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Abstract 
 
The human population blast has brought several problems related with the 
overconsumption of a wide range of feedstocks and natural resources conducting to 
their risk of depletion. The consumption of fossil fuels is an example, with increasing 
levels of exploitation and negative impacts caused by their use. Anthropogenic activities 
have triggered the over accumulation of many hazardous substances and wastes which 
are regarded to be detrimental to life in the Earth and to the various planet ecosystems. 
There is an urgent need to restore natural resources and unwanted residues and wastes to 
levels prior the demographic explosion. Microalgal biotechnology appears to be pivotal 
to achieve this goal in a near future to come. This review presents the current resource 
problems affecting the Earth and how microalgae are expected to be an important part 
of the solution, discussing how the production of renewable energy from microalgae can 
help in an integrated way to mitigate different environmental problems. Microalgae are 
able to convert wastewaters, CO2 and organic residues in marketable biomass for 
different uses, including biofuels, converting waste in value. An inventory of current 
microalgal-based biorefineries in operation as well as a directory of companies, 
products and applications are also presented. 
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Abstract 19 
 20 
The human population blast has brought several problems related with the overconsumption of a 21 

wide range of feedstocks and natural resources conducting to their risk of depletion. The 22 

consumption of fossil fuels is an example, with increasing levels of exploitation and negative 23 

impacts caused by their use. Anthropogenic activities have triggered the over accumulation of 24 

many hazardous substances and wastes which are regarded to be detrimental to life in the Earth 25 

and to the various planet ecosystems. There is an urgent need to restore natural resources and 26 

unwanted residues and wastes to levels prior the demographic explosion. Microalgal 27 

biotechnology appears to be pivotal to achieve this goal in a near future to come. This review 28 

presents the current resource problems affecting the Earth and how microalgae are expected to be 29 

an important part of the solution, discussing how the production of renewable energy from 30 

microalgae can help in an integrated way to mitigate different environmental problems. 31 

Microalgae are able to convert wastewaters, CO2 and organic residues in marketable biomass for 32 

different uses, including biofuels, converting waste in value. An inventory of current microalgal-33 

based biorefineries in operation as well as a directory of companies, products and applications 34 

are also presented. 35 

 36 
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1. Introduction 40 

The first step in solving a problem is to recognize its existence. Currently, serious environmental 41 

problems, such as water scarcity and climate change, which can trigger serious social problems 42 

on a global scale, are related to the exponential growth of population, urbanization intensive, use 43 

disordered land and fossil fuels. In this context, the United Nations launched the 2030 Agenda, 44 

establishing 17 sustainable development goals (SDGs), setting objectives in different sectors of 45 

society, with the aim of guiding actions towards improving people's living conditions [1]. 46 

SDG addresses 7 issues related to affordable and clean energy. The use of fossil fuels such as oil, 47 

coal and natural gas, emits approximately 6 billion t of carbon dioxide (CO2) into the atmosphere 48 

[2]. In 2018, the energy consumed worldwide was in the order of 14,279,569 ktoe, of which 49 

approximately 14% came from renewable sources, such as hydropower, solar, wind, biofuels and 50 

waste [3]. Despite the advancement of renewable energy alternatives in recent years, their use is 51 

limited in view of the potential that presents [4] and mainly, in view of the urgent need for a 52 

paradigm shift in the sector. 53 

In this context, the use of microalgae for the production of 3rd generation biofuels is gaining 54 

more and more attention. Algal biomass can be used to produce different biofuels, such as 55 

biodiesel, biogas, bioethanol and bio-oil, overcoming some of the main difficulties of 1st and 56 

2nd generation biofuels [5]. The energy content of biofuels obtained from microalgae can reach 57 

values of the order of 35,800 kJ kg-1 for crude oil [6], 38,100 kJ kg-1 for bio-oil [7] and 39,900 kJ 58 

m-3 for biogas [8]. Microalgae have a high photosynthetic rate compared to higher plants [6], 59 

which means high biomass productivity. In addition, they can develop in areas unsuitable for 60 

agriculture [9], avoiding conflict related to food security and can be produced during the 61 

wastewater treatment [10–12], considered as a nutrient recycling, without requiring potable 62 

water for its cultivation.  63 

In a society that increasingly seeks specific solutions to specific problems, acting on 64 

environmental issues is a significant challenge. Therefore, this review aims to discuss how the 65 

production of renewable energy from microalgae can help to mitigate in an integrated way, 66 

different environmental problems. 67 
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This review follows an innovative systemic approach. This introduction (section 1.1) highlights 68 

the recent problems affecting the Earth which are being detrimental to life in every way, thus 69 

affecting the mankind. Later, new broadly recognized solutions will be listed in order to 70 

overcome previous listed problems (sections 2.1. and 2.2). Furthermore, the text goes deeper in 71 

detail, concerning the uses of microalgae in the fight of the abovementioned problems (sections 72 

2.3 and 3), highlighting the technological flexibility of microalgae to solve problems locally 73 

(chapter 4). The performance of microalgae will be carefully presented, with quantitative 74 

indicators related to carbon (GHG) biofixation (section 2.3.1), wastewater treatment (2.3.2) as 75 

practical and proven tools for resource recovery in the frame of a new green-bioeconomy. 76 

Chapter 3 covers extensively bio-based products and biofuels from microalgae, highlighting 77 

pathways, processes and yields (productivities), acting as crucial data for the further 78 

development of microalgal-based biorefineries, regardless the type. Later on, a worldwide survey 79 

of already existing microalgae-based biorefineries of different technological readiness levels and 80 

size will be carried out on chapter 5 (for the very first time as authors know). Finally, on chapter 81 

6, a list of worldwide current microalgal producers already established in the market will be 82 

presented, giving more emphasis to the commercial impact of microalgae in a global world. The 83 

main purpose of chapter 6 is to demonstrate that the microalgal exploitation is a current reality 84 

worldwide and a wide array of biobased products from this feedstock can replace fossil-based 85 

products already in the market with either environmental or sustainability advantage. 86 

1.1 Old and recurring problems 87 

1.1.1 Water scarcity 88 

Water scarcity has been a determinant factor in several parts of the world, being required an 89 

efficient management of water resources. In addition to the uneven geographical distribution of 90 

water resources, climate change is increasingly imposing severe seasonal restrictions on places 91 

that did not have this concern. Scientific evidence confirms that the climate on the planet is 92 

changing, thus affecting societies and the environment [13]. These change generates extreme 93 

climatic events associated with intense population growth and affects the water availability and 94 

quality for basic human needs [14]. 95 
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Consequently, water resources became a concern across the globe. Moreover, economic 96 

development, changes in consumption patterns, intensification of demand for inputs, agricultural 97 

and energy products generate an increase in demand for water resources [15], making their 98 

availability increasingly uncertain in the near future [13,14]. Approximately 2 billion people live 99 

in countries with some degree of water stress and about 4 billion people experience severe water 100 

scarcity during at least one month of the year. The water demand is expected to increase between 101 

20% and 30% by 2050 compared to current levels [16].   102 

Water is the primordial resource for agricultural and industrial services. While only 2.7% of the 103 

worldwide water is available as freshwater, only 30% of this water can be consumed for meeting 104 

human needs [17,18]. With the meteorological/hydrological changes, associated with increased 105 

water pollution, there is an urgent need for adaptation in water management worldwide [19,20]. 106 

1.1.2 Overpopulation and resource scarcity 107 

It is evident that the increase in population has been causing greater demand for resources, not 108 

only for water, but also for food, services and energy, intensifying the biosphere degradation 109 

[21]. According to the United Nations, it is expected that in the next 30 years the world 110 

population will grow by up to 2 billion, reaching 9.7 billion inhabitants in 2050 [16]. The cities 111 

with higher population densities consume between 60% and 80% of all global energy and, as a 112 

consequence, generate about 75% of all CO2 emitted in the globe [22]. Based on a non-organized 113 

growth model, many cities suffer due to the high consumption of energy and water, generating a 114 

large quantity of pollution [23], caused by demand from its technological infrastructures.  115 

Since the industrial revolution, the world population has been intensively exploring non-116 

renewable resources, affecting the ecosystems with the objective to supplier their needs. As a 117 

consequence, ecosystems have been disturbed or even destroyed at an accelerated pace, making 118 

impossible it´s natural restoration [24]. 119 

De Bhowmick et al. [25] described that with the rapid depletion of fossil fuel resources it is 120 

unlikely that there will be an oil reserve after 2050 and adds that emissions from this energy 121 

source will cause irreparable environmental damage. In this scenario, the world faces the 122 

increasing scarcity of conventional energy resources, which would result in a race to adapt to the 123 
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new world scenario and search for new means for the production of clean energy [26]. According 124 

to Trevors [27], humanity is addicted to oil extracted from hydrocarbons, one of the main 125 

sources of greenhouse gas emissions (GHG), which are also potential contaminants of soils and 126 

oceans. According to the author, it is important to realize an energy conservation program with 127 

the objective of the gradual replacement of fossil fuels with other less-polluting energy sources 128 

such as the use of biomass for the production of several biofuels such as biodiesel, bio-oil, 129 

bioethanol and biogas/biomethane, including the adoption of huge energy efficiency practices. 130 

1.1.3. Overcontamination (soil, water and GHG) 131 

With economic development, today's society consumed many more goods and products, 132 

increasing the production of solid wastes and wastewaters [28,29]. High GHG emissions are also 133 

a growing problem. 134 

It´s estimated that the amount of urban solid wastes generated worldwide is approximately 2.01 135 

billion t per year. The forecast is this amount will exceed 3.40 billion t per year, by 2050 [30]. 136 

With these values, it is expected the incorrect deposition of contaminated residues in the soil as 137 

well as underground aquifers and surface waters. The main contaminants are usually heavy 138 

metals, besides nitrates, phenolic compounds, hydrocarbons, among others [31]. Many 139 

agricultural products accumulate these elements and can cause severe damage to human and 140 

animal health since ingestion is one of the main contamination routes. 141 

Regarding wastewater, a report issued by UNESCO [32] recorded that only 8% of domestic and 142 

industrial wastewater is treated in countries with low-income. In high-income countries, the 143 

average percentage is 70%. The release of untreated wastewater can deplete dissolved oxygen in 144 

watercourses, leading to the death of the aquatic ecosystem. The nutrients contained in 145 

wastewater intensify eutrophication, another serious environmental problem that exists since the 146 

middle of the 20th century [33]. 147 

Forest deforestation and the production and consumption of food, as well as the production of 148 

fuels, wood, manufactured goods, roads, buildings, transportation, power generation, among 149 

others, are human activities responsible for GHGs emissions. Many times, the data are expressed 150 
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in terms of the amount of CO2, or its equivalent of other GHGs, emitted to the atmosphere [34]. 151 

Fig. 1 shows approximate percentage values of CO2 emissions by the main countries. 152 

 153 

Fig. 1. Global CO2 emissions by countries. Adapted from [34]. 154 

Mahmud et al. [35] evaluated the CO2 emission through different power generation plants. When 155 

comparing the emission of gas in power generation systems by hydroelectric plants versus 156 

biomass, values of 1,020 and 42.8 CO2eq kWh-1 were obtained, respectively. In other words, 157 

using biomass to generate electricity, CO2 emissions are 24 times lower when compared with the 158 

hydroelectric power plants. The production of energy from hydroelectric plants, despite being a 159 

source of “clean energy” generate GHG into the atmosphere due to the fact that the reservoirs 160 

built emit gases such as CO2, methane (CH4) and oxide nitrous (N2O) [36]. Thus, the use of 161 

biomass is more advantageous for clean energy generation, since avoids dam construction where 162 

the waters become rich in nutrients increasing aquatic primary production, which causes water 163 

eutrophication and high GHG emissions [36,37]. In this scenario, occur an increase in the global 164 

demand for energy, allied to the use of non-renewable energy sources. For these reasons, exists 165 

the need to seek alternative sources that are less polluting and other solutions to reduce 166 

environmental damage [38]. 167 

 168 
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2. New Solutions 169 
 170 
2.1. Water Recycling  171 

One possibility for the water resources management is to diversify supply alternatives through 172 

unconventional water sources. In this context, the use of treated effluents as a potential source of 173 

water supply for several activities stands out, with the additional benefit of reducing the negative 174 

impacts of their discharge into the environment [39]. Treated domestic sewage can represent an 175 

important source for activities that do not require drinking water, increasing supply security and 176 

reducing the energy consumption and other inputs in water treatment systems. Domestic sewage 177 

can supply water regardless of the time of year, unlike other possible sources, such as rainwater 178 

[40].  179 

The water reuse has potential applications in many activities: in agriculture (irrigation of 180 

cultivated areas); in industries (reintroduction in the production process); in refilling 181 

underground aquifers; and in urban uses (fire prevention, street cleaning and landscape harmony) 182 

[41–44]. Many studies have been developed in order to expand the water reuse in the industrial 183 

scope. Aquim et al. [42] evaluated the use of the effluent from the leather industry after treatment 184 

by flotation and sieving. The treatment promoted the reduction of oils, greases and also 185 

chromium. Authors stated that with the water reuse, it is possible to save up to 36,000 L per day 186 

and reduce the consumption of chemicals in the process by up to 10 times. Buscio et al. [45] 187 

studied the water reuse in the textile industry using a treatment consisted of an electrochemical 188 

system assisted by UV radiation. Colour removal varied from 64% to 99%, meeting the 189 

production requirements and allowing 70% a reduction in water consumption. Tiwari et al. [46] 190 

evaluated the optimization of a wastewater treatment plant of the largest dairy industry in India, 191 

in order to improve the water reuse process. The authors stated that the implementation of the 192 

improvement measures could allow the reuse of 100% of the effluent. In addition, the plant may 193 

have a positive energy balance, through the production of biogas and a reduction in the energy 194 

consumption of aerators.  195 

As mentioned, agriculture represents one of the main activities for water reuse, since it is 196 

responsible for around 70% of water demand worldwide [47]. This high consumption causes 197 

water scarcity to generate concerns related to food security, nutrition and livelihoods of various 198 
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populations, in addition to socioeconomic aspects, due to the jobs generated in the sector [43]. 199 

The use of treated domestic sewage for agriculture can represent a source of greater confidence 200 

in water supply, as well as improving the efficiency of the use of this resource. These practice 201 

has been adopted in several countries, i.e. Tunisia, where the use of treated sewage for 202 

agriculture involves 20% of the produced effluents, which allows allocating of freshwater for 203 

drinking uses and minimizes the release of effluent into the water bodies [48]. In Israel, in 2010, 204 

38% of agricultural demand was supplied by this source, being estimated 62% by 2050 [49]. 205 

This means a target that foresees an increase in the use of treated sewage in agriculture from 400 206 

million m3 to 900 million m3 per year. The European Union is concerned about water scarcity on 207 

the continent and recently approved new rules to promote the reuse of water in agriculture, an 208 

activity that consumes 51% of the water on the continent [50]. The proposal will allow an 209 

increase in water reuse from 1.7 billion m3 per year to 6.6 billion m3 per year [50]. In Australia, 210 

it is estimated that in 2015-2016, 137,000 ML of the water consumed in agriculture came from 211 

the reuse from sources outside the farms [51]. However, this volume represents only 1.4% of the 212 

total consumed in agriculture in this country. The main ones supply sources are surface water 213 

and groundwater. 214 

Despite the evident advantages of water reuse, there are limitations related to the treatment of 215 

effluents such as the health risks and public acceptance. In order for the benefits of water reuse to 216 

be fully enjoyed, it is necessary that the practice be critically accepted, considering the risks 217 

involved and the challenges presented in the definition of regulations for each specific activity. 218 

However, it is also required that the evaluation be carried out in a broader and holistic approach, 219 

in the context of circular economy of water management [52]. 220 

2.2. Resource recovery (a new green-bioeconomy) 221 

From the context of the circular and green economy, resource recovery is an interesting option to 222 

obtain value from a waste [53]. Resource recovery can represent the new concept of green 223 

bioeconomy, englobing visions of circular, finite, renewable and sustainable resources (Fig. 2). 224 

Besides this, another relevant factor is the negative environmental impact of the various resource 225 

production chain. For instance, in the industry of fertilizer the total energy consumption for the 226 

production of potash, phosphate and ammonia fertilizers is 13,800 kJ kg-1, 17,500 kJ kg-1 and 227 
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78,239 kJ kg-1  respectively [54]. The Haber Bosch process for ammonia production is 228 

responsible for 1-2% of global energy consumption and 1.44% of global CO2 emissions [55]. 229 

Regarding phosphorus, it is estimated that apatite, its finite source to be depleted in 50-100 years 230 

[56] or in 100-400 years, if technical advancements and the exploitation of new rocks are 231 

considered [57]. Oil is another example of finite resource, utilized as a feedstock for the 232 

production of different products. The world's oil consumption in 2018 was 99.8 million barrels 233 

per day, representing 1.5% of growth rate per annum [58]. Conventional power stations, based in 234 

oil, coal or natural gas, are responsible for emitting 344-941 kg CO2 MWh-1 at capacities of 400-235 

1200 MW [59].  236 

 237 

Fig. 2. Resource recovery in a circular and green bioeconomy context.  238 

Some industrial sectors have successful resource recovery examples, such as the traditional 239 

petrochemical industry and the dairy process industry. In the petrochemical industry, the 240 

recovery of waste heat has been applied for many years [60,61]. On the other hand, the resource 241 

recovery in the dairy industry is a more recent subject. The high valuable product whey protein 242 
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powder is produced through a membrane module used to separate different portions of the milk 243 

waste [53].  244 

Wastewater can be considered a problem that may cause several negative impacts in the 245 

environment, if not properly treated (as seen in Section 1.3). However, wastewater can also be 246 

considered as a resource. The energy content of wastewater is estimated to be 6.3 kJ L-1, related 247 

to the chemical oxygen demand [62]. Wastewater sludge accumulates 98% of the ingested 248 

phosphorus [63] and approximately 20% of global phosphorus demand can be satisfied by 249 

recovering 3 million metric t per year of this nutrient from human waste [64]. Therefore, 250 

wastewater represents a resource to be recovered, rich in energy and very important from a 251 

circular economy perspective.   252 

In the USA, the wastewater treatment plants (WWTPs) are responsible for 3% of national 253 

electricity consumption [65]. Secondary and tertiary treatments are energy-intense, ranging from 254 

0.3-2.1 and 0.4-3.8 kWh m-3, respectively, in developed countries [66]. The major negative 255 

impact of a conventional WWTP operation is the emissions of GHG [67–69]. According to the 256 

USA Environmental Protection Agency (EPA), in 2017, 14.2 and 5.0 MMT CO2eq of CH4 and 257 

N2O, respectively, were emitted during the sludge digestion in this sector [70]. As the demand 258 

and costs for energy and water keep increasing, the vision toward wastewater treatment is 259 

changing. The linear “end of pipe” approach of WWTPs no longer meets the sustainability 260 

requirements of current society and municipal wastewater is being considered as a valuable 261 

resource, creating the water resource recovery facilities (WRRFs) [53], instead of aligned with 262 

the circular economy green. 263 

In this context, advantages such as reduction of feedstock depletion and GHG emissions can be 264 

achieved, through resource recovery from the effluent, producing energy and reducing energy 265 

needs [53]. Besides sustainability appeal, the economic point of view is also an advantage of this 266 

approach because it allows adding economic value to waste, making the process economically 267 

attractive, in addition to being environmentally necessary. Waste from WWTPs contains 268 

nutrients, such as nitrogen and phosphorus, that can be recovered and used as fertilizers [71]. On 269 

the organic matter can also be obtained energy and heat through biochemical, thermal and 270 
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chemical conversion processes. In addition, it is possible to get different types of biopolymers 271 

[72], metals [73] and cellulose [74] from the wastewater.  272 

2.3. Microalgae fighting the overcontamination  273 
 274 
2.3.1. Microalgae for GHG fixation  275 

Microalgae have been studied as feedstock for different purposes, such as bioenergy production 276 

[75–77], soil conditioner and biofertilizer [78], and the source of protein for food and feed 277 

production [79,80]. These varieties of products can be obtained due to microalgae´s ability to 278 

produce different compounds from their metabolism, allowing to meet the many demands of 279 

current society [4]. These microorganisms present a major biomass yield and photosynthetic rate 280 

compared to higher plants and be grown throughout the year in areas unsuitable for agriculture 281 

[9]. 282 

Due to these reasons, microalgae are quoted not only for economic and social purposes but also 283 

to become an important solution to environmental so necessary and urgent. The microalgae 284 

photosynthetic efficiency in crops supplemented with CO2 can be up to 8.3%, while the 285 

photosynthetic efficiency of terrestrial plant species is estimated at 4.6% [6]. Microalgae have 286 

the capacity to remove 10 to 50 times more CO2 than terrestrial plants, due to the higher 287 

concentration of chlorophyll per unit area [81]. Through autotrophic growth, approximately 1.83 288 

kg of CO2 are fixed for each 1 kg of algal biomass [82].  289 

Despite the ability of microalgae to assimilate CO2 from the atmosphere, its low concentration, 290 

added to the low mass transfer coefficient between the air and the surface of the culture medium, 291 

make carbon a limiting nutrient for biomass growth [83], therefore, the supplementation with 292 

inorganic carbon can increase the biomass production. De Godos et al. [84] evaluated the effect 293 

of CO2 addition during biomass cultivation in swine effluent in high rate algal ponds (HRAP). 294 

The addition of gas with 7.5% CO2 provided a biomass production of 422 mg VSS L-1 while the 295 

control treatment, without the addition of CO2, allow obtaining 297 mg VSS L-1. The authors 296 

pointed out that the assimilation of CO2 in microalgae growth is dependent on the limitation of 297 

inorganic carbon, which in turn is more evident in conditions of greater radiation and 298 

temperature because  favor the photosynthesis. Posadas et al. [85] evaluated the CO2 299 
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incorporation in microalgae cultivation in primary domestic sewage through HRAP system. It 300 

was obtained a biomass productivity of 17 g m-2 d-1 with the addition of pure CO2 (99.9%), while 301 

in the cultivation without extra CO2 addition, was obtained a productivity of 5 g m-2 d-1.  302 

Given that the CO2 concentration in the atmosphere varies from 0.03% to 0.06%, the use of 303 

atmospheric emissions from industrial processes may represent an alternative source of CO2 for 304 

the cultivation of microalgae. This practice is directly related to the concept of circular 305 

bioeconomy, since it uses waste in a subsequent process, minimizing the emission of pollutants 306 

and contributing to reducing costs. Low-cost sources of CO2, such as furnaces, power plants and 307 

flue gases from boilers can be used to feed a microalgae systems [86,87] reducing the CO2 308 

emitted to the atmosphere. This is yet another economic and sustainable advantage of the 309 

microalgae cultivation. The biochemical composition of microalgae, and consequently, their 310 

final utilization for the most diverse options uses, is strongly affected by the CO2 source (origin), 311 

quantity and quality. Most microalgae perform well under high CO2 concentrations such as 15% 312 

CO2 which is the typical concentration of the industrial chimney exhaust flue gases, considering 313 

the NOx and SOx [88]. Even richer CO2 environments (up to 50% CO2) offer also conditions for 314 

CO2 fixing through microalgae as previously reported by Sung et al. [89]. Table 1 presents 315 

examples of studies that evaluated alternative sources of CO2 in microalgae cultivation. 316 
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Table 1. Results and characteristics of the studies on atmospheric emissions utilization as a CO2 source for microalgae cultivation.  317 

Microalgae strain 
Growth 
medium Reactor CO2 source 

CO2 
concentration  

(%) 

Biomass 
productivity  

(g L-1 d-1) 
Reference 

Consortium 
(predominance of 

C.vulgaris) 

Domestic 
sewage after 
septic tank 

HRAP 
 Exhaust gas 
of gasoline 
combustion 

5.9 6.12 g m-2 d-1 [90] 

Nannochloropsis 
oculata 

Synthetic 
medium 

HRAP 
Coal-fired 

power plant 
11 - 14 26.4 g m-2 d-1 [91] 

Tetraselmis sp. 
10L Glass 

Flasks 
Cement flue 

gas 
12 - 15 0.057  [92] 

Spirulina sp. 

Tubular 
Photobioreator  

Thermoelectric 
industry 

12 

 0.08  

[93] 
Scenedesmus 

obliquus 
 0.05  

Synechococcus 
nidulans 

0.04  

Chlorella vulgaris  0.09  
Nannochloropsis 

gaditana 
Flat-Panel 

reactor 
Coal-fired 
powerplant 

10 - 15 0.078  [94] 

Chlorella sp. 
Bubble column 
Photobiorreator  

Coke oven 
Stell 

23 0.13  [95] 

Desmodesmus 
abundans 

3L 
Photobioreactor 

Cement kiln 
dust 

25 0.227  [96] 

 318 
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The addition of emission gases must be carried out with adequate control. Emissions from 319 

industrial activities can contain pollutants that can be toxic and negatively affect the growth of 320 

microalgae. SO2, hydrolyzed in water, leads to the formation of hydrogen ions, reducing pH, 321 

which impairs the growth of microalgae [97]. Chiu et al. [95] studied the production of Chlorella 322 

during the constant addition of flue gases from the coke oven. The authors observed that the 323 

cultivation obtained a biomass concentration of 2.87 g L-1 and also contributed to the removal of 324 

SOx and NOx by 50% and 70%, respectively, using concentrations of 78 ppm NO and 87 ppm 325 

SO2. Radmann et al. [93] evaluated the growth of different species of microalgae under the 326 

addition of gases emitted by thermoelectric plants, with 60 ppm SO2 and 100 ppm of NO. The 327 

microalgae Spirulina sp. and C. vulgaris reached concentrations of 1.59 and 0.98 g L-1, 328 

respectively. The species S. obliquus reached 0.68 g L-1, while S. nidulans obtained 0.41 g L-1. 329 

Despite the microalgae capacity to assimilate CO2, and the use of atmospheric emissions as 330 

potential sources of this gas, this does not mean a reduction in emissions. The CO2 used will be 331 

converted into organic carbon in the microalgae cells. As soon as this biomass is used, the 332 

organic matter will be degraded and the CO2 emission will occur. However, microalgae can be a 333 

feedstock for biofuels production and other products in the most sustainable way, minimizing 334 

fossil fuel use [83]. In summary, the use of microalgae, compared to conventional methods of 335 

gaseous effluents treatment, can have the double benefit of reducing flue gas toxicity and the 336 

generation of biofuel and biorefinery byproducts [98], applied in the concept of circular 337 

bioeconomy. 338 

2.3.2. Microalgae for wastewater treatment 339 

Environmental benefits from microalgae utilization go beyond GHG assimilation. Koller et al. 340 

[99] state the possibility of mixotrophic microalgae cultivation, combining removal of pollutants 341 

from wastewater in a heterotrophic phase (assimilation of soluble organic carbon) and generation 342 

of high added value products in an autotrophic phase (assimilation of inorganic carbon - CO2).  343 

According to Molinuevo-Salces et al. [100] the supply of nutrients is one of the main barriers for 344 

microalgae cultivation on a full scale. The use of wastewater nutrients can be a strategy, that 345 

contribute for both bioremediation and the final treatment of wastewater [101]. 346 
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These microorganisms are capable of developing in effluents with different compositions since 347 

they can assimilate the nutrients present in wastewater. After the separation of the biomass, the 348 

effluent is purified and can be released into receiving watercourses or reused into other activities 349 

(see Section 2.1). In this context, reactors utilized at the production of biomass from wastewater 350 

treatment have been evaluated and improved, such as tubular photobioreactors [102], flat-plat 351 

[11], bubble columns [12], and attached growth systems [103]. Considering the context of a 352 

WWTP, the HRAPs are the reactors with more consistent results on a large scale [10]. Table 2 353 

presents various studies that explore microalgae potential for wastewater treatment.  354 

HRAPs are open reactors and present much more advantages over conventional pond systems. 355 

Its operation occurs through the continuous mixing of the effluent by paddlewheels. Moreover, 356 

they are operated through the establishment of a microorganism consortium, mainly microalgae 357 

and bacteria, based on the establishment of the symbiotic relationship between them [104]. 358 

Through photosynthesis, microalgae produce dissolved oxygen (DO) that is consumed by 359 

heterotrophic bacteria in the process of organic matter degradation from the effluent. This 360 

process, consequently, releases CO2 that is used by microalgae in their autotrophic metabolism. 361 

Besides the action of heterotrophic bacteria, at night some microalgae exercise breathing, 362 

contributing to the degradation of organic matter.  363 

The removal of nitrogen in microalgae-based wastewater systems is directly dependent on the 364 

organism's metabolism. Photosynthetic activity will increase the pH, which in turn interferes 365 

with the volatilization of ammonia nitrogen, due to the higher fraction of NH3. In addition, the 366 

production of oxygen may enable the development of nitrifying bacteria in the consortium of 367 

microorganisms with the conversion of ammonia nitrogen to nitrite and later to nitrate. This 368 

conversion implies a transformation of the nitrogen forms, but not the removal itself. Another 369 

possibility for the removal of nitrogen is the assimilation of inorganic forms such as ammonium, 370 

nitrite and nitrate, throughout the growth of biomass. Ammonia nitrogen is the primary source of 371 

assimilation because it occurs through passive diffusion, increasing proportionally the absorption 372 

rate with the concentration of the substrate [105]. On the other hand, the assimilation of nitrate 373 

has a maximum level with an increase in the concentration of the nutrient. However, nitrate 374 

provides an extension of the exponential growth phase, through the surplus metabolic capacity in 375 

the amino acid synthesis [105]. Couto et al. [106] evaluated the mechanisms of nitrogen removal 376 
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in HRAP treating UASB reactor effluent, being found that nitrification and assimilation by 377 

biomass were the main forms of nitrogen transformation/removal. Gonzalez-Fernández et al. 378 

[107] discovered that nitrification was the main process for N-NH4
+ transformation during the 379 

cultivation of microalgae in anaerobic effluent. Since this effluent is composed of non-easily 380 

biodegradable organic matter, the available DO was primarily used in nitrification, rather than in 381 

the degradation of organic matter. 382 

The removal mechanisms are directly related with the recovery of nutrient resources in the 383 

effluents. The removal by volatilization, for example, may allow reaching the regulation 384 

standards, however, without allowing the use of the nutrient in another production cycle. Thus, 385 

strategies of system control (i.e. CO2 supplementation through pH control to minimize nitrogen 386 

loss through volatilization) can increase the possibility of recovering this resource.387 
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Table 2. Microalgae potential for wastewater treatment.  388 

Effluent Microalgae strain  Reactor 
Efficiency removals (%) Biomass 

productivity 
(g TSS m-2 d-1) 

Reference 
Nitrogen  Phosphorus  Organic 

Matter  
Rural 

streams with 
nutrient 
pollution 

Consortium: 
Spirogyra sp., 

Cymbella sp and 
Navicula sp. 

HRAP (20 m2)  
with filamentous 

algae matrix 

18% of 
TN 

65.8% of TP and 
68.1% of PO4

3- 
-32.8% of 
total COD 

- [102] 

Primary 
settled 

domestic 
wastewater 

Consortium:  
Mucidosphaerium 

pulchellum (85%  of 
abundance) 

 

HRAP 20 cm depth 
(2.23 m2) with CO2 

addition 
69.3 - 78.9 19.2 - 34.3 - 2.1 - 10.1  

[103] 
HRAP 30 cm depth 
(2.23 m2) with CO2 

addition 
63.6 - 77.4  16.2 - 33.8 - 3.5 - 10.1  

HRAP 40 cm depth 
(2.23 m2) with CO2 

addition 
58.5 - 75.8 11.6 - 26.7 - 4.8 - 13.4  

Primary 
settled 

domestic 
wastewater 

Consortium:  
Micractinium sp. 

and Desmodesmus 
sp. 

HRAP (1.25 ha) 
with CO2 addition 

5.6 - 67.4 14.0 - 24.4 

81.8 - 
92.1% of 
dissolved 

BOD5 

4.4 - 11.5 g VSS 
m-2 d-1 

[97] 

Brewery 
wastewater 

Scenedesmus 
obliquus 

Bubble column 
PBR (5 L) 

67 - 97 
13 - 26% of 

orthophosphate 
55 - 74 

80.5 - 224.3 g VSS 
L-1 d-1 

[104] 

Livestock 
wastewater 

Chlorella sp. and 
Phormidium sp. 

Algal biofilm 
reactor (630 cm2) 

98% of 
TAN 

93% of TDP 87 105 [105] 

Landfill 
leachate 

Chlorella vulgaris, 
Spirulina sp., 
Scenedesmus 
quadricauda, 

HRAP (0.27 m2) 94.3 - 98.7 
49.3 - 85.6% of 

PO4 

69.4 - 
90.7% of 

COD 

9.2 - 26.3 g VSS 
m-2 d-1 

[106] 

Pre-treated 
diluted 
swine 

manure 

Consortium: 
Chlamydomonas, 

Chlorella and 
Nitzschia 

HRAP (1.5 m2) 
62 - 88% 
of TKN 

- 
57 - 67 of  

COD 
5.7 - 27.7 g m-2 d-1 [107] 

 389 
 390 
 391 
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Table 2. Microalgae potential for wastewater treatment. (Cont.) 392 

Effluent  Microalgae 
strain  Reactor 

Efficiency removals (%) Biomass 
productivity 

(g TSS m-2 d-1) 
Reference 

Nitrogen  Phosphorus  Organic 
Matter  

Domestic 
sewage after 
facultative 

pond 

Consortium:  
Cyanophyceae 
Chlorophycean 
(Micractinium 
sp., Pediastrum 

sp., Oocystis 
sp., 

Scenedesmus 
sp.) 

HRAP (223 m2) 76.5 17.17% of 
orthophosphate 

36.63  
of BOD5 

15.8 

[108] 
HRAP (223 m2) 

with CO2 
addition 

recovered from 
biogas 

68.8 16.7% of 
orthophosphate 

48.89 
of BOD5 

14.1 

Domestic 
sewage after 

UASB reactor 

Consortium: 
Chlorella sp. 

(34% of 
abundance) 

Desmodesmus 
sp. (36% of 
abundance) 

HRAP (3.3 m2) 71 14 52 11.4 g VSS m-2 
d-1 

[109] 
Consortium: 
Chlorella sp. 

(40% of 
abundance) 

Desmodesmus 
sp. (46% of 
abundance) 

HRAP (3.3 m2) 
after UV 

disinfection 
74 19 55 9.3 g VSS m-2 

d-1 

TN = total nitrogen; TAN = total ammonia nitrogen; TP = total phosphorus; SP = soluble phosphorus; TDP = total dissolved phosphorus; DRP = dissolved 393 
reactive phosphorus; COD = chemical oxygen demand; BOD5 = biochemical oxygen demand; TSS = total suspended solids; VSS = volatile suspended solids.  394 
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Phosphorus removal will occur by chemical precipitation, with high pH values, or by biomass 395 

assimilation. Similarly, to the nitrogen, pH control can assist in the higher rate of phosphorus 396 

assimilation by biomass and consequently allow the recovery of this nutrient. Phosphorus 397 

participates in the transfer of intracellular energy and nucleic acid synthesis, in addition to the 398 

cell division reactions [105], being a fundamental nutrient for cell growth. There are various 399 

studies that reporting a high efficiency of P removal via biocapture using microalgae grown in 400 

domestic [116,117], industrial [118], or agro-industrial [11,119] wastewaters. However, 401 

phosphorus removal in algal systems may be often difficult, as could be observed in Table 2 with 402 

most results inferiors to 35% of removal efficiency. Algal biofilm reactor that presented a P 403 

removal of 93% was one of the exceptions, explained by algal biofilm P assimilation, as pH did 404 

not exceed the 7 value [111]. On the other hand, Assis et al. [103] studied domestic sewage 405 

treatment through a hybrid algae system, composed of a HRAP and a biofilm reactor, observed 406 

21 and 25% removals of soluble phosphorus, in systems with and without CO2 supplementation, 407 

respectively. These results may indicate that even algae attached growth systems may have 408 

limitations for P removal, mainly, those related with the lowest amount of P necessary for the 409 

cellular composition of microalgae. P luxury uptake is an alternative to increase P removal via 410 

assimilation, and can lead to an increase in cell P content up to 4–6% DW, when in normal 411 

conditions P content is about 1% [120]. In view of the concern with the mineral reserves of 412 

phosphorus, previously mentioned in Section 2.2, microalgae can be a tool for the recovery of 413 

this nutrient in several effluents.  414 

In addition to nutrient removal, the inactivation of pathogenic organisms can be obtained through 415 

microalgae growth systems. Photosynthetic activity will raise the pH and DO concentrations and 416 

these factors can act synergistically for the occurrence of microorganisms photo-oxidation [121]. 417 

The surface area/volume ratio is a design parameter for wastewater treatment and microalgae 418 

cultivation directly related with the inactivation efficiency of pathogenic bacteria. In theory, the 419 

greater this parameter, the greater the exposure of the culture medium to solar radiation, the 420 

greater the photosynthetic activity, and consequently the greater the efficiency of inactivation. 421 

Craggs et al. [122] evaluated HRAPs with 30 cm and 45 cm deep, with different surface areas 422 

and with the same volume, achieved better disinfection efficiency for HRAP with the greater 423 

area and less depth. Rich DO environments, together with intense radiation, can provide the 424 
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formation of atomic oxygen and/or superoxide oxygen that cause irreversible damage to the 425 

microorganism's DNA [123]. Ansa et al. [121] evaluated the effect of algal biomass in the 426 

removal of total coliforms in domestic sewage, verifying that in the absence of light, the decay 427 

was greater with an increase in chlorophyll-a concentrations, may have been the reason, the 428 

release of substances by microalgae, which have a biocidal effect and act in the inactivation of 429 

coliforms. Molina-Cárdenas et al. [124] observed that in a batch culture, the concentrations of 430 

bacteria were reduced to undetectable levels in 2-7 days, due to microalgae I. galbana synthesis 431 

of antibacterial fatty acids that inhibit the development of pathogenic bacteria. 432 

Currently, there is a concern with the presence of several emerging microcontaminants, like 433 

those in medicines, pesticides and endocrine disruptors that are accumulated in the wastewater. 434 

These compounds are persistent and can lead to bioaccumulation [125]. Some studies indicated 435 

the possibility of removing these compounds in microalgae cultivation systems. Vassalle et al. 436 

[126] investigated the removal of microcontaminants in HRAP and showed 64% to 70% of 437 

removal efficiencies for drugs, such as ibuprofen, diclofenac, naproxen and paracetamol. The 438 

study also reported efficiencies of 90 to 95% in removing estrogens. Results may be justified due 439 

to the processes of direct photodegradation, bioadsorption and biodegradation. Abargues et al. 440 

[125] showed that the treatment with oxygen supersaturation via microalgae photosynthesis 441 

presented a higher degradation rate of endocrine disruptors when compared with the treatments 442 

without microalgae. 443 

Another group of interest in the wastewater treatment is the trace metals. As they are not 444 

biodegradable, similarly to emerging microcontaminants, the trace metals persist in the 445 

environment, also leading to bioaccumulation in the food chain, which can trigger critical 446 

environmental and health problems [127]. Molazadeh et al.  [128] evaluated the Pb removal by 447 

Chaetoceros sp. and Chlorella sp. and obtained removal efficiencies of 60% and 78%, 448 

respectively. The authors point out that efficiency will be dependent on parameters such as pH, 449 

temperature and contact time. The presence of trace metals in algal biomass can represent a 450 

challenge for its later use. Leong and Chang [129] highlighted the necessity of techniques 451 

development for biomass pretreatment with the objective to recover metals as a strategy to 452 

overcome this bottleneck.  453 

 454 

Jo
urn

al 
Pre-

pro
of



 21

3. Microalgae the green treasure: bio-based products and biofuels  455 

Microalgae are a promising green feedstock for several products, i.e., animal nutrition, 456 

bioplastics, bioinks, biofertilizer,  biofuels and bioenergy [130] (Fig. 3).  457 

 458 

Fig. 3. Bioproducts and biofuels obtained from wastewater treatment using microalgae.  459 

Regarding bioenergy, various biofuels can be produced from algal biomass, such as methane, 460 

syngas, hydrogen, ethanol, biodiesel, jet fuel, bio-char, bio-oil, among others [5,131] (Fig. 4). 461 

According to Medeiros et al. [87], biofuels based on microalgae biomass may have a crucial role 462 

in bioenergy production in the future.  463 
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 464 

Fig. 4. Routes for converting microalgae biomass into biofuels.  465 

Microalgae biodiesel production is justified by the ability of some species to accumulate high 466 

concentrations of lipids [132]. Chlorella and Scenedesmus strains were reported to accumulate 467 

30.3% and 35.7% of lipids (dry base) in its composition [133]. In comparison with oilseeds 468 

commonly used for this purpose, microalgae have several advantages such as not requiring 469 

agricultural areas for its production and can be cultivated throughout the year. Productivity per 470 

unit area can reach up to 10,000 L ha-1 year-1 of biodiesel [134], being by far higher than the 471 

capacity that presents other oil sources such as sunflower, canola, soy, Jatropha, palm, among 472 

others [5] (Table 3). Moreover, compared with other biofuels, biodiesel can be an immediate and 473 

applicable alternative for fossil-based diesel. 474 
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 Table 3. Comparison of some sources of biodiesel: terrestrial crops vs microalgae [82,135–137]. 475 
Crop Oil yield (L ha-1 yr -1) 
Corn 172 
Hemp 363 
Cotton 325 
Soybean 446 
Mustard 572 
Camelina 915 
Seed 952 
Sunflower  1,190 
Castor 1,307 
Canola 1,892 
Coconut  2,689 
Jatropha 5,950 
Oil Palm  12,000 
Microalgae (low oil) 58,700 
Microalgae (medium oil) 97,800 
Microalgae ( high oil) 136,900 

However, the lipid content stored in the microalgae cells can vary greatly between different 476 

species and even in the same species, depending on the culture conditions. Many different key 477 

conditions for high lipid accumulation in microalgae are studied in the literature. Generally, 478 

nutrient deprivation conditions lead to a greater accumulation of lipids by microalgae, such as 479 

the limitation of nitrogen and phosphorus [138–140]. Other conditions, i.e. stress from cadmium, 480 

iron and salinity contents, light intensity and the silica concentration (in the last case of marine 481 

diatoms) [139,141] also influence biomass growth and consequently, it is a process lipid 482 

accumulation with a high energy-intensive. Among nutrient starvation tests (N, P and Fe), 483 

Srinuanpan et al. [142] concluded that N starvation was the most efficient in increasing lipid 484 

content just like its saturation level in biomasses S. obliquus and M. reisseri. Usual steps for oil 485 

obtaining from microalgae can be cited as harvesting, biomass drying and oil extraction. Among 486 

them, the drying process can be considered a bottleneck, since it is a process with a high energy-487 

intensive [143]. Therefore, lately, biodiesel production from wet microalgae biomass has gained 488 

attention [144]. In Table 4, successful cases in the production of biomass and lipids were 489 

selected through the cultivation of microalgae in synthetic medium and also in several 490 

wastewaters. It can be observed that the wastewater is an excellent cultivation medium for 491 

dozens of microalgae species. The values recorded using artificial culture media are comparable 492 

to those using wastewater for the growth of species.  493 
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Table 4. Lipid potential production from microalgae biomass.  494 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Synthetic culture medium 

Bold’s Basal 
Medium 

Flasks 
Chlorella sp. 

(UMACC050) 
40 Artificial NR 0.60 0.229 [145] 

Synthetic 
medium (Z) 

Flasks 

Chlorella sp. 

≈ 80a Artificial 

0.594 1.44 0.1901 

[146] 

Planktothrix 
isothrix 

0.640 0.28 0.0168 

Synechococcus 
nidulans 

0.401 0.20 0.0272 

Synthetic 
medium (WC) 

 

Scenedesmus 
acuminatus 

0.640 0.42 0.0571 

Pediastrum 
tetras 

0.528 0.36 0.0623 

Chlamydomona
s sp. 

0.536 0.39 0.0834 

Lagerheimia 
longiseta 

0.460 0.21 0.0239 

Synechococcus 
nidulans 

0.560 0.69 0.0938 

Monoraphidiu
m contortum 

0.296 0.15 0.0298 

 495 
 496 
 497 
 498 
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Table 4. Lipid potential production from microalgae biomass. (Cont.) 499 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Synthetic 
medium (C) 

Flasks 

Sinechocystis 
sp. 

≈ 80a Artificial 

1.295 0.39 0.0542 

[146] 
Romeria 
gracilis 

0.542 0.22 0.0244 

Aphanothece 
sp. 

0.458 0.29 0.0299 

Synthetic 
medium 

PBR 
Chlorella 

minutissima 
NR 

Internal light 
(Blue LED) 

0.044-0.0625 0.062 
0.0057-
0.0089 

 
[147] 

 
Artificial 

seawater f/2 
medium 

 

Airlift 
PBR 

Chlorella 
minutissima 

26a 
133 Artificial NR 0.1886 0.0928 [148] 

Synthetic 
medium BG11 

BC-PBR 
Chlorella sp. 

FC2 IITG 
100-1,700 

Natural 
sunlight 

8.6 1.4 0.753 [149] 

Wastewater culture medium 
Municipal 
wastewater 
(Centrate) 

Biocoil 
Chlamydomona

s reinhardtii 
220 Artificial NR 2 0.505 [150] 

Municipal 
wastewater 
Secondary 

Flasks 
Chlorella 
vulgaris 

≈140 Artificial 

1.03 0.1665 0.04138 

[151] Municipal 
wastewater 

Secondary (75%) 
+ primary (25%) 

 

1.11 0.13876 0.04559 

 500 
 501 
 502 
 503 
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Table 4. Lipid potential production from microalgae biomass. (Cont.) 504 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Municipal 
wastewater 
Secondary 

MPBR 
(continuo

us) 

Chlorella 
vulgaris 

112.3 Artificial  

1.84 0.0963 0.02576 

[152] 
Scenedesmus 

obliquus 
1.72 0.0888 

0.02957 
 

Sewage 
VBCPBR 

Golenkinia 
SDEC-16 

≈60 Artificial 
1.9 0.07089 0.01562 

[153] 

BG11 2.05 0.07409 0.04343 

Sewage 
Treatment Plant 

Flasks 
Scenedesmus 
sp. ISTGA1 

≈50 Artificial 1.81 NR 0.452 [154] 

Cattle 
wastewater 

after previous 
digestion in a 

hybrid anaerobic 
reactor 

Airlift 
PBR 

(batch) Scenedesmus 
obliquus 

(ACOI 204/07) 
≈ 60 Artificial 

3.22–3.70 0.358 0.062–0.064 

[11] 
Airlift 
PBR 

(continuo
us) 

1.92–2.40 0.183 0.017-0.027 

Tertiary 
Livestock 

wastewater 
SBR 

Botryococcus 
braunii 

490 
(38.75 W m-2) 

Artificial ≈2.6 0.3156 N.R. [155] 

 505 
 506 
 507 
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Table 4. Lipid potential production from microalgae biomass. (Cont.) 508 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Piggery biogas 
slurry 

FPCP 

Mixed: 
Desmodesmus 
sp., Bacillus 

and 
Pseudomonas 

400 Artificial NR 0.47 0.07431 [156] 

Piggery 
wastewater 

PBR Chlorella sp. 300 Artificial ≈8 0.681 0.155 [157] 

PSBR 
Chlorella 
vulgaris 

793.5 
Natural 
sunlight 

NR 
57.87 g m−2 

d−1 
27.25 g m−2 

d−1 
[158] 

Algal bloom 
hydrolysate 

Flasks 
Chlorella 

pyrenoidosa 
200 Artificial 4.36 0.436 0.188 [159] 

Dairy PBR Ascochloris sp. 
3,366–3,978 

W m-2 
Natural 
sunlight 

2.04 0.292 0.098 [160] 

Paper and 
pulp 

 
Scenedesmus 
acuminatus 

240 Artificial 
8.22 

(max value) 
0.685 0.137 [161] 

Olive-oil 
mill 

PBR 
Chlorella  

pyrenoidosa 
359 µE m-2 s-1 Artificial NR 

0.03 
(1.25 mg L−1 

h−1) 

≈0.0103  
g L-1 d-1 

[162] 

Meat-processing 
industry (primary 

effluent) 
BC-PBR 

Scenedesmus 
sp. 

1,797 - 2,101b 
Natural 
sunlight 

1.169 (max 
value) 

26.5 - 52.5 1.8 - 3.7 

[12] Meat-processing 
industry 

(secondary 
effluent) 

Scenedesmus 
sp. 

1,269 - 2,254b 
Natural 
sunlight 

0.225 – 0.371  10.5 - 12.1 0.3 - 0.8 

 509 
a Original article was written in kLux; b Original article was written in µE m-2 s-1; PBR - Photobioreactor ; BC-PBR - Bubble Column Photobioreactor; PSBR - 510 
Porous substratum biofilm reactor; SBR - Bench scale sequencing batch reactor; FPCP - Flat-Plate Continuous Photobioreactor; HRP - High rate ponds; MPBR - 511 
Membrane Photobioreactor; BCPBR - Vertical bubble-column photo-bioreactor; NR – Not reported. 512 
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An important strategy to maximize the production of the lipids in microalgae biomass is the 513 

increase of salinity in the culture medium. Some marine strains can be successfully grown in 514 

salinity ranges between 12 and 40 g L-1, being the optimal range between 20 and 24 g L-1 515 

[163,164]. In a study by Salama et al. [165] found that the increase in salinity from 0.43 to 25 516 

mM increased the percentage of lipids in the biomass of C. mexicana and S. obliquus from 23% 517 

to 37% and 22% to 34%, respectively. These results showed the importance of salt stress to 518 

maximize the lipid percentage in green microalgae cells. Abomohra and Almutairib [166] 519 

cultivated Scenedesmus obliquus in anaerobically digested seaweeds (Gracilaria multipartita), 520 

that registered a maximum dry weight of 4.57 g L-1 with 28.8% of total lipids. The study of these 521 

authors showed the highest lipid productivity and FAMEs recovery (65.2 mg L-1 d-1 and 123.3 522 

mg g−1 dry weight, respectively), with enhanced biodiesel characteristics.  523 

Another methodology used to maximize biodiesel production from Scenedesmus obliquus 524 

biomass was the application of night lighting using monochromatic light-emitting diodes [167]. 525 

In this case, the growth of microalgae, the production of lipids and the recovery of biodiesel 526 

increased significantly under the combination of blue-red lighting. The average lipid volumetric 527 

productivity recorded under the reported conditions was 58.3 mg L-1 d-1 and the total FAME was 528 

147.2 mg g-1 (dry weight). 529 

Lee et al. [168] investigated the conversion of fats, oils and greases (FOGs) into fatty acid 530 

methyl esters (FAMEs) without pre-treatment. The process was thermally induced to perform the 531 

simultaneous esterification of free fatty acids (FFAs) and lipid transesterification containing high 532 

concentrations of impurities in the biomass (≈14 wt%). The maximum FAMEs yield recorded by 533 

the authors was > 86%, based on the mass of the raw material without removing the impurities. 534 

This study proved that this technique can be considered valuable and effective for converting 535 

low-quality raw materials contained in FOGs into biodiesel, being recommended to maximize 536 

processes for obtaining this biofuel. 537 

Almarashi et al. [169] used low doses of cold atmospheric-pressure plasma (CAPP) as pre-538 

treatment of inoculum for cultivation Chlorella vulgaris. The authors reported high performance 539 

in the biodiesel recovery. The highest recorded lipid concentration was 20.99% and lipid 540 
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productivity was 40.7 mg L-1 d-1, when the inoculum was exposed to CAPP for 30 s before 541 

cultivation. The maximum FAMEs recovery of 478.7 mg g- 1 (dry weight) was observed at 542 

pretreatment for 60 s, being considered to the greater recovery in biodiesel in this condition due 543 

to plasma stress. The results found by the authors indicate that the recovery of FAMEs, as well 544 

as the quality of biodiesel, were improved by the CAPP treatment when compared to other 545 

traditional methods. 546 

Biodiesel production from microalgae focuses on the use of lipid content. After its extraction, the 547 

remaining biomass can be used for other purposes, meeting the context of circular economy 548 

green and increasing the economic value of the biomass. Ma et al. [132] demonstrated that the 549 

microalgae residual after wet microalgae Chlorella vulgaris lipid extraction could be used for 550 

fermentable sugar production through enzymatic hydrolysis of the carbohydrate. Assemany et al. 551 

[170] evaluated the use of residual biomass after lipid extraction as a substrate in the anaerobic 552 

digestion. The results showed a biogas production potential of 2.6 m3/kg VS (volatile solids), 553 

higher than the biogas production from raw biomass. According to the study, lipid extraction 554 

promoted the disruption of microalgae cells, facilitating the degradation of organic matter by 555 

anaerobic microorganisms. These results highlight the possibility of synergistic effects between 556 

different biofuel production techniques. 557 

Biogas is the most promising biofuel that has the potential to mitigate the current negative 558 

impacts of fossil fuels utilization, mainly energy crisis and climate change [171]. Biogas 559 

production occurs through anaerobic digestion, performed by a consortium of bacteria and 560 

archeas in the biochemical conversion of the organic matter into bioenergy, more specifically, 561 

CH4 [172]. Methane gas can be converted into renewable transportation fuels or into electricity. 562 

The digestate, comprised of nutrients and water can be reused in other production processes, 563 

such as algae cultivation, or used as a biofertilizer. In the context of bioenergy production from 564 

algal biomass and fighting over contamination, this process represents an important alternative, 565 

especially caused for the wet biomass, minimizing the costs of harvesting and drying steps.  566 

Methane yield from microalgae can vary a lot, depending on algae species, i.e., from 0.17 567 

m3 kg−1 VS for Chlorella minutissima biomass to 0.54 m3 kg−1 VS for Macrosystis pyrifera 568 

(brown macroalgae) [173]. But biogas yield from microalgae remains close or higher than the 569 
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yield of other biomass types, such as sugar crops (0.19 m3 kg−1 VS) and lignocellulosic biomass 570 

(0.17 m3 kg−1 VS) [174]. However, there are still some key technoeconomic limitations, 571 

particularly the low anaerobic biodegradability and the reduced C/N ratio of algal biomass [175]. 572 

In this sense, pretreatment strategies for cell wall rupture, and co-digestion, have been widely 573 

studied (Table 5).  574 

 575 
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Table 5. Microalgae potential for biogas production and strategies applied for yield improvement.  576 

Microalgae 
strain 

Growth 
medium 

Reactor and 
conditions Pretreatment Co-digestion Biogas yield  

(m3 CH4 kg-1 VS) Reference 

Chlorella sp. 
(61.2% 

abundance) 

Chicken 
manure 

100 mL flasks, 36°C, 
batch 

No No 1.44 mL g-1 d-1 [176] 

Chlorella sp. 
Domestic 
sewage 

2L CSTR, 37 °C, HRT 
= 20 days 

No 
With primary 

sludge 
0.33  

[177] 
No 0.20  

Scenedesmus sp. 

Domestic 
sewage 

12.4L AnMBR, 35 °C, 
HRT = 15-50 days 

No 
No 

0.17 m3 CH4 kg-1 COD 

[178] Chlorella sp. 12.4L AnMBR, 35 °C, 
HRT = 30 days 

0.24 m3 CH4 kg-1 COD 

Scenedesmus sp. 14L AnMBR, 35 °C, 
HRT = 15-50 days 

With primary 
sludge 

0.21 m3 CH4 kg-1 COD 
Chlorella sp. 0.23 m3 CH4 kg-1 COD 

Scenedesmus sp. 
Domestic 
sewage 

14L CSTR + AnMBR, 
39 °C, HRT = 7-28 

days 
No No 

0.185 

[179] 14L AnMBR + CSTR, 
39 °C, HRT = 30 days 

0.36  

14L CSTR + CSTR, 39 

°C, HRT = 15 days 
0.305 

Chlorella 1067 
Chicken 
manure 
digestate 

200 mL CSTR, 35°C, 
batch 

No 
No 0.14  

[180] With chicken 
manure 

0.24  

Chlorella sp. 
Synthetic 

BG11 medium 
500 mL flasks, 35°C, 

batch 
Enzymatic + 

lipid extraction 

No 0.13  

[181] 
With grass 0.17  

Scenedesmus 
obliquus 

Brewery 
wastewater 

2.8L Hybrid ascending 
reactor, 37 °C, HRT = 6 

days 

No 
No 0.08  

[182] 
With olive 

mill 
wastewater 

0.25  

Thermal 0.21  
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Table 5. Microalgae potential for biogas production and strategies applied for yield improvement. (Cont.) 578 

Microalgae 
strain 

Growth 
medium 

Reactor and 
conditions Pretreatment Co-digestion Biogas yield  

(m3 CH4 kg-1 VS) Reference 

Kirchneriella sp. 
Domestic 
sewage 

343L UASB, 
environmental 

conditions, HRT = 7 
hours 

No 

No 0.15  

[183] 
With primary 

domestic 
sewage 

0.21  

Chlorella sp. and 
Scenedesmus sp. 

Synthetic 
wastewater 

160 mL flaks, 35°C, 
batch 

No 
No 

0.26  
[184] Thermal + 

alkaline 
0.33 

Stigeoclonium sp., 
Monoraphidium 
sp., Nitzschia sp. 
and Navicula sp. 

Domestic 
sewage 

160 mL flaks, 35°C, 
batch 

No 

No 

0.11  

[185] 
Thermal 0.181  

Hydrothermal 0.135  
Microwave 0.128  
Ultrasound 0.114  

CSTR = continuous stirred tank reactor; AnMBR = anaerobic membrane bioreactor; UASB = upflow anaerobic sludge blanket reactor; HRT = hydraulic 579 
retention time; VS = volatile solids.  580 
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Regarding energetic feasibility, anaerobic digestion from microalgae biomass proved to be 581 

rentable. Chao Xiao [186] reported that all tested methods of biogas production obtained a 582 

positive energy gain,  with net output energy of  1.73, 2.37, and 3.11 kWh, from the anaerobic 583 

processes without pretreatment and with hydrothermal pretreament moved without and with 584 

solar-driven, respectively. When using the co-digestion strategy, net energy production was 3.2 585 

GJ per day versus 1.6 GJ per day for microalgae mono-digestion, indicating a generation of 2.7 586 

and 4.5 fold the energy consumed. If this potential energy would be transformed into electricity 587 

via cogeneration, 151 and 307 kWh per day could be provided by the mono and co-digestion 588 

process, respectively [177]. Vassalle et al. [183] also obtained a positive net energy ratio of 2.8 589 

through co-digesting microalgae biomass and domestic sewage in a UASB reactor, that 590 

represented a 180% energy gain in relation to the consumption. This energy gain was 5 times 591 

greater when compared to the sewage mono-digestion. 592 

Hydrothermal liquefaction (HTL) is a thermochemical process of organic matter conversion, 593 

under subcritical conditions of temperature and pressure. Four different products are generated 594 

from biomass conversions, such as the bio-oil, gas, solid waste and water-soluble compounds. 595 

Due to severe operating conditions, the entire organic fraction is degraded, and bio-oil is not only 596 

produced from the lipid content, but also from carbohydrates and proteins [4]. Moreover, HTL 597 

occurs in aqueous media, avoiding energy requirement for biomass drying. These characteristics 598 

make HTL an attractive technology, that may overcome some bottlenecks associated with 599 

biofuels production from microalgae biomass, especially the wastewater grown microalgae 600 

biomass with low lipid content. HTL’s bio-oil yield is related with the operational conditions, 601 

such as temperature, reaction time, water ratio in the biomass, pressure and the presence of 602 

catalysts. Table 6 shows some examples of HTL process using microalgae biomass.  603 

HTL can be inserted in a circular bioeconomy context through the valorization of its by-604 

products. The gases generated are mostly composed of CO2, which can be used in microalgae 605 

cultivation [7] or like additive in the materials utilized in the construction sector. Solid wastes, 606 

due to their majority constitution of ashes, can be destined to asphalt pavement [187]. Water-607 

soluble products, on the other hand, are composed of organic acids and nutrients that can again 608 

be used in other microalgae cultivation [188,189] or even as a substrate for anaerobic digestion 609 
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[190,191]. However, the aqueous phase has compounds that can be toxic to the microorganisms, 610 

such as aromatic compounds and metals [192]. Thus, its use should be evaluated based on 611 

dilutions that do not cause inhibitory effects on microalgae growth.  612 

Although HTL is an attractive process for bio-oil obtention through algal biomass conversion, 613 

regarding resource recovery in the context of a circular economy, there are still challenges to be 614 

faced. Some main points are the high N content in bio-oil, due to the composition of biomass 615 

[75], the presence of ash, especially when the biomass comes from wastewater [193], the 616 

expansion of the scale of reactors and its continuous operation, as well as a better understanding 617 

of operational parameters such as heating rate, initial pressure and particle size [194]. 618 
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Table 6. Operational conditions and bio-oil yield in different studies of microalgae HTL.  619 

Microalgae 
strain 

  Biomass composition (%) Operational conditions Boi-oil 
yield (% 

dry basis) 
Reference Growth 

medium Protein Sugar Lipid Ash 
Temperature 

(°C) Time (min.) 
Percentage 

of solids Catalyst 

Consortium 

Natural 
Lake 

78.5 11.7 6.7 - 350 120 4 
HZSM-
5 zeolite 

1600 [195] 

Wastewater 

28.3 5.4 23.3 40.0 
300 

15 10 
NA 

44.4(a) [75] 

27.2 23.6 1.7 47.5 60 25 49.9(a) [187] 

48.6 11.1 7.8 25.9 350 120 6.6 
HZSM-
5 zeolite 

58.0 [196] 

Scenedesmus 
obliquus 

54.6 - 12.3 11.5 300 60 7 NaOH 24.6 [197] 

Nannochloropsis 

Synthetic 
medium 

36.4 12.4 19.0 8.91 275 30 01:10 - 31.4 [198] 

40.5 - 21.9 4.4 250 60 6 - 28.9 [199] 

N. gaditana 43.8 15.7 35.5 4.5 320 10 01:10 CaO 49.7 [200] 

C.vulgaris 61.8 26.7 2.3 8.7 
350 

Heating rate of 10 ° 
C.min-1 min. 

Removed when it 
reached reaction 

temperature 

5.5-6.8 - 
42.1 

[201] 

Spirulina 70.2 19.3 1.1 7.7 36.2 

G. sulphuraria Wastewater 41.0 10.5 5.8 42.0 350 6 5 - 28.1 [202] 
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In addition to the processes presented in Figure 4, lipid conversion into supercritical fluids 620 

(SFE), as presented in Table 7, can have advantages over conventional processes [2]. SFE makes 621 

use of high pressures and temperatures in a fluid to break cells without additional chemical 622 

reagents (or minimizing their use). This method has been proven to be extremely time-efficient 623 

with high yields [203], enabling fast conversion of lipids into biodiesel (20 and 60 minutes), 624 

whereas solvent extraction can take up to 24 h. Another advantage of the method is that the use 625 

of a catalyst can be avoided, eliminating the production of pollutants. Higher temperature and 626 

pressure, combined with the effect of the supercritical solvent, break the cell walls and facilitate 627 

the diffusion of the solvent in the cell matrices with a much higher degree of efficiency than 628 

conventional [2,204]. On the other hand, the main disadvantage of SFE is the greater capital 629 

necessary, including the operational cost due to high temperatures and pressure requirements 630 

[204].  631 

 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
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 656 
 657 
 658 
Table 7. Microalgae biomass conversion by supercritical processes. 659 

Strain Supercritical condition Biodiesel yield (%) Reference 
Scenedesmus sp. SC–CO2: Lysozyme treatment + 50 °C, 500 bar, 13 ml min-1, 30 min 12.5 (dw) [205] 

Scenedesmus 
obliquus 

SC–CO2: Bead beating + 60 °C, 306 bar, 65 °C, 30 MPa, 5% ethanol co-solvent, 
90 min 

18.15 (dw) [206] 

Nannochloropsis sp. SC–CO2: 50 °C, 200 bar and 24 h 62 [207] 
Nannochloropsis 

(CCMP1776) 
Methanol to biomass (12:1): 1200 psi, 30 min 85.75 [208] 

Nannochloropsis 
gaditana 

Supercritical methanol to algae ratio (10:1): 255-265 °C, 50 min 45.8 (FAME) [209] 

Nannochloropsis 
gaditana 

Methanol to wet biomass (vol. dw.-1) ratio 6:1: temperature 225 °C, 90 min 59.28 [210] 

Nannochloropsis sp. Methanol to algae ratio (10:1) at supercritical conditions: 265 °C, 50 min 21.79 (dw) [211] 
Chlorella 

protothecoides 
Methanol to oil ratio (19:1): 320 °C, 152 bar, 31 min 90.8 [212] 

Chlorella vulgaris 
Supercritical methanol without catalyst and in the presence of TiO2 and SrTiO3 
nanocatalysts, 270 °C, pressure range of 9-10 MPa, 60 min 

16.65 mg g-1 
(FAME) 

[213] 

SC–CO2 = reaction in supercritical CO2; dw = dry weight.  660 
 661 
 662 
 663 
 664 
 665 
 666 
 667 
 668 
 669 
 670 
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4. Think global, act local: how microalgae can fit in? 671 

“Think global and act local” is a slogan initially develop in Rio Earth Summit, the second 672 

Conference of the United Nations held in Rio de Janeiro, Brazil in 1992, that culminated with the 673 

creation of Agenda 21. This document is an instrument of participatory planning in which the 674 

responsibility of governments to promote environmental programs and projects is explicitly 675 

accepted through policies aimed at social justice and the preservation of the environment [214]. 676 

Agenda 21 has a hierarchical spatial scale strategy based on sub-global, national and locally 677 

settled plans - Local Agenda 21 [214]. The formulation and implementation of public policies 678 

are encouraged, through participatory methodology, that produces an action plan to reach a 679 

desirable future scenario for the local community [215] and that takes into account the analysis 680 

of vulnerabilities and potential of its basis economic, social, cultural and environmental. 681 

“Think global, act local” is often used to support small improvements on current environmental 682 

sustainability practice. However, a systemic change is highly required in order to meet the scale 683 

of the challenges, at neighborhood, city, regional, national and worldwide levels [216]. In 684 

addition, progress should be measured in sustainability and should be within environmental 685 

limits of the planet, as humankind are on a path to overcome them [216]. Sustainability has three 686 

main pillars - environment, society and economy. On a small scale, thinking about eco-cities, 687 

there are some challenges to be included in a sustainability local environment, which can broader 688 

positive impact in the frontiers, and microalgae can fit in many of them. A city can be 689 

sustainable  based on how technologies and policies are mobilized to enhance energy, water, 690 

healthcare, mobility, security, economic development and community engagement [217]. 691 

Transportation is a major concern in urban environments related with air pollution and GHG 692 

emissions, however, the microalgae can be a sustainable option for biofuel production. Public 693 

and collective transport can be moved with green fuel, such as biodiesel [218,219] and biogas 694 

[180,182] from algae biomass (see Section 2.3.3 for more detailed examples). Moreover, thermal 695 

energy for house heating can also be obtained, contributing to affordable and safe housing. 696 

Residual biomass can, in addition, serve as raw material for construction materials, helping to 697 

save resources and to build environmentally friendly buildings. Irfan et al. [220] studied how to 698 

optimize bio-cement production using Chlorella kessleri microalgae as a source of calcium 699 
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through a waste feedstock from cement kiln dust. According to the authors, the study of 700 

microalga role in the production of bio-cement can result in the readiness of this process in civil 701 

construction, besides helping in the environmental pollution mitigation by waste utilization. 702 

In line with Sections 2.1 and 2.2, the promotion of recycling and resource conservation is among 703 

the best practices to be included in helping reducing pollution. This involves more efficient use 704 

of resources and even, significantly, reduction in resource consumption. Besides achieving zero 705 

waste, there is a need to change consumer choices and production relationships throughout the 706 

supply chain, which theoretically will become more localized and regionalized [216]. With 707 

multiple use characteristics, algae biomass may support resource recovery, especially avoiding 708 

the generation of waste during wastewater treatment. Nutrient-rich algae biomass may have 709 

various utilities, such as being a feedstock for a bio-based economy, i.e. in the production of 710 

bioplastics. Rocha et al. [221] studied the potential of bioplastics production from microalgae 711 

consortium from wastewater concluded that despite promising result had been achieved, large-712 

scale microalgae biomass should be better development. Moreover, the mechanical properties of 713 

this type of bioplastics deserves improvement, as it limits the product application compared with 714 

other available bioplastic options. According to the authors, further strategies, such as 715 

composites and crosslinking, should be addressed.  716 

Regarding wastewater treatment, microalgae when used, play an important role in recovering 717 

river water quality and enhancing whole urban ecosystems to provide a healthy place for fauna, 718 

flora and people co-existence. Several studies cover the wastewater treatment using microalgae, 719 

i.e. treatment of domestic sewage [90,115], agro-industrial effluents [11,111,222] and industrial 720 

effluent [12,118], see Section 2.3.2 for more detail. Recovered rivers are integrated in the city 721 

landscape, supporting the health and leisure of urban populations, while promoting a deeper 722 

connection with nature. Restoration initiatives for damage environments, as well as support for 723 

local agriculture, urban greening and community gardening are other of the characteristics of an 724 

eco-city [223,224].   725 

In terms of food systems, Moloney [216] stated that people should understand and direct 726 

experience food growing, in order to obtain a low impact or even zero carbon food. Microalgae 727 

biomass will increasingly help to move beyond zero carbon emissions, in line with ecologically 728 
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sound economic activities. In the context of organic and local agriculture, the kind of soil 729 

fertilizing is of great importance and that’s where, among others, microalgae biomass can fit in. 730 

Nutrient-rich microalgae biomass may be a sustainable source of biofertilizer, helping to reduce 731 

the environmental impact of the traditional fertilizers production process and to economize 732 

resources. Studies have proved the benefits of using microalgae as a biofertilizer [225], for soil 733 

fertility improvement and plant growth, when used as a source of nitrogen [78] or together with 734 

triple superphosphate in order to create an environmentally friendly fertilizer [226]. Moreover, 735 

grain yield and fruit quality and nutritional characteristics were improved [227], and 736 

heterotrophic activity of the soil, besides bacterial growth were stimulated using Chlorella sp. 737 

suspension [228]. Another possibility is to use microalgae as a source of protein in the human or 738 

animal diet, considering that microalgae cultivation is less impactful than the cultivation of 739 

terrestrial plants, mainly with regard to soil change and, consequently, GHG emissions. 740 

Lamminen et al. [229] studied microalgae as a source of protein supplement in the lactating dairy 741 

cows nutrition and their results suggested the suitability of non-defatted and protein-rich 742 

microalgae, compared to soya bean protein meal. Favorable results were found in milk fat 743 

concentration when Spirulina was used, while Nannochloropsis offered a most suitable omega-744 

6:omega-3 ratio for human nutrition. However, the authors highlighted poorer palatability of 745 

microalgae concentrates.     746 

To finalize, social aspects that go beyond environmental conservation are needed. It is required a 747 

transformation through a greater connection between people and the environment, mainly 748 

through improvements in health conditions, well-being and social and economic inclusion.  749 

5.  Microalgal biorefineries all over the world 750 

Currently exist an increasing worldwide interest in microalgae crops. This factor is manifested in 751 

several areas such as bioenergy for the production of biofuels (green crude oil, gasoline, 752 

biodiesel, jet fuel, bio-oil, ethanol, biogas, syngas, methane, among others), in the capture and 753 

sequestration of CO2 from several industrial applications like power plant, fermentation plants, 754 

cement producers and others, for wastewater purification, production of a wide diversity of 755 

products like food supplements (including feed and pet foods), cosmeceuticals, pharmaceuticals, 756 

biologicals, chemicals, biochemicals, biomaterials, among others.  757 
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Table 8 lists some companies that produce different products from algae biomass with a 758 

significant scale under an integrated strategy in the frame of biorefineries. The list is ordered by 759 

continent and country. 760 
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Table 8. Microalgal biorefineries all over the world [230]. 761 

Continent Country Company Technological 
level 

Uses/applications Website 

America 

Brazil and 
United State of 
America (USA) 

Solazyme 
Commercial/ 

Flagship 

Microalgae production and cosmetics 
products, bioplastics, oils, 
encapsulated lubricant and fuels 

http://solazymeindustrials.com/ 

USA 

Algenol 

Demo 

Personal care ingredients, foods, 
biofuels (from ethanol to crude oils), 
biofertilizers and biostimulants 

https://www.algenol.com/ 

BioProcess Algae, 
LLC 

Microalgae production and other 
products: feed (including fish), 
chemicals compost, nutraceuticals, 
ethanol and biodiesel 

http://www.bioprocessalgae.com/ 

Europe 

Denmark 
Kalundborg 
Symbiosis 

Demo 
Wastewater treated and microalgae 
production 

http://www.symbiosis.dk/en/ 

Portugal 

A4F Algae for 
future 

Industrial/De
mo/Pilot 

Bioengineering projects for the 
industrial microalgae production, 
biofuels, microalgae-based products 
and applications 

https://a4f.pt/en 

Algafarm (A4F 
Algae for future) 

Secil/Allmicroalgae 

Commercial/ 
Demo 

Microalgae (Chlorella) biomass 
production and others by-products 
(utilized for biofuels) 

https://a4f.pt/en/projects/algafarm 

Buggypower 
(Portugal), Lda 

Demo 

Algal biomass for biofuels 
production and other products (fatty 
acids, antioxidants, minerals, 
pigments, vitamins and others) 

http://www.buggypower.eu/ 

Spain AlgaEnergy 

Pilot 

Microalgae production for 
agriculture, aquaculture, food and 
feed, natural extracts, cosmetics, 
gardening and biofuels 

https://www.algaenergy.com/ 

The Netherlands 

TNO-Valorie Biofuels (biodiesel) and by-products 
https://www.tno.nl/media/2818/tn

o-valorie-flyer-uk.pdf 

AlgaePARC 
Develop technologies both on a lab 
and pilot scale for microalgae 
production and by-products 

http://www.algaeparc.com/ 
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6.  Market: Current microalgal commercial producers 763 

Worldwide, there are many companies that produce microalgae for the development of the 764 

research area (including the study of new species) as raw material to produce a variety of 765 

products or to be sold to other companies. At a global level, the continents that show the greatest 766 

evolution in this matter are America (mainly the United States of America) and Europe, being 767 

Portugal a strong player in this sector.  768 

Every year, approximately 7,000 t of dry algae are produced all over the world, being the global 769 

market of algae biomass can be estimated at USD 3.8 to 5.4 billion [231]. These numbers reflect 770 

that the microalgae industry is gaining global attention and can be widely utilized in different 771 

industrial sectors in the future [232]. Table 9 shows 146 companies or organizations that 772 

produce a variety of algae-based products or that sell several species. This information is 773 

important to verify the position of the microalgae’s in the market worldwide. The mention of 774 

government institutions and universities that develop projects in this sector is above the scope of 775 

this publication, it is known that they exist in many countries of the world, betting on microalgae 776 

as an alternative fuel in the transport sector, as a solution to reduce GHG and to meet future food 777 

and feed needs. 778 

The legend of “Uses/applications” column (Table 9) is as follows: (note that not all are 779 

applicable for each listed company).  780 

A:  CO2 sequestration from industrial systems; 781 

B: Nutraceuticals and/or food and/or feed (including aquaculture and/or pet foods); 782 

C: Health care and/or pharmaceutical products and/or beauty care (cosmeceuticals); 783 

D: Soils and/or water solutions (fertilizers and/or wastewater treatment and/or water 784 

desalination); 785 

E: Biofuels (green crude oil, gasoline, biodiesel, renewable diesel, jet fuel, bio-oil, ethanol, 786 

biogas, syngas, methane, among others); 787 

F: Biotechnology applications (algae oil and compounds extraction) and/or equipment’s 788 

(bioreactors and/or other systems) and/or laboratory analysis; 789 

G: Specific algae (biomass) production and/or algae harvesting/cultivation systems; 790 

H:  Bioproducts/biomaterials (bioplastics, biostimulants, natural pigments, among others) 791 

production. 792 
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Table 9. Current microalgal producers, uses and applications [233–240]. 793 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

America 

Canada 

AlgaeCan Biotech Ltd.   ✓   ✓         https://algaecan.com/ 
EBPI-Environmental Bio-Detection Products 
Inc. 

          ✓     http://www.ebpi-kits.com/ 

Symbiotic EnviroTek Inc. ✓ ✓   ✓ ✓       https://symenv.com/ 

 
United State of 
America (USA) 

ABPDU-Advanced Biofuels and Bioproducts 
Process Development Unit 

  ✓ ✓ ✓ ✓       https://abpdu.lbl.gov/ 

Accelergy       ✓         http://www.accelergy.com/ 
ACEnT Laboratories LLC         ✓ ✓     http://acentlabs.com/ 
Agcore Technologies ✓ ✓ ✓   ✓       http://www.agcoretech.net/index.html 
Algae Floating Systems, Inc. ✓ ✓     ✓       http://www.algaefloatingsystems.com/ 
AlgaBT LLC   ✓ ✓           https://www.algabt.com/ 
Algepower, Inc.   ✓   ✓   ✓     http://algepower.com/ 
Algae Systems LLC ✓     ✓ ✓       http://algaesystems.com/ 
Algaewheel           ✓     https://algaewheel.com/ 
Algenesis               ✓ https://www.algenesismaterials.com/ 
Algeternal technologies, LLC   ✓         ✓   https://algeternal.com/ 
AlgiKnit Inc.               ✓ https://www.algiknit.com/ 
BioGreen Synergy   ✓ ✓   ✓       http://www.biogreensynergy.com/index.html 
Cellana Inc.   ✓     ✓       http://cellana.com/ 
Checkerspot, Inc.           ✓   ✓ https://checkerspot.com/ 
CLEARAS Water Recovery, Inc.       ✓         https://www.clearaswater.com/ 
Culture Biosystems   ✓     ✓ ✓     https://www.culturebiosystems.com/ 
Cyanotech Corporation   ✓         ✓   https://www.cyanotech.com/ 
Desert Sweet BioFuels ✓ ✓     ✓       http://desertsweetbiofuels.com/ 
Earthrise Nutritionals, LLC   ✓             https://www.earthrise.com/ 
ENERGYbits Inc.   ✓             https://www.energybits.com/ 
Exxon Mobil Corporation         ✓       https://corporate.exxonmobil.com/ 
Global Algae Innovations, Inc.           ✓     http://www.globalgae.com/ 
Global Thermostat   ✓ ✓ ✓       ✓ https://globalthermostat.com/ 
Gross-Wen Technologies       ✓ ✓     ✓ https://algae.com/ 
Heliae Development, LLC       ✓         https://heliaeglobal.com/ 
Manta Biofuel       ✓ ✓   ✓   https://mantabiofuel.com/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 794 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

America USA 

MicroBio Engineering Inc.   ✓   ✓ ✓ ✓     https://microbioengineering.com/ 
NCMA Bigelow Laboratory for Ocean Sciences             ✓   https://ncma.bigelow.org/cms/index/index/ 
OVIVO USA, LLC           ✓     https://www.ovivowater.com/ 
Phenometrics, Inc.           ✓     https://www.phenometricsinc.com/ 
Qualitas Health     ✓     ✓     https://www.qualitas-health.com/ 
Raven Engineered Films           ✓     https://ravenefd.com/ 
Spira, Inc.   ✓ ✓           https://www.spirainc.com/ 
Synthetic Genomics Inc.         ✓ ✓     https://syntheticgenomics.com/ 
Valensa International   ✓             https://valensa.com/ 
Zivo Bioscience Inc.   ✓ ✓           https://www.zivobioscience.com/ 

Asia 

Brunei MC Biotech Sdn. Bhd.   ✓         ✓   https://mcbiotech.com.bn/ 

India 

Oilgae ✓     ✓ ✓ ✓     http://www.oilgae.com/ 
Parry Nutraceuticals             ✓   http://www.parrynutraceuticals.com/ 
Prolgae Spirulina Supplies Pvt. Ldt.   ✓         ✓   https://www.prolgae.com/ 
SNAP-Natural & Alginate             ✓   https://snapalginate.com/ 

Indonesia Neoalgae   ✓ ✓           https://neoalgae-halal.com/ 
Iran QMAB-Qeshm Microalgae Biorefinery   ✓ ✓ ✓ ✓     ✓ http://qmabco.com/ 

Israel 

Algatech     ✓     ✓     https://www.algatech.com/ 
Brevel    ✓ ✓ ✓ ✓       https://brevel.co.il/ 
UniVerve             ✓   https://www.univerve.co.il/ 
Yemoja Ltd.           ✓     https://yemojaltd.com/ 

Japan 
Japan Algae Co., Ltd.     ✓       ✓ ✓ http://www.sp100.com/ 
Euglena     ✓   ✓       https://www.euglena.jp/ 

Europe 

Austria Ecoduna   ✓ ✓           https://www.ecoduna.com/en/ 

Belgium 
MicroBioTests       ✓         https://www.microbiotests.com/ 
Proviron industries             ✓   http://www.proviron.com/en 
Tomalgae C.V.B.A   ✓             http://www.tomalgae.com/ 

Czech Republic Algamo s.r.o           ✓ ✓   https://www.algamo.cz/ 
Denmark Ocean Rainforest             ✓   http://www.oceanrainforest.com/ 
Finland Redono ✓     ✓         https://www.redono.fi/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 796 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

Europe 

France 

Algama   ✓             https://www.algamafoods.com/ 
AlgoLight   ✓ ✓           http://www.algolight.com/ 
AlgoSource Group   ✓             https://algosource.com/en/ 
Bioréa SAS   ✓ ✓     ✓ ✓   https://www.biorea.fr/en/ 
Cyane   ✓         ✓   https://www.cyane.eu/en/ 
Ennesys       ✓         http://www.ennesys.com/en/ 
Fermentalg   ✓ ✓           https://www.fermentalg.com/ 
Greensea SAS   ✓             http://greensea.fr/en/ 
Microphyt   ✓ ✓           http://www.microphyt.eu/en/ 
Naturis Pharma SRL             ✓   https://www.naturispharma.com/ 
Odontella SAS   ✓             https://www.odontella.com/fr/home-2/ 
Olmix Group   ✓ ✓           https://www.olmix.com/ 
Synoxis Algae           ✓     https://www.synoxis-algae.com/ 

Germany 

Algoliner GmbH & Co. KG           ✓     https://www.algoliner.de/home 
Astaxa GmbH             ✓   http://www.algae-biotech.com/ 
bbe Moldaenke GmbH   ✓       ✓     https://www.bbe-moldaenke.de/en/ 
CellDEG GmbH           ✓     https://celldeg.com/features/technology/ 
GBEX-Global Biomass Exchange     ✓       ✓   https://www.gbex.de/en/ 
Ludwig Bölkow Campus         ✓ ✓     https://www.lb-campus.com/ 
MIAL GmbH   ✓         ✓   http://mial.eu/ 
Subitec GmbH           ✓     https://subitec.com/en 

Iceland Algalif  Iceland ehf.     ✓       ✓   https://algalif.com/ 

Italy 

Archimede Ricerche Srl   ✓ ✓           http://www.archimedericerche.com/ 
Biospira Srl   ✓         ✓   https://www.biospira.it/en/ 
F & M Fotosintetica & Microbiologica S.r.l           ✓     http://www.femonline.it/ 
Severino Becagli SRL   ✓ ✓       ✓   https://www.severinobecagli.it/en/ 
Tolo Green SRL   ✓ ✓           https://www.tologreen.it/en/ 

Norway MicroA     ✓     ✓ ✓   https://microa.no/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 798 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

Europe 

Portugal 

Alga2O, Lda.             ✓   https://alga2o.pt/index.php/pt/ 
Algae Tagus - Produção de Microalgas ✓ https://algatec.eu/en/production/ 
Allmicroalgae-Natural Products   ✓ ✓           http://www.allmicroalgae.com/ 
Aqualgae SL ✓ ✓ ✓ ✓         http://aqualgae.com/en/home/ 
Bluemater       ✓         https://www.bluemater.com/ 
Biotrend - Inovação e Engenharia em 
Biotecnologia 

            ✓   http://www.biotrend.pt/ 

Lusalgae   ✓ ✓           http://lusalgae.pt/ 
Madebiotech           ✓     https://www.madebiotech.com/ 
Naturextracts             ✓   https://naturextracts.com/ 
Nutrally Algae Solutions SL             ✓   https://www.nutrally.net/es 
Pagarete Microalgae Solutions   ✓         ✓   https://www.pagaretems.com/ 
Phytoalgae   ✓             http://phytoalgae.pt/ 
PhytoBloom (Necton)   ✓ ✓   ✓ ✓     http://www.necton.pt/ 
Spirulina da Serra - Monchique   ✓         ✓   https://spirulina-da-serra.com/ 
Spirulina Portugal   ✓         ✓   https://www.spirulinaportugal.com/ 
Stellarialga ✓     ✓         https://www.stellarialga.com/ 
Tomar Natural   ✓         ✓   https://tomarnatural.pt/ 
5essentia spirulina azores   ✓         ✓   https://5essentia.com/ 

Slovenia AlgEn D.o.o ✓ ✓ ✓ ✓ ✓       https://algen.eu/ 

Spain 

AgriAlgae®               ✓ https://www.agrialgae.es/?lang=en 
Algalimento SL             ✓   http://www.algalimento.com/ 
Algasol   ✓ ✓ ✓ ✓     ✓ http://algasolrenewables.com/ 
Algatek     ✓     ✓     http://algatek.co.uk/ 
Biorizon Biotech       ✓     ✓   http://www.biorizon.es/?lang=en 
Fitoplancton Marino, S.L   ✓ ✓           http://www.fitoplanctonmarino.com/ 
Monzón Biotech   ✓ ✓       ✓   https://mznbiotech.com/ 
Neoalgae Micro Seaweeds Products SL   ✓ ✓       ✓   http://neoalgae.es/ 

Sweden 
Alfa Laval Corporate AB         ✓       https://www.alfalaval.com/ 
AstaReal AB     ✓ ✓         http://www.astareal.se/ 
Simris Alg AB   ✓ ✓       ✓   https://simrisalg.se/en/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 800 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

Europe 

Switzerland 
Algorigin   ✓ ✓       ✓   https://algorigin.com/en/ 
Bühler AG   ✓             https://www.buhlergroup.com/ 

The Netherlands 

AlgaSpring B.V.   ✓         ✓   https://www.algaspring.nl/ 
CaribAlgae ✓     ✓ ✓ ✓     https://www.caribalgae.com/ 
Corbion   ✓ ✓     ✓     https://www.corbion.com/ 
Evodos B.V.           ✓ ✓   https://www.evodos.eu/ 
FeyeCon   ✓ ✓     ✓     http://www.feyecon.com/ 
Hi, I´m Algae   ✓ ✓ ✓         https://hiimalgae.com/nl 
LGem           ✓     https://lgem.nl/ 
Liqoflu Ltd.       ✓     ✓   http://liqoflux.com/ 
Omega Green   ✓ ✓ ✓ ✓     ✓ https://www.omegagreen.nl/ 

Turkey Akuamaks   ✓             https://www.akuamaks.com/en/ 

United Kingdom 
(UK) 

Algaceuticals   ✓ ✓     ✓     https://www.algaceuticals.com/ 
Algaplex           ✓     http://algaplex.co.uk/ 
Algenuity   ✓ ✓           https://www.algenuity.com/ 
EnAlgae         ✓ ✓ ✓   http://www.enalgae.eu/ 
Firglas Ltd.   ✓             http://firglas.com/ 
Kilbride Biotech Group Ltd           ✓     http://kbbiotech.com/ 
Membranology           ✓     https://membranology.com/ 
SuSeWi           ✓     https://www.susewi.life/ 
Varicon Aqua Solutions Ltd   ✓       ✓     http://www.variconaqua.com/ 
Xanthella           ✓     http://www.xanthella.co.uk/ 

Oceania Australia Csiro   ✓ ✓   ✓     ✓ https://www.csiro.au/ 
  Future of Algae for Food & Feed (FAFF)   ✓             https://www.futureofalgae.org/ 
  Nonfood   ✓         ✓   https://eatnonfood.com/ 
  sbr Saalbio Refinaries   ✓     ✓       https://www.saalbio.com/ 
  Techverse, Inc.           ✓     http://techverseinc.com/ 
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Both Table 8 and Table 9, shows that in Europe, Portugal represents one of the countries with the 802 

greatest development in the areas of microalgae (including the biorefineries implementation) 803 

since the edaphoclimatic conditions help in this process. Portugal is the country in Europe with 804 

the highest solar radiation, the main source of raw material for microalgae. Several CO2 805 

production focus can also be identified that help in the implementation of a microalgae 806 

production system through the capture of CO2 essentially from exhaust gases of several 807 

industrial units. At the aquaculture level, Portugal shelter to the largest variety of microalgae 808 

species in the world, specifically at the Algae Collection of the University of Coimbra (UC) with 809 

4000 different strains of microalgae from freshwater in its possession. Considering all these 810 

factors, both in terms of biorefineries and in other industrial sectors (mainly food), Portugal has a 811 

high potential, that can to be considered in the future such us one of the countries with the 812 

greatest evolution and progress in terms of microalgae, whenever the edaphoclimatic conditions 813 

don´t change significantly with the climate change. The study entitled Evaluation of the Potential 814 

of Biomass to Energy in Portugal - Conclusions from the CONVERTE Project demonstrated that 815 

there are 29,395 ha with potential for the production of microalgae, these areas being specifically 816 

localized in mainland Portugal [241].    817 

Considering again Table 8 and Table 9, can be confirmed that with base the wide climatic 818 

diversity presented in the USA, this is the country has most invested in the installation, 819 

development and implementation of industrial units in the American continent. Some of them are 820 

for the production of biofuels (e.g. biodiesel, bioethanol, jet fuel, green crude oil, gasoline, 821 

among others) from microalgae, just like in other varieties of products, in order to protect and 822 

assure several commercial sectors. Among these are the nutraceuticals, food and feed, fertilizers 823 

production, wastewater treatment, CO2 sequestration, algae oil and compounds extraction, health 824 

care, cosmeceuticals and pharmaceutical products, units for the bioreactors production, 825 

bioplastics, biostimulants, natural pigments, among others. 826 

Lastly, Table 9 shows that on the Asian continent, the countries that represent the largest 827 

investment in the microalgae sector are India and Israel, being once more fundamental the 828 

Region's climate, main responsible for the development of microalgae. In India, the only 829 

microalgae sectors that are not yet developed are health care, pharmaceutical, beauty care and 830 

bioproducts/biomaterials production (including in the Israel case).  831 
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It is important to refer that we believe that exist more microalgae industrial installations in 832 

several countries, however, the Table 9 represents a large compilation of these industries type 833 

around the world. 834 

7. Conclusions 835 

As described in detail along the text, microalgal biotechnology can be widely regarded as a 836 

solution to solve humanity’s several challenges regarding environmental problems. However, 837 

despite the commercialization of microalgae has been a reality in the last decades, still high costs 838 

of production have directed final uses, mostly, to high-added-value products and niche markets. 839 

Therefore, as highlights of this review, can be concluded: 840 

• The utilization of residues/waste resources opens a window of opportunity that shouldn’t 841 

be neglected in order to improve the cost-effectiveness and sustainability of the 842 

microalgae mass production, especially in what concerns biofuels production;  843 

• The integration of residues/wastes treatment with concomitant microalgae production can 844 

address the issues of both energy sustainability and waste recycling in the frame of the 845 

circular bioeconomy, lowering microalgal production costs related with bioenergy and 846 

biofuel prices and competitiveness;  847 

• Concepts of circular economy (aimed at waste minimization or even elimination) and 848 

bioeconomy (in which residues/wastes are used as feedstocks for bio-based products, 849 

biomaterials and biofuels, replacing fossil-based feedstocks) must increasingly be 850 

considered. Thus, the sustainability issues environmental, social and economic are 851 

addressed together;  852 

• Residues/wastes-based biorefineries involving microalgae are expected to fulfill an 853 

important part of the increasing demand for energy, fuels, chemicals and materials 854 

worldwide, ideally towards de “zero waste discharge” concept; 855 

• Microalgae products may cover a range from low volume and high benefit specialties to 856 

high volume and low-cost goods such as biofuels.  857 

This review compiled the modern challenges affecting the planet and how microalgae are 858 

expected to solve them. Although the future for microalgae applications derived from waste 859 
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treatment seems to be promising, a long way still needs to be paved in order to be an important 860 

part of the modern industry. More research efforts and investments in different fields of 861 

knowledge are required, from the biological, biochemical and engineering perspectives, among 862 

others. The proactive collaboration and engagement of different drivers such as technologists, 863 

economists, engineers, entrepreneurs and politicians are expected to be crucial to pushing 864 

forward microalgae-based businesses towards an increasingly greener society.   865 
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Highlights 

• Old pollution problems were highlighted and  new solutions are proposed  

• Microalgae technologies for pollution control have been proposed 

• Bioenergy production routes were presented 

• New solutions for bioproducts / biofuels production were presented 

• Prospects for microalgae biorefineries application  were proposed and discussed 
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Fig. 1. Global CO2 emissions by countries. Adapted from [34]. 
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Fig. 2. Resource recovery in a circular and green bioeconomy context.  
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Fig. 3. Bioproducts and biofuels obtained from wastewater treatment using microalgae.  
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Fig. 4. Routes for converting microalgae biomass into biofuels.  
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Table 1. Results and characteristics of the studies on atmospheric emissions utilization as a CO2 source for microalgae cultivation.  

Microalgae strain 
Growth 
medium Reactor CO2 source 

CO2 
concentration  

(%) 

Biomass 
productivity  

(g L-1 d-1) 
Reference 

Consortium 
(predominance of 

C.vulgaris) 

Domestic 
sewage after 
septic tank 

HRAP 
 Exhaust gas 
of gasoline 
combustion 

5.9 6.12 g m-2 d-1 [90] 

Nannochloropsis 
oculata 

Synthetic 
medium 

HRAP 
Coal-fired 

power plant 
11 - 14 26.4 g m-2 d-1 [91] 

Tetraselmis sp. 
10L Glass 

Flasks 
Cement flue 

gas 
12 - 15 0.057  [92] 

Spirulina sp. 

Tubular 
Photobioreator  

Thermoelectric 
industry 

12 

 0.08  

[93] 
Scenedesmus 

obliquus 
 0.05  

Synechococcus 
nidulans 

0.04  

Chlorella vulgaris  0.09  
Nannochloropsis 

gaditana 
Flat-Panel 

reactor 
Coal-fired 
powerplant 

10 - 15 0.078  [94] 

Chlorella sp. 
Bubble column 
Photobiorreator  

Coke oven 
Stell 

23 0.13  [95] 

Desmodesmus 
abundans 

3L 
Photobioreactor 

Cement kiln 
dust 

25 0.227  [96] 
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Table 2. Microalgae potential for wastewater treatment.  

Effluent Microalgae strain  Reactor 
Efficiency removals (%) Biomass 

productivity 
(g TSS m-2 d-1) 

Reference 
Nitrogen  Phosphorus  Organic 

Matter  
Rural 

streams with 
nutrient 

pollution 

Consortium: 
Spirogyra sp., 

Cymbella sp and 
Navicula sp. 

HRAP (20 m2)  
with filamentous 

algae matrix 

18% of 
TN 

65.8% of TP and 
68.1% of PO4

3- 
-32.8% of 
total COD 

- [102] 

Primary 
settled 

domestic 
wastewater 

Consortium:  
Mucidosphaerium 

pulchellum (85%  of 
abundance) 

 

HRAP 20 cm depth 
(2.23 m2) with CO2 

addition 
69.3 - 78.9 19.2 - 34.3 - 2.1 - 10.1  

[103] 
HRAP 30 cm depth 
(2.23 m2) with CO2 

addition 
63.6 - 77.4  16.2 - 33.8 - 3.5 - 10.1  

HRAP 40 cm depth 
(2.23 m2) with CO2 

addition 
58.5 - 75.8 11.6 - 26.7 - 4.8 - 13.4  

Primary 
settled 

domestic 
wastewater 

Consortium:  
Micractinium sp. 

and Desmodesmus 
sp. 

HRAP (1.25 ha) 
with CO2 addition 

5.6 - 67.4 14.0 - 24.4 

81.8 - 
92.1% of 
dissolved 

BOD5 

4.4 - 11.5 g VSS 
m-2 d-1 

[97] 

Brewery 
wastewater 

Scenedesmus 
obliquus 

Bubble column 
PBR (5 L) 

67 - 97 
13 - 26% of 

orthophosphate 
55 - 74 

80.5 - 224.3 g VSS 
L-1 d-1 

[104] 

Livestock 
wastewater 

Chlorella sp. and 
Phormidium sp. 

Algal biofilm 
reactor (630 cm2) 

98% of 
TAN 

93% of TDP 87 105 [105] 

Landfill 
leachate 

Chlorella vulgaris, 
Spirulina sp., 
Scenedesmus 
quadricauda, 

HRAP (0.27 m2) 94.3 - 98.7 
49.3 - 85.6% of 

PO4 

69.4 - 
90.7% of 

COD 

9.2 - 26.3 g VSS 
m-2 d-1 

[106] 

Pre-treated 
diluted 
swine 

manure 

Consortium: 
Chlamydomonas, 

Chlorella and 
Nitzschia 

HRAP (1.5 m2) 
62 - 88% 
of TKN 

- 
57 - 67 of  

COD 
5.7 - 27.7 g m-2 d-1 [107] 
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Table 2. Microalgae potential for wastewater treatment. (Cont.) 

Effluent Microalgae 
strain  Reactor 

Efficiency removals (%) Biomass 
productivity 

(g TSS m-2 d-1) 
Reference 

Nitrogen  Phosphorus  Organic 
Matter  

Domestic 
sewage after 
facultative 

pond 

Consortium:  
Cyanophyceae 
Chlorophycean 
(Micractinium 
sp., Pediastrum 

sp., Oocystis 
sp., 

Scenedesmus 
sp.) 

HRAP (223 m2) 76.5 17.17% of 
orthophosphate 

36.63  
of BOD5 

15.8 

[108] 
HRAP (223 m2) 

with CO2 
addition 

recovered from 
biogas 

68.8 16.7% of 
orthophosphate 

48.89 
of BOD5 

14.1 

Domestic 
sewage after 

UASB reactor 

Consortium: 
Chlorella sp. 

(34% of 
abundance) 

Desmodesmus 
sp. (36% of 
abundance) 

HRAP (3.3 m2) 71 14 52 11.4 g VSS m-2 
d-1 

[109] 
Consortium: 
Chlorella sp. 

(40% of 
abundance) 

Desmodesmus 
sp. (46% of 
abundance) 

HRAP (3.3 m2) 
after UV 

disinfection 
74 19 55 9.3 g VSS m-2 

d-1 

TN = total nitrogen; TAN = total ammonia nitrogen; TP = total phosphorus; SP = soluble phosphorus; TDP = total dissolved phosphorus; DRP = dissolved 
reactive phosphorus; COD = chemical oxygen demand; BOD5 = biochemical oxygen demand; TSS = total suspended solids; VSS = volatile suspended solids.  
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Table 3. Comparison of some sources of biodiesel: terrestrial crops vs microalgae 
[73,130–132]. 

Crop Oil yield (L ha-1 yr-1) 
Corn 172 
Hemp 363 
Cotton 325 
Soybean 446 
Mustard 572 
Camelina 915 
Seed 952 
Sunflower  1,190 
Castor 1,307 
Canola 1,892 
Coconut  2,689 
Jatropha 5,950 
Oil Palm  12,000 
Microalgae (low oil) 58,700 
Microalgae (medium oil) 97,800 
Microalgae (high oil) 136,900 
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Table 4. Lipid potential production from microalgae biomass.  

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Synthetic culture medium 

Bold’s Basal 
Medium 

Flasks 
Chlorella sp. 

(UMACC050) 
40 Artificial NR 0.60 0.229 [145] 

Synthetic 
medium (Z) 

Flasks 

Chlorella sp. 

≈ 80a Artificial 

0.594 1.44 0.1901 

[146] 

Planktothrix 
isothrix 

0.640 0.28 0.0168 

Synechococcus 
nidulans 

0.401 0.20 0.0272 

Synthetic 
medium (WC) 

 

Scenedesmus 
acuminatus 

0.640 0.42 0.0571 

Pediastrum 
tetras 

0.528 0.36 0.0623 

Chlamydomona
s sp. 

0.536 0.39 0.0834 

Lagerheimia 
longiseta 

0.460 0.21 0.0239 

Synechococcus 
nidulans 

0.560 0.69 0.0938 

Monoraphidiu
m contortum 

0.296 0.15 0.0298 
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Table 4. Lipid potential production from microalgae biomass. (Cont.) 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Synthetic 
medium (C) 

Flasks 

Sinechocystis 
sp. 

≈ 80a Artificial 

1.295 0.39 0.0542 

[146] 
Romeria 
gracilis 

0.542 0.22 0.0244 

Aphanothece 
sp. 

0.458 0.29 0.0299 

Synthetic 
medium 

PBR 
Chlorella 

minutissima 
NR 

Internal light 
(Blue LED) 

0.044-0.0625 0.062 
0.0057-
0.0089 

 
[147] 

 
Artificial 

seawater f/2 
medium 

 

Airlift 
PBR 

Chlorella 
minutissima 

26a 
133 Artificial NR 0.1886 0.0928 [148] 

Synthetic 
medium BG11 

BC-PBR 
Chlorella sp. 

FC2 IITG 
100-1,700 

Natural 
sunlight 

8.6 1.4 0.753 [149] 

Wastewater culture medium 
Municipal 
wastewater 
(Centrate) 

Biocoil 
Chlamydomona

s reinhardtii 
220 Artificial NR 2 0.505 [150] 

Municipal 
wastewater 
Secondary 

Flasks 
Chlorella 
vulgaris 

≈140 Artificial 

1.03 0.1665 0.04138 

[151] Municipal 
wastewater 

Secondary (75%) 
+ primary (25%) 

 

1.11 0.13876 0.04559 
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Table 4. Lipid potential production from microalgae biomass. (Cont.) 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Municipal 
wastewater 
Secondary 

MPBR 
(continuo

us) 

Chlorella 
vulgaris 

112.3 Artificial  

1.84 0.0963 0.02576 

[152] 
Scenedesmus 

obliquus 
1.72 0.0888 

0.02957 
 

Sewage 
VBCPBR 

Golenkinia 
SDEC-16 

≈60 Artificial 
1.9 0.07089 0.01562 

[153] 

BG11 2.05 0.07409 0.04343 

Sewage 
Treatment Plant 

Flasks 
Scenedesmus 
sp. ISTGA1 

≈50 Artificial 1.81 NR 0.452 [154] 

Cattle 
wastewater 

after previous 
digestion in a 

hybrid anaerobic 
reactor 

Airlift 
PBR 

(batch) Scenedesmus 
obliquus 

(ACOI 204/07) 
≈ 60 Artificial 

3.22–3.70 0.358 0.062–0.064 

[11] 
Airlift 
PBR 

(continuo
us) 

1.92–2.40 0.183 0.017-0.027 

Tertiary 
Livestock 

wastewater 
SBR 

Botryococcus 
braunii 

490 
(38.75 W m-2) 

Artificial ≈2.6 0.3156 N.R. [155] 
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Table 4. Lipid potential production from microalgae biomass. (Cont.) 

Substrate Reactor Strains 
Light 

(µmol m-2 s-1) 
Light 
source 

Biomass 
concentration 

(g L-1) 

Biomass 
production 
(g L-1 d-1) 

Lipid 
production 
(g L-1 d-1) 

Reference 

Piggery biogas 
slurry 

FPCP 

Mixed: 
Desmodesmus 
sp., Bacillus 

and 
Pseudomonas 

400 Artificial NR 0.47 0.07431 [156] 

Piggery 
wastewater 

PBR Chlorella sp. 300 Artificial ≈8 0.681 0.155 [157] 

PSBR 
Chlorella 
vulgaris 

793.5 
Natural 
sunlight 

NR 
57.87 g m−2 

d−1 
27.25 g m−2 

d−1 
[158] 

Algal bloom 
hydrolysate 

Flasks 
Chlorella 

pyrenoidosa 
200 Artificial 4.36 0.436 0.188 [159] 

Dairy PBR Ascochloris sp. 
3,366–3,978 

W m-2 
Natural 
sunlight 

2.04 0.292 0.098 [160] 

Paper and 
pulp 

 
Scenedesmus 
acuminatus 

240 Artificial 
8.22 

(max value) 
0.685 0.137 [161] 

Olive-oil 
mill 

PBR 
Chlorella  

pyrenoidosa 
359 µE m-2 s-1 Artificial NR 

0.03 
(1.25 mg L−1 

h−1) 

≈0.0103  
g L-1 d-1 

[162] 

Meat-processing 
industry (primary 

effluent) 
BC-PBR 

Scenedesmus 
sp. 

1,797 - 2,101b 
Natural 
sunlight 

1.169 (max 
value) 

26.5 - 52.5 1.8 - 3.7 

[12] Meat-processing 
industry 

(secondary 
effluent) 

Scenedesmus 
sp. 

1,269 - 2,254b 
Natural 
sunlight 

0.225 – 0.371  10.5 - 12.1 0.3 - 0.8 

 
a Original article was written in kLux; b Original article was written in µE m-2 s-1; PBR - Photobioreactor ; BC-PBR - Bubble Column Photobioreactor; PSBR - 
Porous substratum biofilm reactor; SBR - Bench scale sequencing batch reactor; FPCP - Flat-Plate Continuous Photobioreactor; HRP - High rate ponds; MPBR - 
Membrane Photobioreactor; BCPBR - Vertical bubble-column photo-bioreactor; NR – Not reported. 

Jo
urn

al 
Pre-

pro
of



Table 5. Microalgae potential for biogas production and strategies applied for yield improvement.  

Microalgae 
strain 

Growth 
medium 

Reactor and 
conditions Pretreatment Co-digestion Biogas yield  

(m3 CH4 kg-1 VS) Reference 

Chlorella sp. 
(61.2% 

abundance) 

Chicken 
manure 

100 mL flasks, 36°C, 
batch 

No No 1.44 mL g-1 d-1 [176] 

Chlorella sp. Domestic 
sewage 

2L CSTR, 37 °C, HRT 
= 20 days 

No 
With primary 

sludge 
0.33  

[177] 
No 0.20  

Scenedesmus sp. 

Domestic 
sewage 

12.4L AnMBR, 35 °C, 
HRT = 15-50 days 

No 
No 

0.17 m3 CH4 kg-1 COD 

[178] Chlorella sp. 12.4L AnMBR, 35 °C, 
HRT = 30 days 

0.24 m3 CH4 kg-1 COD 

Scenedesmus sp. 14L AnMBR, 35 °C, 
HRT = 15-50 days 

With primary 
sludge 

0.21 m3 CH4 kg-1 COD 
Chlorella sp. 0.23 m3 CH4 kg-1 COD 

Scenedesmus sp. 
Domestic 
sewage 

14L CSTR + AnMBR, 
39 °C, HRT = 7-28 

days 
No No 

0.185 

[179] 14L AnMBR + CSTR, 
39 °C, HRT = 30 days 

0.36  

14L CSTR + CSTR, 39 

°C, HRT = 15 days 
0.305 

Chlorella 1067 
Chicken 
manure 

digestate 

200 mL CSTR, 35°C, 
batch 

No 
No 0.14  

[180] With chicken 
manure 0.24  

Chlorella sp. Synthetic 
BG11 medium 

500 mL flasks, 35°C, 
batch 

Enzymatic + 
lipid extraction 

No 0.13  

[181] 
With grass 0.17  

Scenedesmus 
obliquus 

Brewery 
wastewater 

2.8L Hybrid ascending 
reactor, 37 °C, HRT = 

6 days 

No 
No 0.08  

[182] With olive mill 
wastewater 

0.25  
Thermal 0.21  

 
Table 5. Microalgae potential for biogas production and strategies applied for yield improvement. (Cont.) 
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Microalgae 
strain 

Growth 
medium 

Reactor and 
conditions Pretreatment Co-digestion Biogas yield  

(m3 CH4 kg-1 VS) Reference 

Kirchneriella sp. 
Domestic 
sewage 

343L UASB, 
environmental 

conditions, HRT = 7 
hours 

No 

No 0.15  

[183] With primary 
domestic 
sewage 

0.21  

Chlorella sp. and 
Scenedesmus sp. 

Synthetic 
wastewater 

160 mL flaks, 35°C, 
batch 

No 
No 

0.26  
[184] Thermal + 

alkaline 
0.33 

Stigeoclonium sp., 
Monoraphidium 
sp., Nitzschia sp. 
and Navicula sp. 

Domestic 
sewage 

160 mL flaks, 35°C, 
batch 

No 

No 

0.11  

[185] 
Thermal 0.181  

Hydrothermal 0.135  
Microwave 0.128  
Ultrasound 0.114  

CSTR = continuous stirred tank reactor; AnMBR = anaerobic membrane bioreactor; UASB = upflow anaerobic sludge blanket reactor; HRT = hydraulic retention time;  
VS = volatile solids.  
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Table 6. Operational conditions and bio-oil yield in different studies of microalgae HTL.  

Microalgae 
strain 

  Biomass composition (%) Operational conditions Boi-oil 
yield (% 

dry basis) 
Reference Growth 

medium Protein Sugar Lipid  Ash Temperature 
(°C) Time (min.) Percentage 

of solids Catalyst 

Consortium 

Natural 
Lake 78.5 11.7 6.7 - 350 120 4 HZSM-

5 zeolite 1600 [195] 

Wastewater 

28.3 5.4 23.3 40.0 
300 

15 10 
NA 

44.4(a) [75] 

27.2 23.6 1.7 47.5 60 25 49.9(a) [187] 

48.6 11.1 7.8 25.9 350 120 6.6 HZSM-
5 zeolite 58.0 [196] 

Scenedesmus 
obliquus 54.6 - 12.3 11.5 300 60 7 NaOH 24.6 [197] 

Nannochloropsis 

Synthetic 
medium 

36.4 12.4 19.0 8.91 275 30 01:10 - 31.4 [198] 

40.5 - 21.9 4.4 250 60 6 - 28.9 [199] 

N. gaditana 43.8 15.7 35.5 4.5 320 10 01:10 CaO 49.7 [200] 

C.vulgaris 61.8 26.7 2.3 8.7 
350 

Heating rate of 10 ° 
C.min-1 min. 

Removed when it 
reached reaction 

temperature 

5.5-6.8 - 
42.1 

[201] 

Spirulina 70.2 19.3 1.1 7.7 36.2 

G. sulphuraria Wastewater 41.0 10.5 5.8 42.0 350 6 5 - 28.1 [202] 
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Table 7. Microalgae biomass conversion by supercritical processes. 

Strain Supercritical condition Biodiesel yield (%) Reference 
Scenedesmus sp. SC–CO2: Lysozyme treatment + 50 °C, 500 bar, 13 ml min-1, 30 min 12.5 (dw) [205] 

Scenedesmus 
obliquus 

SC–CO2: Bead beating + 60 °C, 306 bar, 65 °C, 30 MPa, 5% ethanol co-solvent, 
90 min 

18.15 (dw) [206] 

Nannochloropsis sp. SC–CO2: 50 °C, 200 bar and 24 h 62 [207] 
Nannochloropsis 

(CCMP1776) 
Methanol to biomass (12:1): 1200 psi, 30 min 85.75 [208] 

Nannochloropsis 
gaditana 

Supercritical methanol to algae ratio (10:1): 255-265 °C, 50 min 45.8 (FAME) [209] 

Nannochloropsis 
gaditana 

Methanol to wet biomass (vol. dw.-1) ratio 6:1: temperature 225 °C, 90 min 59.28 [210] 

Nannochloropsis sp. Methanol to algae ratio (10:1) at supercritical conditions: 265 °C, 50 min 21.79 (dw) [211] 
Chlorella 

protothecoides 
Methanol to oil ratio (19:1): 320 °C, 152 bar, 31 min 90.8 [212] 

Chlorella vulgaris 
Supercritical methanol without catalyst and in the presence of TiO2 and SrTiO3 
nanocatalysts, 270 °C, pressure range of 9-10 MPa, 60 min 

16.65 mg g-1 
(FAME) 

[213] 

SC–CO2 = reaction in supercritical CO2; dw = dry weight.  
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Table 8. Microalgal biorefineries all over the world [230]. 

Continent Country Company Technological 
level Uses/applications Website 

America 

Brazil and 
United State of 
America (USA) 

Solazyme 
Commercial/ 

Flagship 

Microalgae production and cosmetics 
products, bioplastics, oils, 
encapsulated lubricant and fuels 

http://solazymeindustrials.com/ 

USA 

Algenol 

Demo 

Personal care ingredients, foods, 
biofuels (from ethanol to crude oils), 
biofertilizers and biostimulants 

https://www.algenol.com/ 

BioProcess Algae, 
LLC 

Microalgae production and other 
products: feed (including fish), 
chemicals compost, nutraceuticals, 
ethanol and biodiesel 

http://www.bioprocessalgae.com/ 

Europe 

Denmark 
Kalundborg 
Symbiosis 

Demo 
Wastewater treated and microalgae 
production 

http://www.symbiosis.dk/en/ 

Portugal 

A4F Algae for 
future 

Industrial/De
mo/Pilot 

Bioengineering projects for the 
industrial microalgae production, 
biofuels, microalgae-based products 
and applications 

https://a4f.pt/en 

Algafarm (A4F 
Algae for future) 

Secil/Allmicroalgae 

Commercial/ 
Demo 

Microalgae (Chlorella) biomass 
production and others by-products 
(utilized for biofuels) 

https://a4f.pt/en/projects/algafarm 

Buggypower 
(Portugal), Lda 

Demo 

Algal biomass for biofuels 
production and other products (fatty 
acids, antioxidants, minerals, 
pigments, vitamins and others) 

http://www.buggypower.eu/ 

Spain AlgaEnergy 

Pilot 

Microalgae production for 
agriculture, aquaculture, food and 
feed, natural extracts, cosmetics, 
gardening and biofuels 

https://www.algaenergy.com/ 

The Netherlands 

TNO-Valorie Biofuels (biodiesel) and by-products 
https://www.tno.nl/media/2818/tn

o-valorie-flyer-uk.pdf 

AlgaePARC 
Develop technologies both on a lab 
and pilot scale for microalgae 
production and by-products 

http://www.algaeparc.com/ 
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Table 9. Current microalgal producers, uses and applications [233–240]. 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

America 

Canada 

AlgaeCan Biotech Ltd.   ✓   ✓         https://algaecan.com/ 
EBPI-Environmental Bio-Detection Products 
Inc. 

          ✓     http://www.ebpi-kits.com/ 

Symbiotic EnviroTek Inc. ✓ ✓   ✓ ✓       https://symenv.com/ 

 
United State of 
America (USA) 

ABPDU-Advanced Biofuels and Bioproducts 
Process Development Unit 

  ✓ ✓ ✓ ✓       https://abpdu.lbl.gov/ 

Accelergy       ✓         http://www.accelergy.com/ 
ACEnT Laboratories LLC         ✓ ✓     http://acentlabs.com/ 
Agcore Technologies ✓ ✓ ✓   ✓       http://www.agcoretech.net/index.html 
Algae Floating Systems, Inc. ✓ ✓     ✓       http://www.algaefloatingsystems.com/ 
AlgaBT LLC   ✓ ✓           https://www.algabt.com/ 
Algepower, Inc.   ✓   ✓   ✓     http://algepower.com/ 
Algae Systems LLC ✓     ✓ ✓       http://algaesystems.com/ 
Algaewheel           ✓     https://algaewheel.com/ 
Algenesis               ✓ https://www.algenesismaterials.com/ 
Algeternal technologies, LLC   ✓         ✓   https://algeternal.com/ 
AlgiKnit Inc.               ✓ https://www.algiknit.com/ 
BioGreen Synergy   ✓ ✓   ✓       http://www.biogreensynergy.com/index.html 
Cellana Inc.   ✓     ✓       http://cellana.com/ 
Checkerspot, Inc.           ✓   ✓ https://checkerspot.com/ 
CLEARAS Water Recovery, Inc.       ✓         https://www.clearaswater.com/ 
Culture Biosystems   ✓     ✓ ✓     https://www.culturebiosystems.com/ 
Cyanotech Corporation   ✓         ✓   https://www.cyanotech.com/ 
Desert Sweet BioFuels ✓ ✓     ✓       http://desertsweetbiofuels.com/ 
Earthrise Nutritionals, LLC   ✓             https://www.earthrise.com/ 
ENERGYbits Inc.   ✓             https://www.energybits.com/ 
Exxon Mobil Corporation         ✓       https://corporate.exxonmobil.com/ 
Global Algae Innovations, Inc.           ✓     http://www.globalgae.com/ 
Global Thermostat   ✓ ✓ ✓       ✓ https://globalthermostat.com/ 
Gross-Wen Technologies       ✓ ✓     ✓ https://algae.com/ 
Heliae Development, LLC       ✓         https://heliaeglobal.com/ 
Manta Biofuel       ✓ ✓   ✓   https://mantabiofuel.com/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

America USA 

MicroBio Engineering Inc.   ✓   ✓ ✓ ✓     https://microbioengineering.com/ 
NCMA Bigelow Laboratory for Ocean Sciences             ✓   https://ncma.bigelow.org/cms/index/index/ 
OVIVO USA, LLC           ✓     https://www.ovivowater.com/ 
Phenometrics, Inc.           ✓     https://www.phenometricsinc.com/ 
Qualitas Health     ✓     ✓     https://www.qualitas-health.com/ 
Raven Engineered Films           ✓     https://ravenefd.com/ 
Spira, Inc.   ✓ ✓           https://www.spirainc.com/ 
Synthetic Genomics Inc.         ✓ ✓     https://syntheticgenomics.com/ 
Valensa International   ✓             https://valensa.com/ 
Zivo Bioscience Inc.   ✓ ✓           https://www.zivobioscience.com/ 

Asia 

Brunei MC Biotech Sdn. Bhd.   ✓         ✓   https://mcbiotech.com.bn/ 

India 

Oilgae ✓     ✓ ✓ ✓     http://www.oilgae.com/ 
Parry Nutraceuticals             ✓   http://www.parrynutraceuticals.com/ 
Prolgae Spirulina Supplies Pvt. Ldt.   ✓         ✓   https://www.prolgae.com/ 
SNAP-Natural & Alginate             ✓   https://snapalginate.com/ 

Indonesia Neoalgae   ✓ ✓           https://neoalgae-halal.com/ 
Iran QMAB-Qeshm Microalgae Biorefinery   ✓ ✓ ✓ ✓     ✓ http://qmabco.com/ 

Israel 

Algatech     ✓     ✓     https://www.algatech.com/ 
Brevel    ✓ ✓ ✓ ✓       https://brevel.co.il/ 
UniVerve             ✓   https://www.univerve.co.il/ 
Yemoja Ltd.           ✓     https://yemojaltd.com/ 

Japan 
Japan Algae Co., Ltd.     ✓       ✓ ✓ http://www.sp100.com/ 
Euglena     ✓   ✓       https://www.euglena.jp/ 

Europe 

Austria Ecoduna   ✓ ✓           https://www.ecoduna.com/en/ 

Belgium 
MicroBioTests       ✓         https://www.microbiotests.com/ 
Proviron industries             ✓   http://www.proviron.com/en 
Tomalgae C.V.B.A   ✓             http://www.tomalgae.com/ 

Czech Republic Algamo s.r.o           ✓ ✓   https://www.algamo.cz/ 
Denmark Ocean Rainforest             ✓   http://www.oceanrainforest.com/ 
Finland Redono ✓     ✓         https://www.redono.fi/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

Europe 

France 

Algama   ✓             https://www.algamafoods.com/ 
AlgoLight   ✓ ✓           http://www.algolight.com/ 
AlgoSource Group   ✓             https://algosource.com/en/ 
Bioréa SAS   ✓ ✓     ✓ ✓   https://www.biorea.fr/en/ 
Cyane   ✓         ✓   https://www.cyane.eu/en/ 
Ennesys       ✓         http://www.ennesys.com/en/ 
Fermentalg   ✓ ✓           https://www.fermentalg.com/ 
Greensea SAS   ✓             http://greensea.fr/en/ 
Microphyt   ✓ ✓           http://www.microphyt.eu/en/ 
Naturis Pharma SRL             ✓   https://www.naturispharma.com/ 
Odontella SAS   ✓             https://www.odontella.com/fr/home-2/ 
Olmix Group   ✓ ✓           https://www.olmix.com/ 
Synoxis Algae           ✓     https://www.synoxis-algae.com/ 

Germany 

Algoliner GmbH & Co. KG           ✓     https://www.algoliner.de/home 
Astaxa GmbH             ✓   http://www.algae-biotech.com/ 
bbe Moldaenke GmbH   ✓       ✓     https://www.bbe-moldaenke.de/en/ 
CellDEG GmbH           ✓     https://celldeg.com/features/technology/ 
GBEX-Global Biomass Exchange     ✓       ✓   https://www.gbex.de/en/ 
Ludwig Bölkow Campus         ✓ ✓     https://www.lb-campus.com/ 
MIAL GmbH   ✓         ✓   http://mial.eu/ 
Subitec GmbH           ✓     https://subitec.com/en 

Iceland Algalif Iceland ehf.     ✓       ✓   https://algalif.com/ 

Italy 

Archimede Ricerche Srl   ✓ ✓           http://www.archimedericerche.com/ 
Biospira Srl   ✓         ✓   https://www.biospira.it/en/ 
F & M Fotosintetica & Microbiologica S.r.l           ✓     http://www.femonline.it/ 
Severino Becagli SRL   ✓ ✓       ✓   https://www.severinobecagli.it/en/ 
Tolo Green SRL   ✓ ✓           https://www.tologreen.it/en/ 

Norway MicroA     ✓     ✓ ✓   https://microa.no/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

Europe 

Portugal 

Alga2O, Lda.             ✓   https://alga2o.pt/index.php/pt/ 
Algae Tagus - Produção de Microalgas ✓ https://algatec.eu/en/production/ 
Allmicroalgae-Natural Products   ✓ ✓           http://www.allmicroalgae.com/ 
Aqualgae SL ✓ ✓ ✓ ✓         http://aqualgae.com/en/home/ 
Bluemater       ✓         https://www.bluemater.com/ 
Biotrend - Inovação e Engenharia em 
Biotecnologia 

            ✓   http://www.biotrend.pt/ 

Lusalgae   ✓ ✓           http://lusalgae.pt/ 
Madebiotech           ✓     https://www.madebiotech.com/ 
Naturextracts             ✓   https://naturextracts.com/ 
Nutrally Algae Solutions SL             ✓   https://www.nutrally.net/es 
Pagarete Microalgae Solutions   ✓         ✓   https://www.pagaretems.com/ 
Phytoalgae   ✓             http://phytoalgae.pt/ 
PhytoBloom (Necton)   ✓ ✓   ✓ ✓     http://www.necton.pt/ 
Spirulina da Serra - Monchique   ✓         ✓   https://spirulina-da-serra.com/ 
Spirulina Portugal   ✓         ✓   https://www.spirulinaportugal.com/ 
Stellarialga ✓     ✓         https://www.stellarialga.com/ 
Tomar Natural   ✓         ✓   https://tomarnatural.pt/ 
5essentia spirulina azores   ✓         ✓   https://5essentia.com/ 

Slovenia AlgEn D.o.o ✓ ✓ ✓ ✓ ✓       https://algen.eu/ 

Spain 

AgriAlgae®               ✓ https://www.agrialgae.es/?lang=en 
Algalimento SL             ✓   http://www.algalimento.com/ 
Algasol   ✓ ✓ ✓ ✓     ✓ http://algasolrenewables.com/ 
Algatek     ✓     ✓     http://algatek.co.uk/ 
Biorizon Biotech       ✓     ✓   http://www.biorizon.es/?lang=en 
Fitoplancton Marino, S.L   ✓ ✓           http://www.fitoplanctonmarino.com/ 
Monzón Biotech   ✓ ✓       ✓   https://mznbiotech.com/ 
Neoalgae Micro Seaweeds Products SL   ✓ ✓       ✓   http://neoalgae.es/ 

Sweden 
Alfa Laval Corporate AB         ✓       https://www.alfalaval.com/ 
AstaReal AB     ✓ ✓         http://www.astareal.se/ 
Simris Alg AB   ✓ ✓       ✓   https://simrisalg.se/en/ 
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Table 9. Current microalgal producers, uses and applications [233–240] (Cont.) 

Continent Country Company 
Uses/applications 

Website 
A B C D E F G H 

Europe 

Switzerland 
Algorigin   ✓ ✓       ✓   https://algorigin.com/en/ 
Bühler AG   ✓             https://www.buhlergroup.com/ 

The Netherlands 

AlgaSpring B.V.   ✓         ✓   https://www.algaspring.nl/ 
CaribAlgae ✓     ✓ ✓ ✓     https://www.caribalgae.com/ 
Corbion   ✓ ✓     ✓     https://www.corbion.com/ 
Evodos B.V.           ✓ ✓   https://www.evodos.eu/ 
FeyeCon   ✓ ✓     ✓     http://www.feyecon.com/ 
Hi, I´m Algae   ✓ ✓ ✓         https://hiimalgae.com/nl 
LGem           ✓     https://lgem.nl/ 
Liqoflu Ltd.       ✓     ✓   http://liqoflux.com/ 
Omega Green   ✓ ✓ ✓ ✓     ✓ https://www.omegagreen.nl/ 

Turkey Akuamaks   ✓             https://www.akuamaks.com/en/ 

United Kingdom 
(UK) 

Algaceuticals   ✓ ✓     ✓     https://www.algaceuticals.com/ 
Algaplex           ✓     http://algaplex.co.uk/ 
Algenuity   ✓ ✓           https://www.algenuity.com/ 
EnAlgae         ✓ ✓ ✓   http://www.enalgae.eu/ 
Firglas Ltd.   ✓             http://firglas.com/ 
Kilbride Biotech Group Ltd           ✓     http://kbbiotech.com/ 
Membranology           ✓     https://membranology.com/ 
SuSeWi           ✓     https://www.susewi.life/ 
Varicon Aqua Solutions Ltd   ✓       ✓     http://www.variconaqua.com/ 
Xanthella           ✓     http://www.xanthella.co.uk/ 

Oceania Australia Csiro   ✓ ✓   ✓     ✓ https://www.csiro.au/ 
  Future of Algae for Food & Feed (FAFF)   ✓             https://www.futureofalgae.org/ 
  Nonfood   ✓         ✓   https://eatnonfood.com/ 
  sbr Saalbio Refinaries   ✓     ✓       https://www.saalbio.com/ 
  Techverse, Inc.           ✓     http://techverseinc.com/ 
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