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Abstract

The human population blast has brought several lgmub related with the
overconsumption of a wide range of feedstocks aadiral resources conducting to
their risk of depletion. The consumption of fodsiéls is an example, with increasing
levels of exploitation and negative impacts causetheir use. Anthropogenic activities
have triggered the over accumulation of many hamedubstances and wastes which
are regarded to be detrimental to life in the Eartd to the various planet ecosystems.
There is an urgent need to restore natural respame unwanted residues and wastes to
levels prior the demographic explosion. Microallgaitechnology appears to be pivotal
to achieve this goal in a near future to come. Téisew presents the current resource
problems affecting the Earth and how microalgaeeagpected to be an important part
of the solution, discussing how the productionesfewable energy from microalgae can
help in an integrated way to mitigate different ieowmental problems. Microalgae are
able to convert wastewaters, €@nd organic residues in marketable biomass for
different uses, including biofuels, converting veast value. An inventory of current
microalgal-based biorefineries in operation as wadl a directory of companies,
products and applications are also presented.
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Abstract

The human population blast has brought severallpmbrelated with the overconsumption of a
wide range of feedstocks and natural resources uming to their risk of depletion. The
consumption of fossil fuels is an example, withr@asing levels of exploitation and negative
impacts caused by their use. Anthropogenic aawitiave triggered the over accumulation of
many hazardous substances and wastes which areledga be detrimental to life in the Earth
and to the various planet ecosystems. There isrgentineed to restore natural resources and
unwanted residues and wastes to levels prior theodeaphic explosion. Microalgal
biotechnology appears to be pivotal to achieve glial in a near future to come. This review
presents the current resource problems affectiadetith and how microalgae are expected to be
an important part of the solution, discussing htve production of renewable energy from
microalgae can help in an integrated way to miégaifferent environmental problems.
Microalgae are able to convert wastewaters, &@l organic residues in marketable biomass for
different uses, including biofuels, converting veast value. An inventory of current microalgal-
based biorefineries in operation as well as a thrgoof companies, products and applications
are also presented.
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1. Introduction

The first step in solving a problem is to recogniseexistence. Currently, serious environmental
problems, such as water scarcity and climate chamgieh can trigger serious social problems
on a global scale, are related to the exponentmattly of population, urbanization intensive, use
disordered land and fossil fuels. In this contéxé United Nations launched the 2030 Agenda,
establishing 17 sustainable development goals ($¥e#ing objectives in different sectors of

society, with the aim of guiding actions towardpoving people’s living conditions [1].

SDG addresses 7 issues related to affordable aad einergy. The use of fossil fuels such as oil,
coal and natural gas, emits approximately 6 biltioh carbon dioxide (Cg) into the atmosphere
[2]. In 2018, the energy consumed worldwide waghi& order of 14,279,569 ktoe, of which
approximately 14% came from renewable sources, asi¢tydropower, solar, wind, biofuels and
waste [3]. Despite the advancement of renewableggradternatives in recent years, their use is
limited in view of the potential that presents pfjd mainly, in view of the urgent need for a

paradigm shift in the sector.

In this context, the use of microalgae for the picithn of 3rd generation biofuels is gaining
more and more attention. Algal biomass can be useproduce different biofuels, such as
biodiesel, biogas, bioethanol and bio-oil, overaognsome of the main difficulties of 1st and
2nd generation biofuels [5]. The energy contenbiofuels obtained from microalgae can reach
values of the order of 35,800 kJkfpr crude oil [6], 38,100 kJ kgfor bio-oil [7] and 39,900 kJ

m for biogas [8]. Microalgae have a high photosytitheate compared to higher plants [6],
which means high biomass productivity. In additittmeey can develop in areas unsuitable for
agriculture [9], avoiding conflict related to fooskcurity and can be produced during the
wastewater treatment [10-12], considered as aemiitmecycling, without requiring potable

water for its cultivation.

In a society that increasingly seeks specific sohst to specific problems, acting on
environmental issues is a significant challengeer&fore, this review aims to discuss how the
production of renewable energy from microalgae betp to mitigate in an integrated way,

different environmental problems.
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This review follows an innovative systemic appraathis introduction (section 1.1) highlights
the recent problems affecting the Earth which amd detrimental to life in every way, thus
affecting the mankind. Later, new broadly recogdiz®lutions will be listed in order to
overcome previous listed problems (sections 2.d.Aa8). Furthermore, the text goes deeper in
detail, concerning the uses of microalgae in thhtfof the abovementioned problems (sections
2.3 and 3), highlighting the technological flexityil of microalgae to solve problems locally
(chapter 4). The performance of microalgae will darefully presented, with quantitative
indicators related to carbon (GHG) biofixation (s&T 2.3.1), wastewater treatment (2.3.2) as
practical and proven tools for resource recoverythe frame of a new green-bioeconomy.
Chapter 3 covers extensively bio-based products ofiiels from microalgae, highlighting
pathways, processes and vyields (productivitiestingcas crucial data for the further
development of microalgal-based biorefineries, reigas the type. Later on, a worldwide survey
of already existing microalgae-based biorefineaedifferent technological readiness levels and
size will be carried out on chapter 5 (for the virst time as authors know). Finally, on chapter
6, a list of worldwide current microalgal produceiseady established in the market will be
presented, giving more emphasis to the commentigact of microalgae in a global world. The
main purpose of chapter 6 is to demonstrate treatrtitroalgal exploitation is a current reality
worldwide and a wide array of biobased productsnfitbis feedstock can replace fossil-based

products already in the market with either envirental or sustainability advantage.

1.1 Old and recurring problems
1.1.1 Water scarcity

Water scarcity has been a determinant factor irersé\parts of the world, being required an
efficient management of water resources. In additeothe uneven geographical distribution of
water resources, climate change is increasinglyosimg severe seasonal restrictions on places
that did not have this concern. Scientific evidegoafirms that the climate on the planet is
changing, thus affecting societies and the enviemnjl3]. These change generates extreme
climatic events associated with intense populagjmwth and affects the water availability and

quality for basic human needs [14].
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Consequently, water resources became a concerrssathe globe. Moreover, economic
development, changes in consumption patterns,siftestion of demand for inputs, agricultural
and energy products generate an increase in defoandater resources [15], making their
availability increasingly uncertain in the nearuitg [13,14]. Approximately 2 billion people live

in countries with some degree of water stress @odta4 billion people experience severe water
scarcity during at least one month of the year. Whter demand is expected to increase between
20% and 30% by 2050 compared to current levels [16]

Water is the primordial resource for agriculturatiandustrial services. While only 2.7% of the
worldwide water is available as freshwater, onl9630f this water can be consumed for meeting
human needs [17,18]. With the meteorological/hyaymlal changes, associated with increased

water pollution, there is an urgent need for adaptan water management worldwide [19,20].

1.1.2 Overpopulation and resource scarcity

It is evident that the increase in population hasrbcausing greater demand for resources, not
only for water, but also for food, services andrgggeintensifying the biosphere degradation
[21]. According to the United Nations, it is expettthat in the next 30 years the world
population will grow by up to 2 billion, reaching7dbillion inhabitants in 2050 [16]. The cities
with higher population densities consume betwee¥ @dd 80% of all global energy and, as a
consequence, generate about 75% of all @@itted in the globe [22]. Based on a non-orgahize
growth model, many cities suffer due to the highstomption of energy and water, generating a

large quantity of pollution [23], caused by deméman its technological infrastructures.

Since the industrial revolution, the world popuwatihas been intensively exploring non-
renewable resources, affecting the ecosystems thvtlobjective to supplier their needs. As a
consequence, ecosystems have been disturbed odes&nyed at an accelerated pace, making

impossible it’s natural restoration [24].

De Bhowmick et al. [25] described that with theidagepletion of fossil fuel resources it is
unlikely that there will be an oil reserve after5ROand adds that emissions from this energy
source will cause irreparable environmental damagethis scenario, the world faces the

increasing scarcity of conventional energy resajradich would result in a race to adapt to the
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new world scenario and search for new means fopth@uction of clean energy [26]. According
to Trevors [27], humanity is addicted to oil extext from hydrocarbons, one of the main
sources of greenhouse gas emissions (GHG), whecllao potential contaminants of soils and
oceans. According to the author, it is importantdalize an energy conservation program with
the objective of the gradual replacement of folsls with other less-polluting energy sources
such as the use of biomass for the production wéraé biofuels such as biodiesel, bio-oil,

bioethanol and biogas/biomethane, including thgoado of huge energy efficiency practices.

1.1.3. Overcontamination (soil, water and GHG)

With economic development, today's society consumeahy more goods and products,
increasing the production of solid wastes and weaters [28,29]. High GHG emissions are also

a growing problem.

It's estimated that the amount of urban solid weagtnerated worldwide is approximately 2.01
billion t per year. The forecast is this amountlwiceed 3.40 billion t per year, by 2050 [30].
With these values, it is expected the incorrectodén of contaminated residues in the soil as
well as underground aquifers and surface waterg. fMain contaminants are usually heavy
metals, besides nitrates, phenolic compounds, kwdbons, among others [31]. Many
agricultural products accumulate these elementscandcause severe damage to human and

animal health since ingestion is one of the maimamination routes.

Regarding wastewater, a report issued by UNESCOrig&&@rded that only 8% of domestic and
industrial wastewater is treated in countries wdtv-income. In high-income countries, the
average percentage is 70%. The release of untreatstewater can deplete dissolved oxygen in
watercourses, leading to the death of the aquat@system. The nutrients contained in
wastewater intensify eutrophication, another seriemvironmental problem that exists since the
middle of the 20th century [33].

Forest deforestation and the production and consampf food, as well as the production of
fuels, wood, manufactured goods, roads, buildingsisportation, power generation, among

others, are human activities responsible for GH@sg&ons. Many times, the data are expressed
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in terms of the amount of GQor its equivalent of other GHGs, emitted to thmasphere [34].

Fig. 1 shows approximate percentage values of €@@ssions by the main countries.

Japan
4%

Russia
5%

Fig. 1. Global C@emissions by countries. Adapted from [34].

Mahmud et al. [35] evaluated the €@mission through different power generation plavntken
comparing the emission of gas in power generatigstesns by hydroelectric plants versus
biomass, values of 1,020 and 42.8 £ kWh' were obtained, respectively. In other words,
using biomass to generate electricity, £&missions are 24 times lower when compared wéh th
hydroelectric power plants. The production of egergm hydroelectric plants, despite being a
source of “clean energy” generate GHG into the aphere due to the fact that the reservoirs
built emit gases such as gQnethane (Ck) and oxide nitrous (pO) [36]. Thus, the use of
biomass is more advantageous for clean energy a@mersince avoids dam construction where
the waters become rich in nutrients increasing ggaimary production, which causes water
eutrophication and high GHG emissions [36,37].hils scenario, occur an increase in the global
demand for energy, allied to the use of non-renésvabergy sources. For these reasons, exists
the need to seek alternative sources that are delsting and other solutions to reduce

environmental damage [38].
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2. New Solutions
2.1. Water Recycling

One possibility for the water resources managensetd diversify supply alternatives through
unconventional water sources. In this context,uthe of treated effluents as a potential source of
water supply for several activities stands outhwiite additional benefit of reducing the negative
impacts of their discharge into the environmenf.[39eated domestic sewage can represent an
important source for activities that do not requranking water, increasing supply security and
reducing the energy consumption and other inputgater treatment systems. Domestic sewage
can supply water regardless of the time of yealik@mther possible sources, such as rainwater
[40].

The water reuse has potential applications in maatities: in agriculture (irrigation of
cultivated areas); in industries (reintroduction the production process); in refilling
underground aquifers; and in urban uses (fire préwe, street cleaning and landscape harmony)
[41-44]. Many studies have been developed in amexpand the water reuse in the industrial
scope. Aquim et al. [42] evaluated the use of fliment from the leather industry after treatment
by flotation and sieving. The treatment promoteé tleduction of oils, greases and also
chromium. Authors stated that with the water reitss,possible to save up to 36,000 L per day
and reduce the consumption of chemicals in thega®dy up to 10 times. Buscio et al. [45]
studied the water reuse in the textile industryygs treatment consisted of an electrochemical
system assisted by UV radiation. Colour removaliedarfrom 64% to 99%, meeting the
production requirements and allowing 70% a reduactiowater consumption. Tiwari et al. [46]
evaluated the optimization of a wastewater treatmptmt of the largest dairy industry in India,
in order to improve the water reuse process. Thioasl stated that the implementation of the
improvement measures could allow the reuse of 16Dfe effluent. In addition, the plant may
have a positive energy balance, through the prasluctf biogas and a reduction in the energy

consumption of aerators.

As mentioned, agriculture represents one of thennaativities for water reuse, since it is
responsible for around 70% of water demand worléwi7]. This high consumption causes

water scarcity to generate concerns related to ssoarity, nutrition and livelihoods of various



199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215
216
217
218
219
220

221

222
223
224
225
226
227

populations, in addition to socioeconomic aspett® to the jobs generated in the sector [43].
The use of treated domestic sewage for agricuttarerepresent a source of greater confidence
in water supply, as well as improving the efficigraf the use of this resource. These practice
has been adopted in several countries, i.e. Tunilere the use of treated sewage for
agriculture involves 20% of the produced effluenthich allows allocating of freshwater for
drinking uses and minimizes the release of effluetat the water bodies [48]. In Israel, in 2010,
38% of agricultural demand was supplied by thisreeubeing estimated 62% by 2050 [49].
This means a target that foresees an increase insth of treated sewage in agriculture from 400
million m* to 900 million ni per year. The European Union is concerned abownsaarcity on
the continent and recently approved new rules tonpte the reuse of water in agriculture, an
activity that consumes 51% of the water on the ioent [50]. The proposal will allow an
increase in water reuse from 1.7 billiorf per year to 6.6 billion fhper year [50]. In Australia,

it is estimated that in 2015-2016, 137,000 ML df thater consumed in agriculture came from
the reuse from sources outside the farms [51]. Wewehis volume represents only 1.4% of the
total consumed in agriculture in this country. Thain ones supply sources are surface water

and groundwater.

Despite the evident advantages of water reuseg e limitations related to the treatment of
effluents such as the health risks and public gecee. In order for the benefits of water reuse to
be fully enjoyed, it is necessary that the pracbeecritically accepted, considering the risks
involved and the challenges presented in the defimbf regulations for each specific activity.

However, it is also required that the evaluatiorcheied out in a broader and holistic approach,

in the context of circular economy of water manageni52].

2.2. Resource recovery (a new green-bioeconomy)

From the context of the circular and green econamgurce recovery is an interesting option to
obtain value from a waste [53]. Resource recoveny epresent the new concept of green
bioeconomy, englobing visions of circular, finitenewable and sustainable resources (Fig. 2).
Besides this, another relevant factor is the neganvironmental impact of the various resource
production chain. For instance, in the industryfestilizer the total energy consumption for the
production of potash, phosphate and ammonia fest#iis 13,800 kJ K 17,500 kJ kg and
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78,239 kJ kg respectively [54]. The Haber Bosch process for amim production is
responsible for 1-2% of global energy consumptiod &.44% of global C®emissions [55].
Regarding phosphorus, it is estimated that apadtistéinite source to be depleted in 50-100 years
[56] or in 100-400 years, if technical advancemesmsl the exploitation of new rocks are
considered [57]. Oil is another example of finiesaurce, utilized as a feedstock for the
production of different products. The world's ocdnsumption in 2018 was 99.8 million barrels
per day, representing 1.5% of growth rate per anft@h Conventional power stations, based in
oil, coal or natural gas, are responsible for énjtB44-941 kg COMWh™ at capacities of 400-
1200 MW [59].

/‘/{__7_____7_—_&‘-\
Cleaner production
\__‘__7__ __/
—] ———

&0
v
Bioresourcesb %Production process [> Biobased products ‘

Bioeconomy

/ \/Eeduc_ﬁ
‘v euse
| Recvc!i}j
it
‘ Valuable prw

Resource recovery

Circular economy

Fig. 2. Resource recovery in a circular and gréeeadonomy context.

Some industrial sectors have successful resourceveey examples, such as the traditional
petrochemical industry and the dairy process ingudn the petrochemical industry, the
recovery of waste heat has been applied for maays){€0,61]. On the other hand, the resource

recovery in the dairy industry is a more recentjettb The high valuable product whey protein
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powder is produced through a membrane module ussdparate different portions of the milk
waste [53].

Wastewater can be considered a problem that magecaaveral negative impacts in the
environment, if not properly treated (as seen iatiBe 1.3). However, wastewater can also be
considered as a resource. The energy content aéwater is estimated to be 6.3 KJ, lrelated

to the chemical oxygen demand [62]. Wastewatergdudccumulates 98% of the ingested
phosphorus [63] and approximately 20% of global gpimrus demand can be satisfied by
recovering 3 million metric t per year of this natt from human waste [64]. Therefore,
wastewater represents a resource to be recoveckdinr energy and very important from a

circular economy perspective.

In the USA, the wastewater treatment plants (WWT&®) responsible for 3% of national
electricity consumption [65]. Secondary and teytimeatments are energy-intense, ranging from
0.3-2.1 and 0.4-3.8 kWh Th respectively, in developed countries [66]. Thejanaegative
impact of a conventional WWTP operation is the aioiss of GHG [67—-69]. According to the
USA Environmental Protection Agency (EPA), in 2014,2 and 5.0 MMT Ce2q of CH, and
N2O, respectively, were emitted during the sludgeeslign in this sector [70]. As the demand
and costs for energy and water keep increasing,vigien toward wastewater treatment is
changing. The linear “end of pipe” approach of WVETRo longer meets the sustainability
requirements of current society and municipal waster is being considered as a valuable
resource, creating the water resource recoveryitiesi(WRRFs) [53], instead of aligned with

the circular economy green.

In this context, advantages such as reductionexfdick depletion and GHG emissions can be
achieved, through resource recovery from the effluproducing energy and reducing energy
needs [53]. Besides sustainability appeal, the @monpoint of view is also an advantage of this
approach because it allows adding economic valugaiste, making the process economically
attractive, in addition to being environmentallycassary. Waste from WWTPs contains
nutrients, such as nitrogen and phosphorus, tilabeaecovered and used as fertilizers [71]. On

the organic matter can also be obtained energyhead through biochemical, thermal and

10
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chemical conversion processes. In addition, itassfble to get different types of biopolymers
[72], metals [73] and cellulose [74] from the wasdter.

2.3. Microalgae fighting the overcontamination
2.3.1. Microalgae for GHG fixation

Microalgae have been studied as feedstock forréiftepurposes, such as bioenergy production
[75-77], soil conditioner and biofertilizer [78]né the source of protein for food and feed
production [79,80]. These varieties of products banobtained due to microalgae’s ability to
produce different compounds from their metabolisthowing to meet the many demands of
current society [4]. These microorganisms presentpr biomass yield and photosynthetic rate

compared to higher plants and be grown throughwmityear in areas unsuitable for agriculture

[9].

Due to these reasons, microalgae are quoted ngtf@neéconomic and social purposes but also
to become an important solution to environmentalnsoessary and urgent. The microalgae
photosynthetic efficiency in crops supplementedhw@Q, can be up to 8.3%, while the
photosynthetic efficiency of terrestrial plant sjgscis estimated at 4.6% [6]. Microalgae have
the capacity to remove 10 to 50 times more,Qkan terrestrial plants, due to the higher
concentration of chlorophyll per unit area [81].r@iligh autotrophic growth, approximately 1.83
kg of CQ are fixed for each 1 kg of algal biomass [82].

Despite the ability of microalgae to assimilate dfm the atmosphere, its low concentration,
added to the low mass transfer coefficient betwberair and the surface of the culture medium,
make carbon a limiting nutrient for biomass groy&B], therefore, the supplementation with
inorganic carbon can increase the biomass produdile Godos et al. [84] evaluated the effect
of CO, addition during biomass cultivation in swine effu in high rate algal ponds (HRAP).
The addition of gas with 7.5% G@rovided a biomass production of 422 mg VSSuhile the
control treatment, without the addition of gQilow obtaining 297 mg VSS™L The authors
pointed out that the assimilation of €@ microalgae growth is dependent on the limitatod
inorganic carbon, which in turn is more evident gonditions of greater radiation and

temperature because favor the photosynthesis.dBesat al. [85] evaluated the €O

11
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incorporation in microalgae cultivation in primatpmestic sewage through HRAP system. It
was obtained a biomass productivity of 17 g dt with the addition of pure C£99.9%), while

in the cultivation without extra Cddition, was obtained a productivity of 5 & mfi*.

Given that the C@®concentration in the atmosphere varies from 0.08%.06%, the use of
atmospheric emissions from industrial processes mapresent an alternative source of,GQr

the cultivation of microalgae. This practice isedily related to the concept of circular
bioeconomy, since it uses waste in a subsequenegsp minimizing the emission of pollutants
and contributing to reducing costs. Low-cost sosi@eCQ, such as furnaces, power plants and
flue gases from boilers can be used to feed a aigae systems [86,87] reducing the LLO
emitted to the atmosphere. This is yet another @oin and sustainable advantage of the
microalgae cultivation. The biochemical compositioh microalgae, and consequently, their
final utilization for the most diverse options usissstrongly affected by the G@ource (origin),
guantity and quality. Most microalgae perform weilder high C@ concentrations such as 15%
CO, which is the typical concentration of the indwstchimney exhaust flue gases, considering
the NQ and SQ[88]. Even richer C@Qenvironments (up to 50% GYoffer also conditions for
CO, fixing through microalgae as previously reported $ung et al. [89]. Table 1 presents

examples of studies that evaluated alternative cesurof CQ in microalgae -cultivation.

12



317 Table 1. Results and characteristics of the stumhegtmospheric emissions utilization as aG@urce for microalgae cultivation.

Growth CO, Biomass
Microalgae strain . Reactor CGQO;, source concentration productivity Reference
medium 1 1
(%) (gL~"d’)
Consortium Domestic Exhaust gas
(predominance of sewage after HRAP of gasoline 5.9 6.12 g it ot [90]
C.vulgarig septic tank combustion
Nannochloropsis HRAP Coal-fired 11-14 26.4 g A d* [91]
oculata power plant
) 10L Glass Cement flue
Tetraselmissp. Flasks gas 12 - 15 0.057 [92]
Spirulinasp. 0.08
Scoebr}%cijisémus Tubular Thermoelectric 12 0.05 (03]
Photobioreator  industry
Synechococcus . 0.04
nidulans Synthetlc '
Chlorella vulgaris medium 0.09
Nannoc_hlorop5|s Flat-Panel Coal-fired 10 - 15 0.078 [94]
gaditana reactor powerplant
Bubble column Coke oven
Chiorella sp. Photobiorreator Stell 23 0.13 [95]
Desmodesmus 3L Cement kiln
abundans Photobioreactor dust 25 0.227 [96]

318
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The addition of emission gases must be carriedvatit adequate control. Emissions from
industrial activities can contain pollutants thahde toxic and negatively affect the growth of
microalgae. S@) hydrolyzed in water, leads to the formation ofllogen ions, reducing pH,
which impairs the growth of microalgae [97]. Chiuaé [95] studied the production Ghlorella
during the constant addition of flue gases from ¢bke oven. The authors observed that the
cultivation obtained a biomass concentration o7 38" and also contributed to the removal of
SO and NQ by 50% and 70%, respectively, using concentrat@ns8 ppm NO and 87 ppm
SO,. Radmann et al. [93] evaluated the growth of d#ifé species of microalgae under the
addition of gases emitted by thermoelectric plamth 60 ppm S@and 100 ppm of NO. The
microalgae Spirulina sp. andC. vulgaris reached concentrations of 1.59 and 0.98 § L

respectively. The speci&s obliquuseached 0.68 g1, while S. nidulanobtained 0.41 gt

Despite the microalgae capacity to assimilate,,C&hd the use of atmospheric emissions as
potential sources of this gas, this does not me@aaction in emissions. The GQsed will be
converted into organic carbon in the microalgadscéls soon as this biomass is used, the
organic matter will be degraded and the,@aission will occur. However, microalgae can be a
feedstock for biofuels production and other produaotthe most sustainable way, minimizing
fossil fuel use [83]. In summary, the use of mitgaa, compared to conventional methods of
gaseous effluents treatment, can have the doulefib®f reducing flue gas toxicity and the
generation of biofuel and biorefinery byproducts8][9applied in the concept of circular

bioeconomy.

2.3.2. Microalgae for wastewater treatment

Environmental benefits from microalgae utilizatigo beyond GHG assimilation. Koller et al.
[99] state the possibility of mixotrophic microaggaultivation, combining removal of pollutants
from wastewater in a heterotrophic phase (assiimiiaif soluble organic carbon) and generation
of high added value products in an autotrophic @Hassimilation of inorganic carbon - @O
According to Molinuevo-Salces et al. [100] the dyppf nutrients is one of the main barriers for
microalgae cultivation on a full scale. The usewafstewater nutrients can be a strategy, that

contribute for both bioremediation and the finaktiment of wastewater [101].
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These microorganisms are capable of developindflimeats with different compositions since
they can assimilate the nutrients present in wastEswAfter the separation of the biomass, the
effluent is purified and can be released into nengi watercourses or reused into other activities
(see Section 2.1). In this context, reactors @iliat the production of biomass from wastewater
treatment have been evaluated and improved, suthbatar photobioreactors [102], flat-plat
[11], bubble columns [12], and attached growth easyst [103]. Considering the context of a
WWTP, the HRAPs are the reactors with more consistesults on a large scale [10]. Table 2

presents various studies that explore microalgéenpial for wastewater treatment.

HRAPs are open reactors and present much more tadpesnover conventional pond systems.
Its operation occurs through the continuous miohdghe effluent by paddlewheels. Moreover,
they are operated through the establishment ofcaomiganism consortium, mainly microalgae
and bacteria, based on the establishment of theistim relationship between them [104].
Through photosynthesis, microalgae produce disdolmeygen (DO) that is consumed by
heterotrophic bacteria in the process of organidtenadegradation from the effluent. This
process, consequently, releases, @@t is used by microalgae in their autotrophid¢anelism.
Besides the action of heterotrophic bacteria, ghthisome microalgae exercise breathing,

contributing to the degradation of organic matter.

The removal of nitrogen in microalgae-based wastewsystems is directly dependent on the
organism's metabolism. Photosynthetic activity wikrease the pH, which in turn interferes
with the volatilization of ammonia nitrogen, duethe® higher fraction of Ng In addition, the
production of oxygen may enable the developmentiwifying bacteria in the consortium of
microorganisms with the conversion of ammonia g#m to nitrite and later to nitrate. This
conversion implies a transformation of the nitrogerms, but not the removal itself. Another
possibility for the removal of nitrogen is the asgation of inorganic forms such as ammonium,
nitrite and nitrate, throughout the growth of bi@®aAmmonia nitrogen is the primary source of
assimilation because it occurs through passiveisith, increasing proportionally the absorption
rate with the concentration of the substrate [1@5].the other hand, the assimilation of nitrate
has a maximum level with an increase in the comagah of the nutrient. However, nitrate
provides an extension of the exponential growthsphthrough the surplus metabolic capacity in

the amino acid synthesis [105]. Couto et al. [1®&Iluated the mechanisms of nitrogen removal
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in HRAP treating UASB reactor effluent, being foutttht nitrification and assimilation by
biomass were the main forms of nitrogen transfoionatemoval. Gonzalez-Fernandez et al.
[107] discovered that nitrification was the mairogess for N-NH transformation during the
cultivation of microalgae in anaerobic effluentn& this effluent is composed of non-easily
biodegradable organic matter, the available DO pvamarily used in nitrification, rather than in

the degradation of organic matter.

The removal mechanisms are directly related with acovery of nutrient resources in the
effluents. The removal by volatilization, for exdmpmay allow reaching the regulation
standards, however, without allowing the use ofrib&ient in another production cycle. Thus,
strategies of system control (i.e. €8upplementation through pH control to minimizeagen

loss through volatilization) can increase the pdmbsi of recovering this resource.
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388 Table 2. Microalgae potential for wastewater tresttn

Efficiency removals (%) Biomass
Effluent Microalgae strain Reactor . Organic productivity Reference
Nitrogen Phosphorus Matter (g TSS n? d)
Rural Consortium
streams with Spirogyrasp., W}—iltﬁ?}::;r(nzgn?z)us 18% of 65.8% of TP and -32.8% of [102]
nutrient Cymbellasp and . TN 68.1% of PQ*  total COD
; ) algae matrix
pollution Naviculasp.
HRAP 20 cm deptl
(2.23 nf) with CO, 69.3 - 78.9 19.2-34.3 - 2.1-10.1
Primary Cpnsortium; addition
settled Mucidosphaerium HRAP 30 cm deptl
d . pulchellum 85% of (2.23 nf) with CO, 63.6 - 77.4 16.2 - 33.8 - 3.5-10.1 [103]
omestic o
wastewater abundance) addition
HRAP 40 cm deptl
(2.23 nf) with CO, 58.5 - 75.8 11.6 - 26.7 - 48-13.4
addition
Primary Consortium:; 81.8-
settled Micractiniumsp. HRAP (1.25 ha 92.1% of 4.4-11.59gVSS
domestic andDesmodeer:ws with COS additior)1 TaAE7 4 14.0-244  issolved m? dlg [97]
wastewater sp. BODg
Brewery Scenedesmi Bubble columr 13- 26% of 80.5-224.3 g VS
wastewater obliquus PBR (5 L) 67-97 orthophosphate 55 - 74 Lt d? [104]
Livestock Chlorellasg. and Algal biofilm 98% of
wastewater Phormidiurmsp. reac%or (630 cn) TAN 93% of TDP 87 105 [105]
Chlorella vulgaris, 69.4 -
II_andflll Spirulinasp, HRAP (0.27 ) 94.3-98.7 49.3 - 85.6% of 90.7% of 9.2 - 22.319 VSS [106]
eachate Scenedesmus PO, m< d
: COD
quadricauda,
Pre-treatec Consortium:
diluted Chlamydomonas, 62 - 88% 57 - 67 of 2 1
swine Chloglella and HRAP (L5 ) of TKN i COD 5.7-27.7gmd [107]
manure Nitzschia
389
390
391
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392 Table 2. Microalgae potential for wastewater trestitn(Cont.)

Microalaae Efficiency removals (%) Biomass
Effluent strair? Reactor Nitrogen Phosphorus Organic productivity Reference
9 P Matter (g TSS m? d™)
Consortium: 17.17% ol 36.63
Cyanophyceae HRAP (223 ) 76.5 orthophosphate  of BODs 15.8
Domestic Chlorophycean
sewage after (Micractinium  HRAP (223 n)
facultative P Ped|astrgm with .(?OZ 16.7% of 48.89 [108]
ond sp., Oocystis addition 68.8 orthophosphate  of BOD 14.1
P sp., recovered from >
Scenedesmus biogas
sp.)
Consortium
Chlorella sp.
(34% of .
abundance) HRAP (3.3 M) 71 14 52 l4g d.\l/SS i
Desmodesmus
. sp. (36% of
Domestic abundance)
sewage after C . [109]
UASB reactor onsortium
Chlorella sp.
(40% of HRAP (3.3 M) i
abundance) after UV 74 19 55 9.3 gd\_/lss u
Desmodesmus  disinfection
sp. (46% of
abundance)

393 TN = total nitrogen; TAN = total ammonia nitrogefiP = total phosphorus; SP = soluble phosphorus; E0Btal dissolved phosphorus; DRP = dissolved
394  reactive phosphorus; COD = chemical oxygen demBad)s = biochemical oxygen demand; TSS = total suspesdkds; VSS = volatile suspended solids.
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Phosphorus removal will occur by chemical prectptg with high pH values, or by biomass
assimilation. Similarly, to the nitrogen, pH contoan assist in the higher rate of phosphorus
assimilation by biomass and consequently allow heovery of this nutrient. Phosphorus
participates in the transfer of intracellular eryeegnd nucleic acid synthesis, in addition to the
cell division reactions [105], being a fundamematrient for cell growth. There are various
studies that reporting a high efficiency of P realovia biocapture using microalgae grown in
domestic [116,117], industrial [118], or agro-intdigd [11,119] wastewaters. However,
phosphorus removal in algal systems may be ofticudt, as could be observed in Table 2 with
most results inferiors to 35% of removal efficien@jigal biofilm reactor that presented a P
removal of 93% was one of the exceptions, explamedlgal biofilm P assimilation, as pH did
not exceed the 7 value [111]. On the other handjsAst al. [103] studied domestic sewage
treatment through a hybrid algae system, compos@dHRAP and a biofilm reactor, observed
21 and 25% removals of soluble phosphorus, in Byst®ith and without C®supplementation,
respectively. These results may indicate that eslgae attached growth systems may have
limitations for P removal, mainly, those relatedhwihe lowest amount of P necessary for the
cellular composition of microalgae. P luxury uptakean alternative to increase P removal via
assimilation, and can lead to an increase in catbitent up to 4-6% DW, when in normal
conditions P content is about 1% [120]. In viewtlo#¢ concern with the mineral reserves of
phosphorus, previously mentioned in Section 2.Zrmalgae can be a tool for the recovery of

this nutrient in several effluents.

In addition to nutrient removal, the inactivatiohpathogenic organisms can be obtained through
microalgae growth systems. Photosynthetic actwitiraise the pH and DO concentrations and
these factors can act synergistically for the a@mae of microorganisms photo-oxidation [121].
The surface area/volume ratio is a design paranfetewastewater treatment and microalgae
cultivation directly related with the inactivatia@fficiency of pathogenic bacteria. In theory, the
greater this parameter, the greater the exposutbeotulture medium to solar radiation, the
greater the photosynthetic activity, and conseduehe greater the efficiency of inactivation.
Craggs et al. [122] evaluated HRAPs with 30 cm 46dcm deep, with different surface areas
and with the same volume, achieved better disiiecatfficiency for HRAP with the greater

area and less depth. Rich DO environments, togetitér intense radiation, can provide the
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formation of atomic oxygen and/or superoxide oxydgleat cause irreversible damage to the
microorganism's DNA [123]. Ansa et al. [121] evdhdh the effect of algal biomass in the
removal of total coliforms in domestic sewage, fyemg that in the absence of light, the decay
was greater with an increase in chlorophyll-a catre¢ions, may have been the reason, the
release of substances by microalgae, which havecidhl effect and act in the inactivation of
coliforms. Molina-Céardenas et al. [124] observedttim a batch culture, the concentrations of
bacteria were reduced to undetectable levels irddys, due to microalgdegalbanasynthesis

of antibacterial fatty acids that inhibit the dey@ihent of pathogenic bacteria.

Currently, there is a concern with the presenceseayeral emerging microcontaminants, like
those in medicines, pesticides and endocrine disrsighat are accumulated in the wastewater.
These compounds are persistent and can lead tochioalation [125]. Some studies indicated
the possibility of removing these compounds in patgae cultivation systems. Vassalle et al.
[126] investigated the removal of microcontaminamsHRAP and showed 64% to 70% of
removal efficiencies for drugs, such as ibuproféicjofenac, naproxen and paracetamol. The
study also reported efficiencies of 90 to 95% imaoging estrogens. Results may be justified due
to the processes of direct photodegradation, barptisn and biodegradation. Abargues et al.
[125] showed that the treatment with oxygen superation via microalgae photosynthesis
presented a higher degradation rate of endocrsmigtors when compared with the treatments

without microalgae.

Another group of interest in the wastewater treatms the trace metals. As they are not
biodegradable, similarly to emerging microcontamisa the trace metals persist in the
environment, also leading to bioaccumulation in thed chain, which can trigger critical
environmental and health problems [127]. Molazaetehl. [128] evaluated the Pb removal by
Chaetocerossp. andChlorella sp. and obtained removal efficiencies of 60% at®96,7
respectively. The authors point out that efficiemgil be dependent on parameters such as pH,
temperature and contact time. The presence of watals in algal biomass can represent a
challenge for its later use. Leong and Chang [1@ghlighted the necessity of techniques
development for biomass pretreatment with the divedo recover metals as a strategy to
overcome this bottleneck.
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3. Microalgae the green treasure: bio-based produstand biofuels

Microalgae are a promising green feedstock for veroducts, i.e., animal nutrition,
bioplastics, bioinks, biofertilizer, biofuels abtbenergy [130] (Fig. 3).

Y

Sunlight Atmospheric \yagteywater
emissions

Microalgae Reactor
Closed systems Open systems
=] =

PADDLE WHEEL

Air COMPressor

Clean water: reuse, recycle or disposal

Biofuels: Bioenergy: Other products:
Biodiesel Bicgas Biofertilizer
Bio-oil Biomethane Animal feed
Bioethanol Bioplastics
Bio-hydrogen Bioinks
Construction
materials

Fig. 3. Bioproducts and biofuels obtained from wastter treatment using microalgae.

Regarding bioenergy, various biofuels can be preducom algal biomass, such as methane,
syngas, hydrogen, ethanol, biodiesel, jet fuel;dhar, bio-oil, among others [5,131] (Fig. 4).
According to Medeiros et al. [87], biofuels basednaicroalgae biomass may have a crucial role

in bioenergy production in the future.
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Microalgae strains

Biomass

‘Gasiﬁcation . Syngas
Anaerobic ’ Biochemical Chemical hermochemica . Liquefaction . Bio-oil
digestion conversion conversion conversion

9

: i Bio-char
Methane Alcoholic Transesteri- Combustion T OVSS I e pvciipes)
fermentation fication ‘
. 0 S It Bio-oil
;o .. (Fast pyrolysis)
Ethanol Biodiesel Eletricity

Fig. 4. Routes for converting microalgae biomass mofuels.

Microalgae biodiesel production is justified by thkility of some species to accumulate high
concentrations of lipids [132{Chlorella and Scenedesmustrains were reported to accumulate
30.3% and 35.7% of lipids (dry base) in its composi[133]. In comparison with oilseeds
commonly used for this purpose, microalgae havesrs¢vadvantages such as not requiring
agricultural areas for its production and can bkivaied throughout the year. Productivity per
unit area can reach up to 10,000 L*hesear" of biodiesel [134], being by far higher than the
capacity that presents other oil sources such @affogter, canola, soyjatrophg palm, among
others [5] (Table 3). Moreover, compared with othiefuels, biodiesel can be an immediate and

applicable alternative for fossil-based diesel.

22



475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

Table 3.Comparison of some sources of biodiesel: terréstrgpsvs microalgae [82,135-137].

Crop Oil yield (L ha™ yr™®)
Corr 172
Hemg 362
Cottor 32t
Soybea 44€
Mustarc 572
Camelin: 91t
Seel 952
Sunflower 1,19(
Casto 1,307
Canol: 1,89:
Coconut 2,68¢
Jatroph 5,95(
Oil Palm 12,00(
Microalgae low oil) 58,70(
Microalgae (medium ¢ 97,80(
Microalgae ( high oi 136,90(

However, the lipid content stored in the microalga#ls can vary greatly between different
species and even in the same species, dependitite a@ulture conditions. Many different key
conditions for high lipid accumulation in microatgare studied in the literature. Generally,
nutrient deprivation conditions lead to a greatssuanulation of lipids by microalgae, such as
the limitation of nitrogen and phosphorus [138—-14@ther conditions, i.e. stress from cadmium,
iron and salinity contents, light intensity and #ikca concentration (in the last case of marine
diatoms) [139,141] also influence biomass growtll aonsequently, it is a process lipid
accumulation with a high energy-intensive. Amongdrieat starvation tests (N, P and Fe),
Srinuanpan et al. [142] concluded that N starvati@s the most efficient in increasing lipid
content just like its saturation level in biomasSe®bliquusandM. reisseri Usual steps for oil
obtaining from microalgae can be cited as harvgstiomass drying and oil extraction. Among
them, the drying process can be considered a betlke since it is a process with a high energy-
intensive [143]. Therefore, lately, biodiesel protion from wet microalgae biomass has gained
attention [144]. In Table 4, successful cases m phoduction of biomass and lipids were
selected through the cultivation of microalgae ynteetic medium and also in several
wastewaters. It can be observed that the wasteviatan excellent cultivation medium for
dozens of microalgae species. The values recorsied artificial culture media are comparable

to those using wastewater for the growth of species
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494 Table 4. Lipid potential production from microalgaiemass.

Light Light Biomass Biomass Lipid
Substrate Reactor Strains (um olg m2s7) S og rce concentration production production Reference
(gL (@L*d)  (gL*dY
Synthetic culture medium
Bold's Basal Chlorellasp. e
Medium Flasks (UMACCO50) 40 Artificial NR 0.60 0.229 [145]
Chlorellasp. 0.594 1.44 0.1901
Synthetic P";"Sr:)'fh‘:tig”x 0.640 0.28 0.0168
medium (2) SynechococcL
Y ane 0.401 0.20 0.0272
Scenedesmt
ACUMINALUS 0.640 0.42 0.0571
Pediastrum 0.528 0.36 0.0623
tetras
Flasks Ch'a”s“;‘;omo“a ~ 8¢° Artificial 0.536 0.39 0.0834  [146]
Synthetic Lagerheimia
medium (WC) Igngiseta 0.460 0.21 0.0239
Synechococcus 0.560 0.69 0.0938
nidulans
Monoraphidiu 0.296 0.15 0.0298
m contortum
495
496
497
498
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499 Table 4. Lipid potential production from microalgaiemass. (Cont.)

Light Light Biomass Biomass Lipid
Substrate Reactor Strains (um olg m2s7) S og rce concentration production production Reference
(gL? (gL*dh)  (gL*d)
S'”eggocysu 1.295 0.39 0.0542
Synthetic Flasks ~Romeria ~ 8C° Artificial 0.542 0.22 0.0244  [146]
medium (C) gracilis
Aphi:)"thec‘ 0.458 0.29 0.0299
Synthetic Chlorella Internal light 0.005'-
medium PBR minutissima NR (Blue LED) 0p4-0625 0.062 0.0089 [147]
Artificial Airlift Chlorella
seawater f/2 PBR minutissima 133 Artificial NR 0.1886 0.0928 [148]
medium 26a
Synthetic Chlorellasp. Natural
medium BG11 BC-PBR FC2 IITG 100-1,700 sunlight 8.6 1.4 0.753 [149]
Wastewater culture medium
Municipal Chlamydomona
wastewater Biocaoll ny - 220 Artificial NR 2 0.505 [150]
s reinhardtii
(Centrate)
Municipal
wastewater 1.03 0.1665 0.04138
Secondary
Municipal Flasks ~ Chiorella ~140 Artificial [151]
wastewater vulgaris
Secondary (75%) 1.11 0.13876 0.04559
+ primary (25%)
500
501
502
503
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504 Table 4. Lipid potential production from microalgaiemass. (Cont.)

Light Light Biomass Biomass Lipid
Substrate Reactor Strains (um olg m2s7) S 0?1 rce concentration production production Reference
(gL? (gL*dh)  (gL*d)
Chlorella
Municipal MPBR vulgaris 1.84 0.0963 0.02576
wastewater (continuo 112.3 Artificial [152]
Secondary us) Scenedesmus 0.02957
obliquus 1.72 0.0888
Sewage Golenkini 1.9 0.07089 0.01562
VBCPBR SODeEQ:ITIGa ~60 Artificial [153]
BG11 2.05 0.07409 0.04343
Sewage Flasks ~ Scenedesmus ~50 Artificial 1.81 NR 0.452 [154]
Treatment Plant sp.ISTGAL ' '
Airlift
wa(;?etfllviuer PBR 3.22-3.70 0.358 0.062-0.064
after previous (batch) Scenedesmus
erprevious - T 7 opliquus ~ 60 Avrtificial [11]
digestionina —Airlift  (Acoj 204/07)
hybrid anaerobic  pgRr
us)
Tertiary
: Botryococcus 490 I ~
Livestock SBR braunii (38.75 W n?) Artificial ~2.6 0.3156 N.R. [155]
wastewater
505
506
507
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508 Table 4. Lipid potential production from microalgaiemass. (Cont.)

Light Liaht Biomass Biomass Lipid
Substrate Reactor Strains (umolgm'z sY) sogrce concentration production production Reference
(gL? (@L*dh)  (gL*d?)
Mixed:
: : Desmodesmus
P'ggselmb'ogas FPCP  sp.Bacillus 400 Artificial NR 0.47 0.07431 [156]
y and
Pseudomonas
PBR Chlorella sp. 300 Artificial ~8 0.681 0.155 [157]
Piggery
wastewater Chlorella Natural 57.87gm? 27.25g m?
PSBR vulgaris 793.5 sunlight NR dt dt [158]
Algal bloom Flasks Chiorella 200 Artificial 4.36 0.436 0.188 [159]
hydrolysate pyrenoidosa
, , 3,366-3,978 Natural
Dairy PBR Ascochlorissp W 2 sunlight 2.04 0.292 0.098 [160]
Paper and Scenedesmus /4 Artificial 8.22 0.685 0.137 [161]
pulp acuminatus (max value)
. . 0.0z N
Olive-oil PBR Chlorella 550 £ 25t Artificial NR @2smgrt 00103 e
mill pyrenoidosa hY) gL™d
Meal-processing
industry (primary Scenedesmus ; 797 5109 Natwral 1169 (max o5 g5 1g-37
sp. sunlight value)
effluent)
Mear-processin¢ BC-PBR [12]
industry Scenedesmus Natural
(secondary sp. 1,269 2,254 sunlight 0.225-0.371 105-12.1 0.3-0.8
effluent)
509
510 2 Original article was written in kLux Original article was written inE m? s; PBR - Photobioreactor ; BC-PBR - Bubble ColummiBhioreactor; PSBR -
511 Porous substratum biofilm reactor; SBR - Benchessaljuencing batch reactor; FPCP - Flat-Plate @amiis Photobioreactor; HRP - High rate ponds; MPBR
512 Membrane Photobioreactor; BCPBR - Vertical bubldismn photo-bioreactor; NR — Not reported.
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An important strategy to maximize the productiontied lipids in microalgae biomass is the
increase of salinity in the culture medium. Someingastrains can be successfully grown in
salinity ranges between 12 and 40 9, lbeing the optimal range between 20 and 24'g L
[163,164]. In a study by Salama et al. [165] fouhdt the increase in salinity from 0.43 to 25
mM increased the percentage of lipids in the biemd€. mexicanandS. obliquusrom 23%

to 37% and 22% to 34%, respectively. These reslitaved the importance of salt stress to
maximize the lipid percentage in green microalgasc Abomohra and Almutairib [166]
cultivated Scenedesmus obliquus anaerobically digested seawee@sacilaria multipartita),
that registered a maximum dry weight of 4.57 jviith 28.8% of total lipids. The study of these
authors showed the highest lipid productivity atMEs recovery (65.2 mgtd* and 123.3

mg g *dry weight, respectively), with enhanced biodieseracteristics.

Another methodology used to maximize biodiesel potidn from Scenedesmus obliquus
biomass was the application of night lighting usmgnochromatic light-emitting diodes [167].
In this case, the growth of microalgae, the prodacbf lipids and the recovery of biodiesel
increased significantly under the combination afesied lighting. The average lipid volumetric
productivity recorded under the reported conditiaas 58.3 mg Lt d* and the total FAME was
147.2 mg g (dry weight).

Lee et al. [168] investigated the conversion offaiils and greases (FOGs) into fatty acid
methyl esters (FAMES) without pre-treatment. Thecpss was thermally induced to perform the
simultaneous esterification of free fatty acidsAB}and lipid transesterification containing high
concentrations of impurities in the biomas44 wt%). The maximum FAMES yield recorded by
the authors was > 86%, based on the mass of thenegerial without removing the impurities.

This study proved that this technique can be cemedl valuable and effective for converting
low-quality raw materials contained in FOGs intedesel, being recommended to maximize

processes for obtaining this biofuel.

Almarashi et al. [169] used low doses of cold atphesic-pressure plasma (CAPP) as pre-
treatment of inoculum for cultivatio@hlorella vulgaris The authors reported high performance

in the biodiesel recovery. The highest recordedd liponcentration was 20.99% and lipid
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productivity was 40.7 mg £ d*, when the inoculum was exposed to CAPP for 30fsrée
cultivation. The maximum FAMEs recovery of 478.7 mg" (dry weight) was observed at
pretreatment for 60 s, being considered to thetgreacovery in biodiesel in this condition due
to plasma stress. The results found by the auihdisate that the recovery of FAMEs, as well
as the quality of biodiesel, were improved by th&P@ treatment when compared to other

traditional methods.

Biodiesel production from microalgae focuses onube of lipid content. After its extraction, the
remaining biomass can be used for other purposestimg the context of circular economy
green and increasing the economic value of the #smMa et al. [132] demonstrated that the
microalgae residual after wet microalga@alorella vulgarislipid extraction could be used for
fermentable sugar production through enzymatic ¢iydis of the carbohydrate. Assemany et al.
[170] evaluated the use of residual biomass aifpét extraction as a substrate in the anaerobic
digestion. The results showed a biogas productimemial of 2.6 ritkg VS (volatile solids),
higher than the biogas production from raw bioma&gxording to the study, lipid extraction
promoted the disruption of microalgae cells, fémilng the degradation of organic matter by
anaerobic microorganisms. These results highligatpossibility of synergistic effects between

different biofuel production techniques.

Biogas is the most promising biofuel that has tlseptial to mitigate the current negative
impacts of fossil fuels utilization, mainly energyisis and climate change [171]. Biogas
production occurs through anaerobic digestion, gperéd by a consortium of bacteria and
archeasin the biochemical conversion of the organic maittéo bioenergy, more specifically,
CH,4 [172]. Methane gas can be converted into renewadhsportation fuels or into electricity.
The digestate, comprised of nutrients and water bmameused in other production processes,
such as algae cultivation, or used as a biofegtiliin the context of bioenergy production from
algal biomass and fighting over contamination, finigcess represents an important alternative,

especially caused for the wet biomass, minimiziregdosts of harvesting and drying steps.

Methane yield from microalgae can vary a lot, dejregp on algae species, i.e., from 0.17
m*kg VS for Chlorella minutissimabiomass to 0.5m°kg VS for Macrosystis pyrifera

(brown macroalgae) [173]. But biogas yield from roagae remains close or higher than the
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570 vyield of other biomass types, such as sugar crod9i*kg*VS) and lignocellulosic biomass
571 (0.17mkg'VS) [174]. However, there are still some key tecmomomic limitations,
572 particularly the low anaerobic biodegradability dhd reduced C/N ratio of algal biomass [175].
573 In this sense, pretreatment strategies for cell wagture, and co-digestion, have been widely
574 studied (Table 5).

575
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576 Table 5. Microalgae potential for biogas productamml strategies applied for yield improvement.

Microalgae Growth Reactor and

Biogas vyielc

strain medium conditions Pretreatment  Co-digestion (m® CH, kg™ VS) Reference
Chlorella sp. .
(61.2% %h;ﬁtfg 100 megishks’ €, No No 1.44 mLYd? [176]
abundance)
. With primary
Chlorella sp. DS%TVZSZC 2L CS_T?O' g’ZCS HRT No sludge 0.33 [177]
g = <Uday No 0.20
12.4L AnMBR, 38C, 1
Scenedesmus sp. HRT = 1550 days > 0.17 m CH, kg* COD
Domestic 12.4L AnMBR, 35C, 1
Chlorella sp. sewage HRT = 30 days No 0.24 mi CH, kg* COD [178]
Scenedesmus sp. 14L AnMBR, 35C, With primary 0.21 ni CH, kg' COD
Chlorella sp. HRT = 15-50 days sludge 0.23 mi CH, kg* COD
14L CSTR + AnMBR,
39°C, HRT =7-28 0.185
Domestic days
Scenedesmus sp. sewage 14L AnMBR + CSTR, No No 0.36 [179]
9 39°C, HRT = 30 days '
14L CSTR + CSTR, 39
°C, HRT =15 days 0.305
Chicken No 0.14
Chlorella 1067 manure 200 megtigR’ 3%, No With chicken 0.24 [180]
digestate manure '
No 0.13
Synthetic 500 mL flasks, 3%, Enzymatic +
Chlorella sp. BG11 medium batch lipid extraction ~ With grass 0.17 [181]
. . No 0.08
Scenedesmus Brewery rifctotlygb;%ailcs_?d_mg No With olive 0.25 [182]
obliquus wastewater ’ ' - mill
days Thermal 0.21
wastewater

577

31



578 Table 5. Microalgae potential for biogas productamd strategies applied for yield improvement. (Qon

Microalgae Growth Reactor and

Biogas yield

strain medium conditions Pretreatment  Co-digestion (m® CH, kg™ VS) Reference
343L UASB, No 0.15
. . Domestic environmental With primary
Kirchneriella sp. sewage conditions, HRT =7 No domestic 0.21 [183]
hours sewage
Chilorella sp. and Synthetic 160 mL flaks, 3%, Thel\rlrcr)1al n No 0.26 [184]
Scenedesmus sp. wastewater batch alkaline 0.33
Stigeoclonium sp No 0.11
sy o . Thermal 0.181
Mono_raphld_lum Domestic 160 mL flaks, 3%, Hydrothermal NoO 0.135 [185]
sp., Nitzschia sp. sewage batch -
and Navicula sp. Microwave 0.128
Ultrasound 0.114

579 CSTR = continuous stirred tank reactor; AnNMBR = eohic membrane bioreactor; UASB = upflow anaeraimige blanket reactor; HRT = hydraulic

580 retention time; VS = volatile solids.

32



581
582
583
584
585
586
587
588
589
590
591
592

593
594
595
596
597
598
599
600
601
602
603

604
605
606
607
608
609

Regarding energetic feasibility, anaerobic digestioom microalgae biomass proved to be
rentable. Chao Xiao [186] reported that all testeethods of biogas production obtained a
positive energy gain, with net output energy a¥3] 2.37, and 3.11 kWh, from the anaerobic
processes without pretreatment and with hydrothepnetreament moved without and with

solar-driven, respectively. When using the co-digesstrategy, net energy production was 3.2
GJ per day versus 1.6 GJ per day for microalgaeordagestion, indicating a generation of 2.7
and 4.5 fold the energy consumed. If this poterrargy would be transformed into electricity
via cogeneration, 151 and 307 kWh per day coulgrogided by the mono and co-digestion
process, respectively [177]. Vassalle et al. [188p obtained a positive net energy ratio of 2.8
through co-digesting microalgae biomass and domestwage in a UASB reactor, that

represented a 180% energy gain in relation to dmsumption. This energy gain was 5 times

greater when compared to the sewage mono-digestion.

Hydrothermal liquefaction (HTL) is a thermochemigabcess of organic matter conversion,
under subcritical conditions of temperature andssuee. Four different products are generated
from biomass conversions, such as the bio-oil, gakd waste and water-soluble compounds.
Due to severe operating conditions, the entireraog@action is degraded, and bio-oil is not only
produced from the lipid content, but also from cdwydrates and proteins [4]. Moreover, HTL
occurs in agueous media, avoiding energy requiréfoefiomass drying. These characteristics
make HTL an attractive technology, that may overeosome bottlenecks associated with
biofuels production from microalgae biomass, esygbcithe wastewater grown microalgae
biomass with low lipid content. HTL’s bio-oil yielt related with the operational conditions,
such as temperature, reaction time, water ratithe biomass, pressure and the presence of

catalysts. Table 6 shows some examples of HTL gsoasing microalgae biomass.

HTL can be inserted in a circular bioeconomy contéxough the valorization of its by-

products. The gases generated are mostly compdse@.0 which can be used in microalgae
cultivation [7] or like additive in the materialdilized in the construction sector. Solid wastes,
due to their majority constitution of ashes, candestined to asphalt pavement [187]. Water-
soluble products, on the other hand, are compokedganic acids and nutrients that can again

be used in other microalgae cultivation [188,180fwen as a substrate for anaerobic digestion
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[190,191]. However, the aqueous phase has compdhatisan be toxic to the microorganisms,
such as aromatic compounds and metals [192]. Tikaigjse should be evaluated based on

dilutions that do not cause inhibitory effects olcnmalgae growth.

Although HTL is an attractive process for bio-obtention through algal biomass conversion,
regarding resource recovery in the context of eutar economy, there are still challenges to be
faced. Some main points are the high N contentiorold, due to the composition of biomass
[75], the presence of ash, especially when the &ssmcomes from wastewater [193], the
expansion of the scale of reactors and its contiawperation, as well as a better understanding

of operational parameters such as heating ratglipressure and particle size [194].
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619 Table 6. Operational conditions and bio-oil yiedddifferent studies of microalgae HTL.

) Biomass composition (%) Operational conditions Boi-oil
Microalgae Growth Temperature Percentage yield (%  Reference
strain medium Protein Sugar Lipid Ash °C) Time (min.) of solids Catalyst dry basis)
Natural = 2 5 11.7 67 - 350 120 4 HZSM- 600 [195]
Lake 5 zeolite
28.3 5.4 23.3  40.0 15 10 44.4(a) [75]
Consortium 300 NA
27.2 23.6 1.7 475 60 25 49.9(a) [187]
Wastewater
48.6 11.1 78 259 350 120 66 H4SM- g [196]
5 zeolite
Scenedesmus 54.6 i 123 115 300 60 7 NaOH 246 [197]
obliquus
36.4 12.4 19.0 8.91 275 30 01:10 - 314 [198]
Nannochloropsis
40.5 - 219 4.4 250 60 6 - 28.9 [199]
N. gaditana ~ Synthetic  43.8 15.7 355 45 320 10 01:10 CaO 49.7 [200]
medium i
Heating rate of 10
C.vulgaris 61.8 26.7 2.3 8.7 C.min* min. 42.1
350 Removed when it 5.5-6.8 - - [201]
Spirulina 70.2 19.3 11 7.7 reached reaction 36.2
temperature
G. sulphuraria Wastewater 41.0 10.5 58 420 350 6 5 - 28.1 [202]
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In addition to the processes presented in Figurép#l conversion into supercritical fluids
(SFE), as presented in Table 7, can have advantagesonventional processes [2]. SFE makes
use of high pressures and temperatures in a fuitdréak cells without additional chemical
reagents (or minimizing their use). This method be@sn proven to be extremely time-efficient
with high yields [203], enabling fast conversion ligfids into biodiesel (20 and 60 minutes),
whereas solvent extraction can take up to 24 httercadvantage of the method is that the use
of a catalyst can be avoided, eliminating the potidn of pollutants. Higher temperature and
pressure, combined with the effect of the supeécatisolvent, break the cell walls and facilitate
the diffusion of the solvent in the cell matriceghwa much higher degree of efficiency than
conventional [2,204]. On the other hand, the masadiyantage of SFE is the greater capital
necessary, including the operational cost due ¢gh émperatures and pressure requirements
[204].

36



656
657
658
659

660
661
662
663
664
665
666
667
668
669
670

Table 7. Microalgae biomass conversion by supercrdal processes.

Strain Supercritical condition Biodiesel yield (%) Reference
Scenedesmisp SC-CG,: Lysozyme treatment + 50 °C, 500 bar, 1: min®, 30 mir 12.5 (dw [205]
- . H o o 0, _
Scen_edesml SC C_Oz. Bead beating + 60 °C, 3(ar, 65 °C, 30 MPa, 5% ethanol-solvent, 18.15 (dw) [206]
obliquus 90 min
Nannochloropsisp SC-CO,: 50 °C, 200 bar and 2¢ 62 [207]
Nannochloropsi . . . .

(CCMP1776) Methanol to biomass (12:1): 1200 psi, 30 min 85.75 [208]
Nan;:&?;cr)‘r:psn Supercritical methanol to algae ratio (10:1): 28%-2C, 50 min 45.8 (FAME) [209]
Nan;;(;[l;cr)]r;psu Methanol to wet biomass (vol. dvy.ratio 6:1: temperature 225 °C, 90 min 59.28 [210]

Nannochloropsissp  Methanol to algae ratio (10:1) at supercriticonditions: 265 °C, 50 m 21.79 (dw [211]
Chlorellg Methanol to oil ratio (19:1): 320 °C, 152 bar, 3ihm 90.8 [212]
protothecoides
. Supercritical methanol without catalyst and inpinesence of Ti, and SrTiG 16.65 m(g"’
Chiorella vulgaris nanocatalysts, 270 °C, pressure range of 9-10 B®Pain (FAME) [213]

SC—-CQ = reaction in supercritical GQdw = dry weight.
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4. Think global, act local: how microalgae can fitn?

“Think global and act local” is a slogan initiallyevelop in Rio Earth Summit, the second
Conference of the United Nations held in Rio deslfan Brazil in 1992, that culminated with the
creation of Agenda 21. This document is an instnined participatory planning in which the
responsibility of governments to promote environtakmprograms and projects is explicitly
accepted through policies aimed at social justice the preservation of the environment [214].
Agenda 21 has a hierarchical spatial scale strategged on sub-global, national and locally
settled plans - Local Agenda 21 [214]. The formalatand implementation of public policies
are encouraged, through participatory methodoldlygt produces an action plan to reach a
desirable future scenario for the local communi¥4] and that takes into account the analysis

of vulnerabilities and potential of its basis econg social, cultural and environmental.

“Think global, act local” is often used to suppsmall improvements on current environmental
sustainability practice. However, a systemic chasdaghly required in order to meet the scale
of the challenges, at neighborhood, city, regiomational and worldwide levels [216]. In
addition, progress should be measured in sustdityabnd should be within environmental
limits of the planet, as humankind are on a patbviercome them [216]. Sustainability has three
main pillars - environment, society and economy. @small scale, thinking about eco-cities,
there are some challenges to be included in aisabthty local environment, which can broader
positive impact in the frontiers, and microalgaen d& in many of them. A city can be
sustainable based on how technologies and polaiesmobilized to enhance energy, water,

healthcare, mobility, security, economic developtr@m community engagement [217].

Transportation is a major concern in urban enviremi® related with air pollution and GHG
emissions, however, the microalgae can be a sabiairoption for biofuel production. Public
and collective transport can be moved with greesl, fsuch as biodiesel [218,219] and biogas
[180,182] from algae biomass (see Section 2.3.81fare detailed examples). Moreover, thermal
energy for house heating can also be obtainedribatihg to affordable and safe housing.
Residual biomass can, in addition, serve as ravemahtffor construction materials, helping to
save resources and to build environmentally frigdmlildings. Irfan et al. [220] studied how to

optimize bio-cement production usir@hlorella kesslerimicroalgae as a source of calcium
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through a waste feedstock from cement kiln dustcofding to the authors, the study of
microalga role in the production of bio-cement casult in the readiness of this process in civil

construction, besides helping in the environmepaéilition mitigation by waste utilization.

In line with Sections 2.1 and 2.2, the promotionedycling and resource conservation is among
the best practices to be included in helping regty@ollution. This involves more efficient use
of resources and even, significantly, reductiomeisource consumption. Besides achieving zero
waste, there is a need to change consumer chaickpraduction relationships throughout the
supply chain, which theoretically will become mdoealized and regionalized [216]. With
multiple use characteristics, algae biomass map@tipesource recovery, especially avoiding
the generation of waste during wastewater treatnmeatrient-rich algae biomass may have
various utilities, such as being a feedstock fdrsi@based economy, i.e. in the production of
bioplastics. Rocha et al. [221] studied the po#&rii bioplastics production from microalgae
consortium from wastewater concluded that despibenising result had been achieved, large-
scale microalgae biomass should be better developriireover, the mechanical properties of
this type of bioplastics deserves improvementf &mits the product application compared with
other available bioplastic options. According toe tlauthors, further strategies, such as

composites and crosslinking, should be addressed.

Regarding wastewater treatment, microalgae whed, yslay an important role in recovering
river water quality and enhancing whole urban estesyis to provide a healthy place for fauna,
flora and people co-existence. Several studiesrdbnewastewater treatment using microalgae,
i.e. treatment of domestic sewage [90,115], agdustrial effluents [11,111,222] and industrial
effluent [12,118], see Section 2.3.2 for more defecovered rivers are integrated in the city
landscape, supporting the health and leisure o&rugiiopulations, while promoting a deeper
connection with nature. Restoration initiatives fmmage environments, as well as support for
local agriculture, urban greening and communitydgamg are other of the characteristics of an
eco-city [223,224].

In terms of food systems, Moloney [216] stated tpabple should understand and direct
experience food growing, in order to obtain a lompact or even zero carbon food. Microalgae

biomass will increasingly help to move beyond zemdbon emissions, in line with ecologically
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sound economic activities. In the context of orgaand local agriculture, the kind of soll
fertilizing is of great importance and that's whesenong others, microalgae biomass can fit in.
Nutrient-rich microalgae biomass may be a sustéénsdurce of biofertilizer, helping to reduce
the environmental impact of the traditional feri#is production process and to economize
resources. Studies have proved the benefits ofusinroalgae as a biofertilizer [225], for soil
fertility improvement and plant growth, when usedaasource of nitrogen [78] or together with
triple superphosphate in order to create an enmsstally friendly fertilizer [226]. Moreover,
grain yield and fruit quality and nutritional chateristics were improved [227], and
heterotrophic activity of the soil, besides baetlegrowth were stimulated usir@hlorella sp.
suspension [228]. Another possibility is to usenoatgae as a source of protein in the human or
animal diet, considering that microalgae cultivatis less impactful than the cultivation of
terrestrial plants, mainly with regard to soil cganand, consequently, GHG emissions.
Lamminen et al. [229] studied microalgae as a soof@rotein supplement in the lactating dairy
cows nutrition and their results suggested theability of non-defatted and protein-rich
microalgae, compared to soya bean protein mealorgble results were found in milk fat
concentration whespirulinawas used, whil®&annochloropsi®ffered a most suitable omega-
6:0mega-3 ratio for human nutrition. However, thehars highlighted poorer palatability of

microalgae concentrates.

To finalize, social aspects that go beyond envirental conservation are needed. It is required a
transformation through a greater connection betwpeaople and the environment, mainly

through improvements in health conditions, welldgeand social and economic inclusion.

5. Microalgal biorefineries all over the world

Currently exist an increasing worldwide interestriitroalgae crops. This factor is manifested in
several areas such as bioenergy for the produafobiofuels (green crude oil, gasoline,
biodiesel, jet fuel, bio-oil, ethanol, biogas, sgagmethane, among others), in the capture and
sequestration of COrom several industrial applications like poweam, fermentation plants,
cement producers and others, for wastewater patiibic, production of a wide diversity of
products like food supplements (including feed patifoods), cosmeceuticals, pharmaceuticals,

biologicals, chemicals, biochemicals, biomaterialtapng others.
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758 Table 8 lists some companies that produce diffemoducts from algae biomass with a
759 significant scale under an integrated strategyhéftame of biorefineries. The list is ordered by

760 continent and country.
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761 Table 8.Microalgal biorefineries all over the world [230].
Continent Country Company Teci}gs(lacl)glcal Uses/applications Website
Brazil and Commercial/ Microalgae production and cosmet
United State of Solazyme Elagshi products, bioplastics, oils, http://solazymeindustrials.com/
America (USA) gship encapsulated lubricant and fuels
Personal caringredients, foods
. Algenol biofuels (from ethanol to crude oils), https://www.algenol.com/
America . o L
biofertilizers and biostimulants
USA Demo Microalgae production and oth
BioProcess Algae, products: feed (including fish), . .
: , http://www.bioprocessalgae.com/
LLC chemicals compost, nutraceuticals,
ethanol and biodiesel
Denmark Kalund_bo_rg Demo Wastevx{ater treated and microak http://www.symbiosis.dk/en/
Symbiosis production
Bioengineering projects for tt
A4F Algae for Industrial/De industrial microalgae production, _
. . . https://a4f.pt/en
future mo/Pilot biofuels, microalgae-based products
and applications
Algafarm (A4F Commercial/ Microalgae Chlorella) biomass
Portugal Algae for future) production and others by-products https://a4f.pt/en/projects/algafarm
; . Demo - \
Secil/Allmicroalgae (utilized for biofuels)
Algal biomass for biofuel
Buggypower production and other products (fatty .
Europe (Portugal), Lda Demo acids, antioxidants, minerals, http://www.buggypower.eu/
pigments, vitamins and others)
Microalgae production fc
. agriculture, aquaculture, food and .
Spain AlgaEnergy feed, natural extracts, cosmetics, https://www.algaenergy.com/
gardening and biofuels
TNO-Valorie Pilot Biofuels (biodiesel) and by-products hitps. /A, I00.bl/medie/ 2818,
o-valorie-flyer-uk.pdf
The Netherlands Develop technologies both on a |
AlgaePARC and pilot scale for microalgae http://www.algaeparc.com/
production and by-products
762
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6. Market: Current microalgal commercial producers

Worldwide, there are many companies that producercaigae for the development of the
research area (including the study of new speassjaw material to produce a variety of
products or to be sold to other companies. At daltevel, the continents that show the greatest
evolution in this matter are America (mainly theitdd States of America) and Europe, being

Portugal a strong player in this sector.

Every year, approximately 7,000 t of dry algae preduced all over the world, being the global
market of algae biomass can be estimated at USBoEIH3# billion [231]. These numbers reflect
that the microalgae industry is gaining global aien and can be widely utilized in different
industrial sectors in the future [232]Table 9 shows 146 companies or organizations that
produce a variety of algae-based products or teHtseveral species. This information is
important to verify the position of the microalgaeh the market worldwide. The mention of
government institutions and universities that depgirojects in this sector is above the scope of
this publication, it is known that they exist in myacountries of the world, betting on microalgae
as an alternative fuel in the transport sectog sslution to reduce GHG and to meet future food

and feed needs.

The legend of “Uses/applications” column (Table i9)as follows: (note that not all are
applicable for each listed company).
A: CO, sequestration from industrial systems;
B: Nutraceuticals and/or food and/or feed (includaggaculture and/or pet foods);
C: Health care and/or pharmaceutical products ard/auty care (cosmeceuticals);
D: Soils and/or water solutions (fertilizers and/oastewater treatment and/or water
desalination);
E: Biofuels (green crude oil, gasoline, biodiesehengable diesel, jet fuel, bio-oil, ethanol,
biogas, syngas, methane, among others);
F: Biotechnology applications (algae oil and compauedtraction) and/or equipment’s
(bioreactors and/or other systems) and/or laboyatoalysis;
G: Specific algae (biomass) production and/or algaedsting/cultivation systems;
H: Bioproducts/biomaterials (bioplastics, biostimutmatural pigments, among others)

production.
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793 Table 9.Current microalgal producers, uses and applicatjpB3—240].

Uses/application

Continent Country Company BIC D EIEIG Website
AlgaeCan Biotech Lt v v https://algaecan.col
EBPI-Environmental Bi-Detection Product v http://www.ebp-kits.com,

Canada Inc.

Symbiotic EnviroTek Inc v ViR https://symenv.cor
ABPDU-Advanced Biofuels and Bioproduc IV V|V https://abpdu.lbl.go'
Process Development Unit
Accelergy v http://www.accelergy.cor
ACENT Laboratories LL! ViR http://acentlabs.cor
Agcore Technologi¢ V|V v http://lwww.agcoretech.net/index.ht
Algae Floating SystemInc. v v http://www.algaefloatingsystems.cc
AlgaBT LLC V|V https://www.algabt.con
Algepower, Inc v v v http://algepower.cor
Algae Systems LL ViR http://algaesystems.co
Algaewhee v https://algaewheel.col
Algenesi: https://www.algenesismaterials.cc

America Algeternal technologies, LL v v https://algeternal.cor
AlgiKnit Inc. https://www.algiknit.con

United State of BioGreen Synerc V|V v mpfllwww.bi_ogreensvnergv.com/index.h
America (USA) Cellana Inc v v mp./(cellana.con

Checkerspot, In v https://checkerspot.co|
CLEARAS Water Recovery, In v https://www.clearaswater.co
Culture Biosysten v V|V https://www.culturebiosystems.cc
Cyanotech Corporatit v v https://www.cyanotech.col
Desert Sweet BioFue v v http://desertsweetbiofuels.cc
Earthrise Nutritionals, LL' v https://www.earthrise.cor
ENERGYhbits Inc v https://www.energybits.cor
Exxon Mobil Corporatio v https://corporate.exxonmobil.co
Global Algae Innovations, Ir v http://www.globalgae.cor
Global Thermosti VI V|V https://globalthermostat.co
Gros<Wen Technologie ViR https://algae.cor
Heliae Development, LL v https://heliaeglobal.cor
Manta Biofue ViR v https://mantabiofuel.cor
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794  Table 9.Current microalgal producers, uses and applicatip@3—240] (Cont.)

Uses/application

Continent Country Company ATB C D EEG Website
MicroBio Engineering Int v ViV YV https://microbioengineering.co
NCMA Bigelow Laboratory for Ocean Scien v https://ncma.bigelow.org/cms/index/ind
OVIVO USA, LLC v https://www.ovivowater.con
Phenometrics, In v https://www.phenometricsinc.co
. Qualitas Healt v v https://www.qualita-health.corr
America USA Raven Engineered Filr v https://ravenefd.cor
Spira, Inc JI https://www.spirainc.con
Synthetic Genomics In V|V https://syntheticgenomics.co
Valensa Internation v https://valensa.cor
Zivo Bioscience Inc V|V https://www.zivobioscience.col
Brune MC Biotech Sdn. Bhi v v https://mcbiotech.com.b
Oilgae v ViV V http://www.oilgae.con
India Parry Nutraceutica v http://www.parrynutraceuticals.co
ProlgaeSpirulinaSupplies Pvt. Ld v v https://www.prolgae.cor
SNAF-Natural & Alginate v https://snapalginate.co
Indonesi Neoalga V|V https://neoalge-halal.com
Asia Iran QMAB-Qeshm Microalgae Biorefine IV V|V http://amabco.con
Algatect v v https://www.algatech.cor
Israel Brgvel VIV V|V https://brevel.cp.i .
UniVerve v https://www.univerve.co.i
Yemoja Ltd v https://yemojaltd.con
Japan Japan Algae Co., Lt v v http://www.sp100.con
Euglen: v v https://www.euglena.j|
Austrie Ecoduni V|V https://www.ecoduna.com/e
MicroBioTest: v https://www.microbiotests.col
Belgium Proviron industrie v http://www.proviron.com/e
Europe Tomalgae C.V.B., v http://www.tomalgae.cor
Czech Republi  Algamo s.r.i ViRY https://www.algamo.c
Denmarl Ocean Rainfore v http://www.oceanrainforest.co
Finlanc Redon v v https://www.redono.f
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796 Table 9.Current microalgal producers, uses and applicatip@3—240] (Cont.)

Uses/application

Continent Country Company AB CIDEEG Website
Algame v https://www.algamafoods.co
AlgoLight V|V http://www.algolight.con
AlgoSource Grou v https://algosource.com/e
Bioréa SA¢ V|V V|V https://www.biorea.fr/el
Cyang v v https://www.cyane.eu/e
Ennesy v http://www.ennesys.com/e
France Fermental V|V https://www.fermentalg.cor
Greensea SA v http://greensea.fr/e
Microphyi V|V http://www.microphyt.eu/el
Naturis Pharma SF v https://www.naturispharma.co
Odontella SA: v https://www.odontella.com/fr/hor-2/
Olmix Groug V|V https://www.olmix.corr
Synoxis Alga v https://www.synoxi-algae.corr
Europe Algoliner GmbH & Co. KC v https://www.algoliner.de/hon
Astaxa Gmbl v http://www.alga-biotech.con
bbe Moldaenke Gmkt v v https://www.bb-moldaenke.de/e
Germany CellDEG Gmbt v https://celldeg.com/features/technolc
GBEX-Global Biomass Exchan v v https://www.gbex.dele
Ludwig Bolkow Campu ViR https://www.lt-campus.con
MIAL GmbH v v http://mial.eu
Subitec Gmbl v https://subitec.com/
Icelanc Algalif Iceland eh v v https://algalif.con
Archimede Ricerche ¢ V|V http://www.archimedericerche.co
Biospira Sr v v https://www.biospira.it/el
ltaly F & M Fotosintetica & Microbiologica S. v http://www.femonline.il
Severino Becagli Sk V|V v https://www.severinobecagli.it/e
Tolo Green SR V|V https://www.tologreen.it/e
Norway MicroA v V|V https://microa.nc
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798 Table 9.Current microalgal producers, uses and applicatip@3—240] (Cont.)

Uses/application

Continent Country Company ABC D EEG Website

Alga,0, Lda v https://alga20.pt/index.php/
Algae Tagus Producdo de Microalg v https://algatec.eu/en/producti
Allmicroalgae-Natural Produc ViR http://www.allmicroalgae.cor
Aqualgae S VIV V|V http://aqualgae.com/en/hor
Bluemate v https://www.bluemater.cotl
Biotrend- Inovacédo e Engenharia € v http://www.biotrend.p
Biotecnologia
Lusalga ViR http://lusalgae.p
Madebiotec v https://www.madebiotech.co

Portugal Naturextract v https://naturextracts.co
Nutrally Algae Solutions £ v https://www.nutrally.net/e
Pagarete Microalgae Solutic v v https://www.pagaretems.co
Phytoalga v http://phytoalgae.g
PhytoBloom (Nector VIV ViR http://www.necton.p
Spirulina da Serr- Monchique v v https://spirulin-de-serra.corn

Europe Spirulina Portug:i v v https://www.spirulinaportugal.col

Stellarialg: v v https://www.stellarialga.cor
Tomar Nature v v https://tomarnatural.g
5essentia spirulina azo v v https://5essentia.co

Slovenii AlgEnD.o.c VIV V| V|V https://algen.el
AgriAlgae® https://www.agrialgae.es/?lang:
Algalimento Sl v http://www.algalimento.cor
Algaso VIV V|V http://algasolrenewables.cc

Spain Algatek v v http://algatek.co.ul

Biorizon Biotecl v v http://www.biorizon.es/?lang=
Fitoplancton Marino, S. ViR http://www.fitoplanctonmarino.cor
Monzén Biotec! VIV v https://mznbiotech.cor
Neoalgae Micro Seaweeds Product: ViR v http://neoalgae.€
Alfa Laval Corporate Al v https://www.alfalaval.con

Sweden AstaReal At ViR http://www.astareal.s
Simris Alg AB V|V v https://simrisalg.se/e
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800 Table 9.Current microalgal producers, uses and applicatip@3—240] (Cont.)

Uses/application

Continent Country Company ATBICI D EElG Website
. Algorigin ViR v https://algorigin.com/e|
Switzerland Buhler ACG v https://www.buhlergroup.cot
AlgaSpring B.V v v https://www.algaspring.r
CaribAlgas v VI V|V https://www.caribalgae.col
Corbior ViR v https://www.corbion.con
Evodos B.V ViR https://www.evodos.e
The Netherlands FeyeCoil ViR v http://www.feyecon.con
Hi, I'm Algae NARVARNS https://hiimalgae.com/
LGenr v https://lgem.n|
Ligoflu Ltd. v v http://ligoflux.com
Europe Omega Gree IV V|V https://www.omegagreen.
Turkey Akuamak: v https://www.akuamaks.com/¢
Algaceutical ViR v https://www.algaceuticals.co
Algaplex v http://algaplex.co.ul
Algenuity ViR https://www.algenuity.con
EnAlgae¢ V| V|V http://www.enalgae.e
United Kingdom Firglas Ltd v http://ffirglas.com
(UK) Kilbride Biotech Group Lt v http://kbbiotech.con
Membranolog v https://membranology.col
SuSeW v https://www.susewi.life
Varicon Aqua Solutions L v v http://www.variconaqua.cot
Xanthelle v http://www.xanthella.co.u
Oceani Australie Csirc ViR v https://www.csiro.at
Future of Algae for Food & Feed (FAF v https://www.futureofalgae.or
Nonfooc v v https://eathonfood.col
sbr Saalbio Refinari v v https://www.saalbio.cor
Techverse, In v http://techverseinc.cot
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Both Table 8 and Table 9, shows that in Europetugat represents one of the countries with the
greatest development in the areas of microalgagdu@img the biorefineries implementation)
since the edaphoclimatic conditions help in thiscpss. Portugal is the country in Europe with
the highest solar radiation, the main source of raaterial for microalgae. Several €O
production focus can also be identified that heipthe implementation of a microalgae
production system through the capture of ;,C&sentially from exhaust gases of several
industrial units. At the aquaculture level, Portughelter to the largest variety of microalgae
species in the world, specifically at the Algael€dion of the University of Coimbra (UC) with
4000 different strains of microalgae from freshwate its possession. Considering all these
factors, both in terms of biorefineries and in otimelustrial sectors (mainly food), Portugal has a
high potential, that can to be considered in theréusuch us one of the countries with the
greatest evolution and progress in terms of migaal whenever the edaphoclimatic conditions
don’t change significantly with the climate changee study entitled Evaluation of the Potential
of Biomass to Energy in Portugal - Conclusions ftben CONVERTE Project demonstrated that
there are 29,395 ha with potential for the productf microalgae, these areas being specifically

localized in mainland Portugal [241].

Considering again Table 8 and Table 9, can be woafl that with base the wide climatic
diversity presented in the USA, this is the counfigs most invested in the installation,
development and implementation of industrial umtthe American continent. Some of them are
for the production of biofuels (e.g. biodiesel, dtizanol, jet fuel, green crude oil, gasoline,
among others) from microalgae, just like in otharieties of products, in order to protect and
assure several commercial sectors. Among thesthaneutraceuticals, food and feed, fertilizers
production, wastewater treatment, £€@questration, algae oil and compounds extradtiealth
care, cosmeceuticals and pharmaceutical producigs dor the bioreactors production,

bioplastics, biostimulants, natural pigments, amotingrs.

Lastly, Table 9 shows that on the Asian continghg countries that represent the largest
investment in the microalgae sector are India asrdel, being once more fundamental the
Region's climate, main responsible for the develmmof microalgae. In India, the only

microalgae sectors that are not yet developed eaéithcare, pharmaceutical, beauty care and

bioproducts/biomaterials production (including lre israel case).
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It is important to refer that we believe that exisbre microalgae industrial installations in

several countries, however, the Table 9 represemdsge compilation of these industries type

around the world.

7. Conclusions

As described in detail along the text, microalgaltédchnology can be widely regarded as a

solution to solve humanity’s several challengesardigg environmental problems. However,

despite the commercialization of microalgae haslzeeeality in the last decades, still high costs

of production have directed final uses, mostlyhigh-added-value products and niche markets.

Therefore, as highlights of this review, can beatoded:

The utilization of residues/waste resources opengidow of opportunity that shouldn’t

be neglected in order to improve the cost-effeciss and sustainability of the
microalgae mass production, especially in what eamcbiofuels production;

The integration of residues/wastes treatment woticomitant microalgae production can
address the issues of both energy sustainabiliiyveaste recycling in the frame of the
circular bioeconomy, lowering microalgal productioosts related with bioenergy and
biofuel prices and competitiveness;

Concepts of circular economy (aimed at waste mimion or even elimination) and

bioeconomy (in which residues/wastes are used edsfecks for bio-based products,
biomaterials and biofuels, replacing fossil-baseddstocks) must increasingly be
considered. Thus, the sustainability issues enmmotal, social and economic are
addressed together;

Residues/wastes-based biorefineries involving maigae are expected to fulfill an

important part of the increasing demand for eneirfggls, chemicals and materials
worldwide, ideally towards de “zero waste dischamgmncept;

Microalgae products may cover a range from low r@uand high benefit specialties to

high volume and low-cost goods such as biofuels.

This review compiled the modern challenges affgctihe planet and how microalgae are

expected to solve them. Although the future for roatgae applications derived from waste

50



860
861
862
863
864
865

866

867
868
869
870
871
872

873

874

875
876
877

878
879
880

881
882
883

884
885
886

887

treatment seems to be promising, a long way st#ds to be paved in order to be an important
part of the modern industry. More research eff@tsl investments in different fields of
knowledge are required, from the biological, bicolel and engineering perspectives, among
others. The proactive collaboration and engagerotwlifferent drivers such as technologists,
economists, engineers, entrepreneurs and poliicene expected to be crucial to pushing

forward microalgae-based businesses towards aeasicigly greener society.
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Highlights

» Old pollution problems were highlighted and new solutions are proposed
* Microalgae technologies for pollution control have been proposed

» Bioenergy production routes were presented

* New solutions for bioproducts/ biofuels production were presented

* Prospects for microagae biorefineries application were proposed and discussed
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Table 1. Results and characteristics of the studies on atmospheric emissions utilization as a CO, source for microal gae cultivation.

Growth CO, Biomass
Microalgae strain ; Reactor CO; source concentration productivity Reference
medium 1 -1
(%) (gL d")
Consortium Domestic Exhaust gas
(predominanceof  sewage after HRAP of gasoline 5.9 6.12gm?d* [90]
C.wulgaris) septic tank combustion
Nannochloropsis HRAP Coal-fired 11-14 26.4 g2 d* [91]
oculata power plant
: 10L Glass Cement flue
Tetraselmis sp. Flasks gas 12-15 0.057 [92]
Soirulina sp. 0.08
Sc:igﬁ%ﬁgus Tubular Thermoelectric 12 0.05 [93]
Photobioreator industry
Synechococcus . 0.04
nidulans Synthetic '
Chloréla vulgaris medium 0.09
Nannoc_hloropss Flat-Panel Coal-fired 10- 15 0.078 [94]
gaditana reactor powerplant
Bubble column  Coke oven
Chlorella sp. Photobiorreator Sl 23 0.13 [95]
Desmodesmus 3L Cement kiln o5 0.227 [96]

abundans Photobioreactor dust




Table 2. Microalgae potential for wastewater treatment.

Efficiency removals (%) Biomass
Effluent Microalgae strain Reactor Nitr ooen Phosphor us Organic productivity Reference
o P M atter (gTSSm?d?)
Rural Consortium: 2
streams with Soirogyra sp., Wl—ilti?illaa(nz]&rgas 18% of 65.8% of TPand -32.8% of [102]
nutrient Cymbella sp and a . TN 68.1% of PO,>  total COD
; . gae matrix
pollution Navicula sp.
HRAP 20 cm depth
(2.23m?) with CO, 69.3-78.9 19.2-34.3 - 2.1-101
Primary C_onsorti um: addition
saitled Mucidosphaerium HRAP 30 cm depth
d : pulchellum (85% of (2.23 m?) withCO, 63.6-77.4 16.2-33.8 - 35-101 [103]
omestic b .
wastewater undance) addition
HRAP 40 cm depth
(2.23m?) withCO, 585-75.8 11.6- 26.7 - 48-134
addition
Primary Consortium: 81.8 -
settled Micractinium sp. HRAP (1.25 ha) 92.1% of 44-1159gVSS
domestic and Desmodesmus ~ with CO, addition T4 140-24.4 dissolved m?d? [971
wastewater sp. BODg
Brewery Scenedesmus Bubble column 13 - 26% of 80.5-224.3gVSS
wastewater obliquus PBR(5L) 67-97 orthophosphate 55-74 Lt d? [104]
Livestock Chloréla sp. and Algal biofilm 98% of
wastewater Phormidium sp. reactor (630 cm?) TAN 93% of TDP 87 105 [105]
Chlordlavulgaris, 69.4 -
Lendfll Drua®,  prap27n?)  w3-087 493 i o aompor 927239V [106]
. COD
guadricauda,
Pre-treated Consortium:
diluted Chlamydomonas, 2 62 - 88% 57 - 67 of 2 11
swine Chlorella and HRAP (1.5 1) of TKN i COD 57-27.7gm*d [107]
manure Nitzschia




Table 2. Microagae potential for wastewater treatment. (Cont.)

Microalgae

Effluent Srain

Reactor

Efficiency removals (%)

Nitrogen

Phosphorus

Organic
M atter

Biomass
productivity
(gTSSm?d?

Reference

Consortium:
Cyanophyceae
Chlorophycean
(Micractinium
sp., Pediastrum

sp., Oocystis

0.,
Scenedesmus
P.)

Domestic
sewage after
facultative
pond

HRAP (223 )

76.5

17.17% of
orthophosphate

36.63
of BODs

15.8

HRAP (223 )
addition
recovered from
biogas

68.8

16.7% of
orthophosphate

48.89
of BODs

141

[108]

Consortium:;
Chlorella sp.
(34% of
abundance)
Desmodesmus
sp. (36% of

Domestic abundance)

HRAP (3.3 m?)

71

14

52

11.4 g VSS m?
d-l

sewage after

UASB reactor Consortium:

Chlorella sp.
(40% of
abundance)
Desmodesmus
sp. (46% of
abundance)

HRAP (3.3 md)
after UV
disinfection

74

19

55

9.3gVSSm?
d-l

[109]

TN = tota nitrogen; TAN = tota ammonia nitrogen; TP = total phosphorus; SP = soluble phosphorus; TDP = total dissolved phosphorus; DRP = dissolved
reactive phosphorus; COD = chemical oxygen demand; BODs = biochemical oxygen demand; TSS = total suspended solids; VSS = volatile suspended solids.



Table 3.Comparison of some sources of biodiesel: terréstriaps vs microalgae
[73,130-132].

Crop QOil yield (L ha' yr™)
Corn 172
Hemp 363
Cotton 325
Soybean 446
Mustard 572
Camelina 915
Seed 952
Sunflower 1,190
Castor 1,307
Canola 1,892
Coconut 2,689
Jatropha 5,950
Oil Palm 12,000
Microalgae (low oil) 58,700
Microalgae (medium oil) 97,800

Microalgae (high oil) 136,900




Table 4. Lipid potential production from microalgaiemass.

Lioht Liaht Biomass Biomass Lipid
Substrate Reactor Strains (umol gm.2 s soug: ce concentration  production  production Reference
(gL (@L*d?)  (gL™dY
Synthetic culture medium
Bold's Basal Chlordla sp. e
Medium Flasks (UMACCO50) 40 Artificial NR 0.60 0.229 [145]
Chlordla sp. 0.594 1.44 0.1901
Synthetic P'?S”Okttr?rtit'(”x 0.640 0.28 0.0168
medium (2) h
Synechococcus 0.401 0.20 0.0272
nidulans
Scenedesmus
AcUMinatUS 0.640 0.42 0.0571
Pediastrum 0.528 0.36 0.0623
tetras
Flasks Ch'a”;ys‘:oom“a ~ 8¢° Artificial 0.536 0.39 0.0834  [146]
Synthetic La -
. gerheimia
medium (WC) longiseta 0.460 0.21 0.0239
Synechococcus 0.560 0.69 0.0938
nidulans
Monoraphidiu 0.296 0.15 0.0298

m contortum




Table 4. Lipid potential production from microalgaiemass. (Cont.)

Lioht Liaht Biomass Biomass Lipid
Substrate Reactor Strains (umol gm.2 s soug: ce concentration  production  production Reference
(gL™) (gL*dh)  (gL™d?)
S”ecggcyg's 1.295 0.39 0.0542
Synthetic Flasks ~ romeria ~ 80" Artificial 0.542 0.22 0.0244  [146]
medium (C) gracilis
Aphaggthece 0.458 0.29 0.0299
Synthetic Chlordla Internal light 0.005'-
medium PBR minutissima NR (Blue LED) 0p4N-0625 0.062 0.0089 [147]
Artificial Airlift Chlorella
seawater f/2 PBR minutissima 133 Artificial NR 0.1886 0.0928 [148]
medium 26a
Synthetic Chlorela sp. Natural
medium BG11 BC-PBR EC2 IITG 100-1,700 sunlight 8.6 14 0.753 [149]
Wastewater culture medium
Municipal Chlamydomona
wastewater  Biocoil anmydomor 220 Avrtificial NR 2 0.505 [150]
sreinhardtii
(Centrate)
Municipal
wastewater 1.03 0.1665 0.04138
Secondary
Municipal Flasks ~ chiorella ~140 Artificial [151]
wastewater vulgaris
Secondary (75%) 1.11 0.13876 0.04559

+ primary (25%)




Table 4. Lipid potential production from microalgaiemass. (Cont.)

Lioht Liaht Biomass Biomass Lipid
Substrate Reactor Strains ( molgm'zs'l) sou%ce concentration  production  production Reference
" (gL™ (gL*d)  (gLtdY
Chlordla
Municipal MPBR vulgaris 1.84 0.0963 0.02576
wastewater (continuo 112.3 Artificial [152]
Secondar us
y ) Scﬁ'ﬁﬁ?ﬁ?s 172 0.0888 0.02957
Sewage Golenkini 1.9 0.07089 0.01562
VBCPBR S%GE”C_”l'Z ~60 Artificial [153]
BG11 2.05 0.07409 0.04343
Sewage Scenedesmus - N .
Treatment Plant Flasks . ISTGA1 ~50 Atrtificial 1.81 NR 0.452 [154]
Cattle Airlift
wastewater PBR 3.22-3.70 0.358 0.062-0.064
after previous (batch) Spenedesmus
erprevious - T 7 ohliquus ~ 60 Avrtificial [11]
digestionina —Airlift  (Acoj 204/07)
hybrid anaerobic  pgRr
us)
Tertiary
. Botryococcus 490 e
Livestock SBR . . Artificial ~2.6 0.3156 N.R. [155]
wastewater braunii (38.75 W nif)




Table 4. Lipid potential production from microalgaiemass. (Cont.)

Liaht Liaht Biomass Biomass Lipid
Substrate Reactor Strains (umol gm.2 sY) sougr ce concentration  production  production Reference
" (gL (gL*dh)  (gL*d?
Mixed:
. . Desmodesmus
Plggselmrl;logas FPCP  sp.Badillus 400 Artificial NR 0.47 0.07431 [156]
and
Pseudomonas
PBR Chlordlla sp. 300 Artificial ~8 0.681 0.155 [157]
Piggery
wastewater Chlorella Natural 57.87gm? 27.25g m?
PSBR vulgaris 793.5 sunlight NR ot ot [158]
Algal bloom Flasks Chiordla 200 Artificial 4.36 0.436 0.188 [159]
hydrolysate pyrenoidosa
, , 3,366-3,978 Natural
Dairy PBR Ascochlorissp W 2 sunlight 2.04 0.292 0.098 [160]
Paper and Scenedesmus 240 Artificial 8.22 0.685 0.137 [161]
pulp acuminatus (max value)
. . 0.0z N
Olive-oil PBR Chlordlla 359 Em2s!  Artificial NR @25mgrt 09103 e
mill pyrenoidosa h) gL™d
Meal-processing
industry (primary Scenedesmus 4 997 9 qgp  Nawral 1169 (max e 55 1g-37
sp. sunlight value)
effluent)
Mear-processin¢ BC-PBR [12]
industry Scenedesmus Natural
(secondary sp. 1,269 2,254 sunlight 0.225-0.371 10.5-12.1 0.3-0.8
effluent)

2 Original article was written in kLux Original article was written inE m? s; PBR - Photobioreactor ; BC-PBR - Bubble ColummiBhioreactor; PSBR -
Porous substratum biofilm reactor; SBR - Benchessaljuencing batch reactor; FPCP - Flat-Plate Qamiis Photobioreactor; HRP - High rate ponds; MPBR

Membrane Photobioreactor; BCPBR - Vertical bubldksnin photo-bioreactor; NR — Not reported.



Table 5. Microalgae potential for biogas production and strategies applied for yield improvement.

Microalgae Growth Reactor and g Biogasyield
strain medium conditions Pretreatment  Co-digestion (m°* CH.kg'V9) Reference
Chlorella sp. . o
(61.2% ﬁgﬁﬁi‘ 100 mL t‘;' ﬁs- 36°C, No No 144 L gt d* [176]
abundance) alc
. With primary
Domestic 2L CSTR, 37 °C, HRT 0.33
Chlorella sp. N ' No sludge [177]
sewage = 20 days NO 0.20
12.4L AnMBR, 35 °C, 3 -1
Scenedesmus sp. HRT = 1550 days " 0.17 m’ CH4 kg™ COD
Domestic 12.4L AnMBR, 35 °C, 3 -1
Chlorella sp. sewage HRT = 30 days No 0.24 m’ CHs kg™ COD [178]
Scenedesmus sp. 14L AnMBR, 35 °C, With primary 0.21m° CHs kg™ COD
Chlorella sp. HRT = 15-50 days sludge 0.23 m® CH,4 kg™ COD
14L CSTR+ AnMBR,
39°C, HRT = 7-28 0.185
. days
Scenedesmus sp. Dg;l:ﬂéc 14L ANMBR + CSTR, No No 035 [179]
9 39°C, HRT = 30 days '
14L CSTR+ CSTR, 39
°C, HRT = 15 days 0-305
Chicken R No 0.14
Chlorella 1067 manure 200 mL bcf‘TrIT 35°C, No With chicken 0.24 [180]
digestate alc manure '
No 0.13
Synthetic 500 mL flasks, 35°C, Enzymatic +
Chiorella sp. BG11 medium batch lipid extraction ~ With grass 0.17 [181]
2.8L Hybrid ascending No 0.08
chgﬁdﬁgus Wi;tefa",’ve;%’er reactor, 37 °C, HRT = No With olive mill 0.25 [187]
a 6 days Thermal wastewater 0.21

Table 5. Microalgae potential for biogas production and strategies applied for yield improvement. (Cont.)



Microalgae Growth Reactor and [T Biogasyield
strain medium conditions Pretreatment  Co-digestion (m® CH. kg VS) Reference
343L UASB, No 0.15
: . Domestic environmental With primary
Kirchneriella p. sewage conditions, HRT = 7 No domestic 021 [183]
hours sewage
, No 0.26
Chlordla sp. and Synthetic 160 mL flaks, 35°C, Thermal + No [184]
Scenedesmus sp. wastewater batch alkaline 0.33
Stigeoclonium sp No 0.11
O . Thermal 0.181
Monoraphidium Domestic 160 mL flaks, 35°C
. ) ' : Hydrother mal No 0.135 185
sp.(,j NItZ§Ch: asp. sewage batch Ii//Ii Crowave 0.128 [189]
and Navicula sp. Ultrasound 0.114

CSTR = continuous stirred tank reactor; AnNMBR = anaerobic membrane bioreactor; UASB = upflow anaerobic sudge blanket reactor; HRT = hydraulic retention time;
VS= volatile solids.



Table 6. Operational conditions and bio-oil yiatddifferent studies of microalgae HTL.

) Biomass composition (%) Operational conditions Boi-oil
Microalgae Growth Temperature Percentage yield (%  Reference
strain medium Protein Sugar Lipid Ash °C) Time (min.) of solids Catalyst dry basis)
Natural = 2 5 11.7 67 - 350 120 4 HZSM- 1600 [195]
Lake 5 zeolite
28.3 5.4 23.3 40.0 15 10 44.4(a) [75]
Consortium 300 NA
27.2 23.6 1.7 475 60 25 49.9(a) [187]
Wastewater
48.6 11.1 78 259 350 120 66  H4SM- e [196]
5 zeolite
Scenedesmus 54.6 i 123 115 300 60 7 NaOH  24.6 [197]
obliquus
36.4 12.4 19.0 8.91 275 30 01:10 - 314 [198]
Nannochloropsis
40.5 - 219 44 250 60 6 - 28.9 [199]
N.gaditana ~ Synthetic  43.8 15.7 35,5 45 320 10 01:10 CaO 49.7 [200]
medium i
Heating rate of 10
C.wulgaris 61.8 26.7 23 8.7 C.mirit min. 42.1
350 Removed when it 5.5-6.8 - - [201]
Spirulina 70.2 19.3 11 7.7 reached reaction 36.2

temperature

G. sulphuraria Wastewater 41.0 10.5 58 42.0 350 6 5 - 28.1 [202]




Table 7. Microalgae biomass conversion by supercritical processes.

Strain Super critical condition Biodiesd yield (%) Reference
Scenedesmus sp SC-CGC,: Lysozyme treatment + 50 °C, 500 bar, 13 ml™?, 30 mir 12.5 (dw [205]
Scenedesmus SC-CQ,: Bead beating + 60 °C, 306 bar, 65 °C, 30 MPagi§anol c-solvent,
obliquus 90 min 18.15 (dw) [206]
Nannochloropsissp  SC-CQO,: 50 °C, 200 bar and 2¢ 62 [207]
Nannochloropsis . A . .

(CCMP1776) Methanol to biomass (12:1): 1200 psi, 30 min 85.75 [208]
Nangggitllgrrlgpss Supercritical methanol to algae ratio (10:1): 28%-2C, 50 min 45.8 (FAME) [209]
Nangggﬂl;r:;)pss Methanol to wet biomass (vol. dvy.ratio 6:1: temperature 225 °C, 90 min 59.28 [210]

Nannochloropsissp  Methanol tcalgae ratio (10:1) at supercritical conditions: 265 50 mir 21.79 (dw [211]
ChIoreII_a Methanol to oil ratio (19:1): 320 °C, 152 bar, 3ihm 90.8 [212]
protothecoides
. Supercritical methanol without catalyst and inpinesence cTiO, and SrTiC 16.65 mg i
Chlordlawulgaris nanocatalysts, 270 °C, pressure range of 9-10 B®Pain (FAME) [213]

SC—-CQ = reaction in supercritical GQdw = dry weight.



Table 8. Microalgal biorefineries all over the world [230].

Continent Country Company Techlr;\oll(;)glcal Uses/applications Website
Brazil and Commercial/ Microal gae production and cosmetics
United State of Solazyme Elaoshi products, bioplastics, ails, http://solazymeindustrials.com/
America (USA) agsnip encapsulated lubricant and fuels
Personal care ingredients, foods,
Ameri Algenol biofuels (from ethanol to crude oils), https:.//www.al genol .com/
merica ) o .
biofertilizers and biostimulants
USA Demo Microalgae production and other
BioProcess Algae, products: feed (including fish), . : I
LLC chemicals compost, nutraceuticals, http://www.biopro gae.con/
ethanol and biodiesel
Denmark Ka un(_jbo_rg Demo Waste\/\{ater trestegandl microalgae http://www.symbiosis.dk/en/
Symbiosis production
Bioengineering projects for the
A4F Algaefor Industrial/De  industrial microa gae production, ,
| ) : ps. .
future mo/Pilot biofuels, microal gae-based products hitps://a4f.pt/en
and applications
Algafarm (A4F Commercial/ Microalgae (Chlorella) biomass
Portugal Algae for future) Demo production and others by-products https://adf.pt/en/projectd/a gafarm
Secil/Allmicroalgae (utilized for biofuels)
Algal biomass for biofuels
Buggypower production and other products (fatty _
Eurape (Portugal), Lda Demo acids, antioxidants, minerals, hitp://www.buggypower.ew
pigments, vitamins and others)
Microalgae production for
: agriculture, aguaculture, food and ,
Spain AlgaEnergy feed, naturdl extracts, cosmetics, https://www.a gaenerqy.com/
gardening and biofudls
TNO-Valorie Rlot Biofuels (biodiesel) and by-products ~ NRS/Mww.tno.nl/media/2818/tn
o-valorie-flyer-uk.pdf
The Netherlands Devel op technol ogies both on alab
AlgaePARC and pilot scale for microalgae http://www.al gaeparc.com/

production and by-products




Table 9. Current microalgal producers, uses and applicatipB3—240].

: Uses/applications .

Continent Country Company Bl Cl D E FlG Website
AlgaeCan Biotech Ltd. v v https://algaecan.com/
EBPI-Environmental Bio-Detection Products v http://www.ebpi-kits.com/

Canada Inc.

Symbiotic EnviroTek Inc. v ViR https://symenv.com/
ABPDU-Advanced Biofuels and Bioproducts NVARVARNAING https://abpdu.lbl.gov/
Process Development Unit
Accelergy v http://www.accelergy.com/
ACENT Laboratories LLC V|V http://acentlabs.com/
Agcore Technologies ViR v http://www.agcoretech.net/index.html
Algae Floating Systems, Inc. v v http://www.algaefloatingsystems.com/
AlgaBT LLC ViRY% https://www.algabt.com/
Algepower, Inc. v v v http://algepower.com/
Algae Systems LLC ViR http://algaesystems.com/
Algaewheel v https://algaewheel.com/
Algenesis https://www.algenesismaterials.com/

America Algeternal technologies, LLC v v https://algeternal.com/
AlgiKnit Inc. https://www.algiknit.com/

United State of BioGreen Synergy ViR v mpfllwww.biogreensvnerqv.com/index.html
America (USA) Cellana Inc. v v http://cellana.com/

Checkerspot, Inc. v https://checkerspot.com/
CLEARAS Water Recovery, Inc. v https://www.clearaswater.com/
Culture Biosystems v ViR https://www.culturebiosystems.com/
Cyanotech Corporation v v https://www.cyanotech.com/
Desert Sweet BioFuels v v http://desertsweetbiofuels.com/
Earthrise Nutritionals, LLC v https://www.earthrise.com/
ENERGYhbits Inc. v https://www.energybits.com/
Exxon Mobil Corporation v https://corporate.exxonmobil.com/
Global Algae Innovations, Inc. v http://www.globalgae.com/
Global Thermostat V| V|V https://globalthermostat.com/
Gross-Wen Technologies V|V https://algae.com/
Heliae Development, LLC v https://heliaeglobal.com/
Manta Biofuel V|V v https://mantabiofuel.com/




Table 9. Current microalgal producers, uses and applicatjpB3—240] (Cont.)

: Uses/applications .
Continent Country Company Bl Cl D E FlG Website
MicroBio Engineering Inc. v V| V|V https://microbioengineering.com/
NCMA Bigelow Laboratory for Ocean Science v https://ncma.bigelow.org/cms/index/index/
OVIVO USA, LLC v https://www.ovivowater.com/
Phenometrics, Inc. v https://www.phenometricsinc.com/
. Qualitas Health v v https://www.qualitas-health.com/
America USA Raven Engineered Films v https://ravenefd.com/
Spira, Inc. V|V https://www.spirainc.com/
Synthetic Genomics Inc. Vi https://syntheticgenomics.com/
Valensa International v https://valensa.com/
Zivo Bioscience Inc. V|V https://www.zivobioscience.com/
Brunei MC Biotech Sdn. Bhd. v v https://mcbiotech.com.bn/
Oilgae V| V|V http://www.oilgae.com/
India Parry Nutraceuticals v http://www.parrynutraceuticals.com/
ProlgaeSpirulina Supplies Pvt. Ldt. v v https://www.prolgae.com/
SNAP-Natural & Alginate v https://snapalginate.com/
Indonesia Neoalgae V|V https://neoalgae-halal.com/
Asia Iran QMAB-Qeshm Microalgae Biorefinery VIV V|V http://gmabco.com/
Algatech v v https://www.algatech.com/
Israel Bre_:vel VI V| V|V mps://brevel.c_o.ill _
UniVerve v https://www.univerve.co.il/
Yemoja Ltd. v https://yemojaltd.com/
Japan Japan Algae Co., Ltd. v v http://www.sp100.com/
Euglena v v https://www.euglena.jp/
Austria Ecoduna ViR% https://www.ecoduna.com/en/
MicroBioTests v https://www.microbiotests.com/
Belgium Proviron industries v http://www.proviron.com/en
Europe Tomalgae C.V.B.A v http://www.tomalgae.com/
Czech Republic Algamo s.r.o ViR https://www.algamo.cz/
Denmark Ocean Rainforest v http://www.oceanrainforest.com/
Finland Redono v https://www.redono.fi/




Table 9. Current microalgal producers, uses and applicatjpB3—240] (Cont.)

Uses/applications

Continent Country Company ATBICIDIEIEIG Website
Algama v https://www.algamafoods.com/
AlgoLight V|V http://www.algolight.com/
AlgoSource Group v https://algosource.com/en/
Bioréa SAS V| Vv V|V https://www.biorea.fr/en/
Cyane v v https://www.cyane.eu/en/
Ennesys v http://www.ennesys.com/en/
France Fermentalg V|V https://www.fermentalg.com/
Greensea SAS v http://greensea.fr/en/
Microphyt V]|V http://www.microphyt.eu/en/
Naturis Pharma SRL v https://www.naturispharma.com/
Odontella SAS v https://www.odontella.com/fr/home-2/
Olmix Group V|V https://www.olmix.com/
Synoxis Algae v https://www.synoxis-algae.com/
Europe Algoliner GmbH & Co. KG v https://www.algoliner.de/home
Astaxa GmbH v http://www.algae-biotech.com/
bbe Moldaenke GmbH v v https://www.bbe-moldaenke.de/en/
Germany CellDEG GmbH v https://celldeg.com/features/technology/
GBEX-Global Biomass Exchange v v https://www.gbex.de/en/
Ludwig Bolkow Campus V|V https://www.lb-campus.com/
MIAL GmbH v v http://mial.eu/
Subitec GmbH v https://subitec.com/en
Iceland Algalif Iceland ehf. v v https://algalif.com/
Archimede Ricerche Srl V|V http://www.archimedericerche.com/
Biospira Srl v v https://www.biospira.it/en/
Italy F & M Fotosintetica & Microbiologica S.r.| v http://www.femonline.it/
Severino Becagli SRL V|V v https://www.severinobecagli.it/en/
Tolo Green SRL V|V https://www.tologreen.it/en/
Norway MicroA v V|V https://microa.no/




Table 9. Current microalgal producers, uses and applicatjpB3—240] (Cont.)

Uses/applications

Continent Country Company AB C D EEG Website

Alga,O, Lda. V4 https://alga2o.pt/index.php/pt/
Algae Tagus - Producéo de Microalgas v https://algatec.eu/en/production/
Allmicroalgae-Natural Products ViR http://www.allmicroalgae.com/
Aqualgae SL VIiVIVIV http://agualgae.com/en/home/
Bluemater v https://www.bluemater.com/
Biotrend - Inovagéo e Engenharia em v http://www.biotrend.pt/
Biotecnologia
Lusalgae VIV http://lusalgae.pt/
Madebiotech v https://www.madebiotech.com/

Portugal Naturextracts v https://naturextracts.com/
Nutrally Algae Solutions SL v https://www.nutrally.net/es
Pagarete Microalgae Solutions v v https://www.pagaretems.com/
Phytoalgae v http://phytoalgae.pt/
PhytoBloom (Necton) ViR ViR% http://www.necton.pt/
Spirulina da Serra - Monchigue v v https://spirulina-da-serra.com/

Europe Spirulina Portugal v v https://www.spirulinaportugal.com/

Stellarialga v v https://www.stellarialga.com/
Tomar Natural v v https://tomarnatural.pt/
5essentia spirulina azores v v https://5essentia.com/

Slovenia AlgEn D.o.o VIVIVIV| VY https://algen.eu/
AgriAlgae® https://www.agrialgae.es/?lang=en
Algalimento SL v http://www.algalimento.com/
Algasol ViVIVIV http://algasolrenewables.com/

Spain Algatek v v http://algatek.co.uk/

Biorizon Biotech v v http://www.biorizon.es/?lang=en
Fitoplancton Marino, S.L NARNG http://www.fitoplanctonmarino.com/
Monzoén Biotech V|V v https://mznbiotech.com/
Neoalgae Micro Seaweeds Products SL ViR v http://neoalgae.es/
Alfa Laval Corporate AB v https://www.alfalaval.com/

Sweden AstaReal AB VIV http://www.astareal.se/
Simris Alg AB ViR v https://simrisalg.se/en/




Table 9. Current microalgal producers, uses and applicatjpB3—240] (Cont.)

. Uses/applications .
Continent Country Company ABI C D EEG Website
Switzerland Algorigin ViR v https://algorigin.com/en/
Buhler AG v https://www.buhlergroup.com/
AlgaSpring B.V. v v https://www.algaspring.nl/
CaribAlgae v VIV VY https://www.caribalgae.com/
Corbion ViR v https://www.corbion.com/
Evodos B.V. ViR https://www.evodos.eu/
The Netherlands FeyeCon ViR v http://www.feyecon.com/
Hi, I'm Algae VARNAING https://hiimalgae.com/nl
LGem v https://lgem.nl/
Ligoflu Ltd. v v http://ligoflux.com/
Europe Omega Green VI VIV VY https://www.omegagreen.nl/
Turkey Akuamaks v https://www.akuamaks.com/en/
Algaceuticals Vil v https://www.algaceuticals.com/
Algaplex v http://algaplex.co.uk/
Algenuity ViR https://www.algenuity.com/
EnAlgae VvV http://www.enalgae.eu/
United Kingdom Firglas Ltd. v http://firglas.com/
(UK) Kilbride Biotech Group Ltd v http://kbbiotech.com/
Membranology v https://membranology.com/
SuSeWi v https://www.susewi.life/
Varicon Aqua Solutions Ltd v v http://www.variconagua.com/
Xanthella v http://www.xanthella.co.uk/
Oceania Australia Csiro ViR v https://www.csiro.au/
Future of Algae for Food & Feed (FAFF) v https://www.futureofalgae.org/
Nonfood v v https://eatnonfood.com/
sbr Saalbio Refinaries v v https://www.saalbio.com/
Techverse, Inc. v http://techverseinc.com/




