0eið�kxþfzÞekz is the pressure amplitude of the undisturbed
incident wave, p0 ¼ rgz0 ¼ rgA and fz is the phase angle of the
incident wave. As a result:

bpðx; y; zÞ � sbp0 ¼ srgAeið�kxþfzÞekz: (A.3)

In order to derive the simplified equation of the heave excitation
force for the submerged cylinder, cylindrical coordinates ðr; q; zÞ are
introduced leading to dS ¼ r dr dq, where 0 � r � a and 0 � q � 2p.
Also, pressure in Equation (A.2) should be integrated over two
surface areas: top ðbptÞ and bottom ðbpbÞ faces of the truncated cyl-
inder. Thus,

bFexc;3 ¼
Za
0

Z2p
0

ðbptðr; q;�d1Þ � bpbðr; q;�d2ÞÞr dr dq: (A.4)

The hydrodynamic pressure on the cylinder bottom can be
described by Equation (A.3):

bpbðr; q;�d2Þ � srgAeið�kr cos qþfzÞe�kd2 : (A.5)

However, for the cylinder top free-surface effects are more sig-
nificant due to the possible resonance amplification of waves in the
water domain above the cylinder and, therefore, the hydrodynamic
pressure cannot be simplified using ekz function. Thus, taking the
first order approximation for the upper domain from Ref. [37], the
hydrodynamic pressure on the cylinder top can be expressed as:

bptðr; q;�d1ÞzrgAeið�kr cos qþfzÞ J0ðkrÞ
J0ðkaÞcosh kd1

; (A.6)

where J0 and J1 are Bessel functions of the first kind of order 0 and 1
respectively, k is the real solution of the dispersion equation
u2 ¼ gk tanhðkd1Þ, which can be approximated byu2 ¼ k2gd1 using
shallow water conditions for the water domain above the cylinder.

Inserting Equations (A.5)e(A.6) into (A.4) and using
e�ikr cos q ¼ cosð�kr cos qÞ þ isinð�kr cos qÞ,
jsinð�kr cos qÞj � jkr cos qj, jcosð�kr cos qÞj<1, the approximate
expression of the excitation force is:������bFexc;3

������ �
������srgA

Z
0

a Z
0

2p �
J0ðkrÞ

J0ðkaÞcosh kd1
� e�kd2

�
r dr dq

������
¼

����srgAp� 2aJ1ðkaÞ
kJ0ðkaÞcoshðkd1Þ

� a2e�kd2

�����:
(A.7)

For the deeper submerged bodies and if ka/0, then J0ðkaÞ/1
and J1ðkaÞ/ka

2 and Equation (A.7) can be further simplified to:����bFexc;3

���� � ����srgApa2� 1
coshðkd1Þ

� e�kd2

�����: (A.8)

Finally, given the expression for the excitation force and setting��bu3
�� � us3;max, the upper power bound for the heaving submerged

cylinder is:

P � 1
2

����bFexc;3��������bu3

����
�

����srgAp� 2aJ1ðkaÞ
kJ0ðkaÞcoshðkd1Þ

� a2e�kd2

���������bu3

����
¼ p2argH

T
s3;max

�
2J1ðkaÞ

kJ0ðkaÞcoshðkd1Þ
� ae�kd2

�
:

(A.9)
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Appendix B. Time-domain model of the wave energy
converter

The most common mathematical model that describes a time-
domain response of the wave energy converter in waves is the
Cummins equation [38]:

ðmþ A∞Þz€þ
Zt

0

Kradðt � tÞ _zðtÞdtþ Cz ¼ Fexc þ Fpto þ Fhs;

(B.1)

where m is a buoy mass, A∞ is the infinite-frequency added mass
coefficient, C is the hydrostatic stiffness, KradðtÞ is the radiation
impulse response function, Fexc is the wave excitation force, Fpto is
the load force exerted on the buoy from the power take-off system,
and Fhs is the additional force that keeps the body motion within
allowed boundaries similar to the physical hard stop mechanism.

The load force is modelled as a linear spring-damper system:

Fpto ¼ �Bpto _z� Kptoz; (B.2)

where Kpto and Bpto are the PTO stiffness and damping coefficients
(control parameters). To constrain the motion of the buoy, the hard
stop system is modelled by a repulsive energy potential [39]:

Fhs ¼ �Khs;minðz� zminÞuðzmin � zÞ
�Khs;maxðz� zmaxÞuðz� zmaxÞ; (B.3)

where uð,Þ is Heaviside step function, Khs;min and Khs;max are the
hard stop spring coefficients, zmin and zmax are the stroke limits
relative to the nominal position of the converter. The effect of this
force is not taken into account while calculating useful absorbed
energy.

Equation (B.1) has been implemented in Simulink/MATLAB [40]
with a time step of 0.01 s using the ode23s solver. The duration of
all simulation runs has been set to 300� Tp but not less than 1200 s
and the first 15� Tp have not been included in the analysis due to
the initial transient state. Hydrodynamic (excitation and radiation)
forces have been calculated using WAMIT [12]. The convolution
integral in Equation (B.1) has been replaced by the state-space
model using the Marine System Simulator toolbox [41]. The irreg-
ular wave time-series have been implemented using the Pierson-
Moskowitz wave spectrum [24].

The mass of all floating and submerged buoys is kept as
m ¼ 0:5rV . Values of motion constraints are specified in Table 1 for
each buoy geometry under consideration. The hard stop spring
coefficient is set to Khs;min ¼ Khs;max ¼ 108N=m. Unless otherwise
stated, the PTO control parameters Kpto;Bpto are optimised for each
sea state using brute-force search.
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