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Geothermal Energy is a very attractive source of naturally-occurring green renewable energy. Exploiting
this natural resource is straightforward and causes almost no ill effects to the environment. But, while
geothermal does not suffer the intermittence of other renewable sources, its extraction efficiency is fairly
modest as compared to other sources. As a result, there has been significant interest recently in hybrid
systems that integrate geothermal and other forms of energy to increase the output efficiency. This work
will survey the different possible integrations involving geothermal energy. A review of the literature
shows that the most common hybrid systems implementation involve the integration of geothermal
with solar (45% of systems) followed by the integration of a cooling tower into the geothermal system
(30% of systems). This work will also investigate the applications for geothermal hybrids and show that
44% of systems are designed for heating applications. Another 44% are used for cooling while only 12%
are designed for electrical power generation. Complexity of control remains as the main obstacle facing
hybrid multi-source energy systems including those involving geothermal energy.

Power generation

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

As the population of our planet increases, so does the need and
demand for energy [1]. Until recently, this demand has been met
mostly through the consumption of traditional mainly fossil-based
fuels. The consumption of these carbon based fuels has been shown
to be directly linked to global warming, pollution and a deteriora-
tion of air quality. This issue is of particular concern due to its
widespread effect. The latest report by the World Health Organi-
zation (WHO) released in May 2018 states that “90 percent of people
worldwide breathe polluted air” [2]. Governments around the world
are increasingly investing in renewable energy sources (RES) as
possible replacements (to some extent) for fossil-based fuels and
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their ill effects on the environment. RES are able to meet a signif-
icant portion of the energy demand without the harmful green-
house gases and the associated pollution. All forms of RES are being
investigated: solar (both photovoltaic and thermal), wind, ocean,
marine, hydropower, as well as geothermal and biomass among
others. One of the issues affecting most RES is their stochastic
intermittent nature. The energy source is not available all the time,
and sometimes it is not sufficient even when available.

This is where geothermal energy has an advantage over most
other RES, its availability is approximately deterministic and in-
dependent of ambient conditions. While it may be geographically
limited, wherever geothermal energy is present it is useable all the
time at approximately the same level. Geothermal energy has the
added advantage of actually attaining lower operating cost
compared to traditional systems [3,4].

Another advantage of geothermal energy is that the energy
reservoir (the ground) can act as a source as well as a sink


mailto:mohamad.ramadan@liu.edu.lb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2019.09.140&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2019.09.140
https://doi.org/10.1016/j.renene.2019.09.140
https://doi.org/10.1016/j.renene.2019.09.140

2004 A.G. Olabi et al. / Renewable Energy 147 (2020) 2003—2012

depending on the need. Compared to air, soil has a much higher
heat capacity. As a result, seasonal variations of soil temperature
deep in the ground are much lower than those of the surrounding
ambient air. At depths higher than about 20 m, soil temperature
becomes approximately constant year-round. This makes deep
earth warmer than ambient air in the winter and cooler in the
summer. Ground heat exchangers have been designed to leverage
this air-to-soil differential to condition the ambient air
temperature.

There are three different configurations for a ground heat ex-
change: vertical, horizontal and spiral (see Fig. 1). The type of
configuration depends mainly on available space and soil condi-
tions. The horizontal configuration is typically constructed at a
depth less than 1.5m [5], while the vertical configuration
(commonly known as the borehole heat exchanger (BHE)) typically
reaches depths more than 50 m [6]. Under appropriate circum-
stances, it is possible to create a combination of vertical and hori-
zontal configurations that will produce better thermal performance
[7]. The ground heat exchanger is usually surrounded by grout
material (such as cement or a mixture of sand and bentonite) to
protect ground water and improve heat transfer. Geothermal en-
ergy is typically considered in hybrid combinations because it is
characterized as a low grade source of energy. Adding a geothermal
source serves mainly to decrease the operating cost and environ-
mental effects compared to conventional plants. This paper dis-
cusses applicable combinations of geothermal energy with other
sources while presenting the differentiating factors between the
different hybrid combinations.

2. Geothermal power plant

Geothermal Energy can be used as a source for power genera-
tion plants through the use of an Organic Rankine Cycle (ORC) as an
example. Replacing conventional plants with geothermal ones is an
attractive proposal for implementing ecofriendly systems [8].
Geothermal plants produce far lower emissions as compared to
fossil fuels for the same given load. However, geothermal energy is
characterized as a low grade energy source and generally suffers
from low energy extraction efficiency. Additional sources of energy
can be combined through a hybrid system to improve the efficiency
and meet the requirements that geothermal energy alone may not
able to deliver [9,10].

Geothermal energy systems used in heating (or cooling) domi-
nated applications suffer an efficiency degradation due to heat
depletion (or accumulation) that may lead to eventual system

(a) (b)

failure or ground fouling [11—13]. Adding a hybrid power source
will allow time for recovery and thermal build-up (or dissemina-
tion). In addition, hybridization helps in decreasing the required
capital and operating costs, and hence shortening the payback
period of geothermal energy installations as well as addressing
high peak loads [14,15]. This could be achieved by taking advantage
of optimal conditions for each source in the hybrid combination.
Geothermal energy systems require a significant upfront initial
investment. On the other hand, they require very low operational
running costs. A balance can be achieved by incorporating a second
abundantly available energy source into the hybrid plant. The
expense profiles of the two sources can be balanced against each
other to lower the overall costs of the hybrid plant.

3. Hybrid geothermal systems (HGS)s

Hybrid Geothermal Systems (HGS) used for heating and cooling
applications are commonly encountered in the form of a hybrid
ground source heat pump (HGSHP) [16] or a hybrid ground coupled
heat pump (HGCHP) [17,18]. Fig. 2 shows the difference between
the conventional and hybrid ground source heat pump (GSHP)
designs.

Another type of ground coupled heat exchanger (GCHE) is the
earth air heat exchanger (EAHE) based on circulating fresh air un-
derground using a blower as shown in Fig. 3 [20].

M. Alavy et al. [21] investigated the use of an HGSHP for district
heating and cooling through a common water loop distribution.
The system showed high potential that depends mainly on building
size and type as well as weather conditions and location. One of the
most important parameters to be studied in these hybrid systems is
the ratio between the heating and cooling loads in order to design
the optimum ground regeneration cycle. Regenerating the ground
potential can be achieved by adding a second energy source as
mentioned above, or through a traditional heating, ventilating and
air conditioning (HVAC) system based on an air source heat pump
(ASHP). On the other hand, it is possible to achieve the required
regeneration using a dry cooler. The cooler can be used to inject
ambient heat in to the cold bore field in the winter and extract it
from the warm bore field in the summer. This would require the use
of a dual bore field [22]. Choosing the best hybrid system is not
straightforward because each HGS has to be considered from a
different perspective such as initial or operating cost [23].

Geothermal energy can be coupled with many different energy
sources depending mainly on availability and effect on system’s
performance. In the following sub-sections, we will discuss a

Fig. 1. GHE configurations; (a) vertical, (b) horizontal and (c) spiral.
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number of possible integrations that involve geothermal energy
systems.

3.1. Integration of geothermal and solar energy systems

There is a number of ways that solar and geothermal energies
can be integrated to form a hybrid energy system [24]. For example,
thermal solar collectors can be used to generate additional heat
energy to shore-up any deficit from the geothermal system. A
common hybrid solar-geothermal combination is the solar assisted
ground source heat pump (SAGSHP) [25]. While there may be
different implementations, the main objective of this combination
is the reduction in annual operating costs and CO, emissions.
Thermal solar collectors can also be used for ground heat recovery
and help stabilize the geothermal system. Conversely, a geothermal
heat exchanger can be used as a second heat source to support a
solar thermal plant [26—28]. This combination has the ability to
increase the overall efficiency by 3.6% compared to the combined
individual systems [29]. Another motivation for integrating
geothermal and solar thermal systems might be the need to in-
crease the steam flow in the geothermal cycle [30]. Researchers
have been able to reduce the initial costs associated with a
geothermal system by using a solar assisted ground source heat
pump to reduce the required borehole heat exchanger field size. It

is also possible to use a supercritical ORC based on a geothermal
system integrated with a concentrated solar power system to in-
crease peak loads for demand-side management [31,32]. While
most hybrid systems are designed for heating applications, it is also
possible to integrate a ground heat exchanger with a solar cooling
system to improve its performance [33].

Solar thermal systems suffer from seasonal deterioration in
energy output depending on the sun’s position and ambient air
temperatures. One way to improve the seasonal coefficients of
performance is to use the geothermal system as a seasonal energy
storage. A vertical ground heat exchanger may be used to store
seasonal excess energy generated by a solar thermal system. The
system would be composed of solar collectors, short-term thermal
storage devices, a heat pump, and a borehole heat exchanger for
long-term storage. A staged series of ground heat exchangers can
be used to reduce temperature differences and maintain the
effectiveness of the storage system for an elongated period [34].
Ground water flow may be the main limiting factor against the use
of such an integration [35]. Ground water flow levels at the site
must be low enough to ensure that the induced thermal plume is
not dissipated. Researchers have determined that seasonal heat
storage is not reliable for solving the thermal imbalance if ground
water seepage velocity is large.

As can be seen from the above examples, integrating a solar
thermal system with a geothermal plant can either assist in pro-
ducing additional power, or reducing the consumed geothermal
energy [36]. An essential factor to consider in the design of hybrid
solar-geothermal systems is the state of the available ground fluid.
If the available fluid is in the steam-liquid state, then a flash cycle
(see Fig. 4 and Fig. 5) would be the preferred design [37,38].
Incorporating the solar system contributes to superheating and
evaporating the geothermal fluid and therefore boosting the
generated power [29].

A photovoltaic thermal hybrid system (PVT) can be integrated
with a GSHP to produce different forms of energy at the same time
(as shown in Fig. 6). While the GSHP system works on extracting
thermal energy from the ground, the PVT system produces elec-
trical energy from the incident sun light and at the same time ex-
tracts additional thermal energy from the sun’s heat. Careful
consideration for the working fluid is necessary to ensure best
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results from these systems. Most designs have concentrated on
using organic fluids [39]. However, it is also possible to use a
refrigerant fluid like CO, in which case the cycle would require
some modification such as the incorporation of a reverse trans-
critical cycle [40—42]. Other studies have also investigated the
use of hybrid systems for water distillation in addition to energy
generation [43]. Recently, poly-generation and tri-generation sys-
tems are becoming more common. The system presented in
Ref. [44] shows a solar-geothermal system being used for gener-
ating electricity, cooling and hydrogen production. The energy and
exergy efficiencies were found to be 19.6% and 19.1% respectively.

Because of inherent uncertainties and nonlinearities, all of the
mentioned hybrid systems suffer from issues related to control.
This has motivated researchers to find new control methods such as
fuzzy logic (FL) controllers [45] and model predictive control (MPC)
[46].

3.2. Integration of a cooling tower into the geothermal system

It has been shown that it is advantageous to incorporate a
cooling tower with the ground source heat pump (as shown in
Fig. 7) to improve the cooling efficiency [19]. This hybrid system is
able to maintain soil thermal balance such that the annual overall
COP of the system was found to be 3.96 (3.93 for cooling and 4.09
for heating) [47]. The capacity of the cooling tower needs to be

chosen taking into consideration the difference between peak and
average load values or the cooling load percentages [48,49].
Simulation models have shown that the cooling tower needs to be
activated two years after initial heat pump operation. An optimal
auxiliary cooling ratio (ACR) needs to be chosen based on the sys-
tem’s configuration (as demonstrated in Fig. 8) [50].

It has been recommended in the literature that the cooling
tower be integrated in a serial configuration (as depicted in Fig. 8)
to avoid heat accumulation [52]. In addition, it is necessary to keep
the temperature of the water circulating in the cooling tower as low
as possible in order to increase the coefficient of performance (COP)
[53]. If the cooling load is very high for a standard cooling tower,
then a traditional HVAC system can be added to meet the cooling
demand [54]. It is also possible to incorporate a second cooling
tower that has the same capacity as the ground heat exchanger to
serve as an alternator or accumulator [55].

After studying three different strategies for controlling the
geothermal-CT system, researchers have determined that the most
optimal was the wet bulb temperature control method. This
method is based on the difference between outlet fluid tempera-
ture and the temperature of wet bulb [47]. The aim of this method
is to make full use of heat exchange between air and soil [56]. It
concentrates on deriving the most benefit from ambient capacity
by prioritizing the use of ambient air as the cooling source. Artificial
Neural Network (ANN) models were developed to predict the
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temperature of the water existing the GHE in comparison to that of
the cooling tower. The ANN showed an absolute error of about
0.2°C[57].

Another control method that has been suggested for hybrid
geothermal-CT systems is extremum seeking control (ESC) [51].
This feedback based method (depicted in Fig. 9) is based on a
comparison between the total power consumption, flow rate
entering the CT, and pump speed. ESC has been shown to provide
9.3% energy savings as compared to other methods. This method
will be very helpful in applications where the system consists of
multiple bore hole exchangers. In such a system, it would be
advisable to normally operate only some of the BHEs and limit
operation of all BHEs together to peak load periods only [58].

3.3. Less-common hybrid geothermal systems

There are some less common hybridization techniques that can
integrate geothermal energy with other sources of energy. For
example, it is possible to integrate geothermal with waste heat
recovery (another source of low grade energy) in an electricity

generation system. Another example would be the injection of in-
dustrial waste heat into geothermal boreholes. This integration
exploits the thermal storage characteristics of the boreholes and
allows the extraction of waste energy exhausted by industrial
processes.

A geothermal installation can be integrated into an existing coal
fired power plant to improve efficiency and lower costs. The
geothermal system can be used to preheat the boiler’s feed water
and can also be used as a carbon capture storage. Researchers have
determined that a serial configuration for geothermal preheating is
better at temperatures below 140°C [59]. A detailed analysis of
available conditions with regards to coal sufficiency and availability
of geothermal hot water are needed before such a system can be
contemplated [60]. Another integration can see the utilization of
the coal plant for electricity generation and the geothermal system
for providing additional capacity to meet high heating demands
[61,62].

Geothermal energy can be used to preheat the organic fluid in a
dual-fluid biomass system to achieve the highest possible output
power (see Fig. 10) [63]. Researchers have determined that it is
advisable to integrate a pre-heater and evaporator into the
geothermal system to achieve the combined heat and power sys-
tem improvements [64].

One of the main issues affecting geothermal sourced heat
pumps is the thermal imbalance. It has been shown that increasing
the size of the heat exchanger can alleviate this issue. However, this
may not be always feasible if the available space is limited. If the
load is cooling dominated, then a chiller can be integrated into the
geothermal system to improve the system’s performance [65].
Adequate consideration should be given to factors affecting the
chiller’s design such as required cooling, compressor efficiency, and
climate conditions.

A geothermal system can be integrated with a floor cooling
system to provide a secondary cooling source [66]. The geothermal
system would provide elimination of the floor condensation due to
excessive heat that would be generated if the floor radiator is used
by itself.

Several studies have shown that hybrid systems integrating
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geothermal energy into existing energy systems can provide im-
provements in efficiency as well as economics. P. Cui et al. have
shown that coupling a geothermal source with an electric heater
could produce 3.4% savings in energy used for heating and provi-
sion of domestic hot water [67].

Various studies have been performed to compare the perfor-
mance of traditional geothermal systems with hybrids. It was
shown that it would be more beneficial to control the temperature
of the fluid entering the system when a geothermal system is in-
tegrated with a gas boiler and electric air-conditioning system [68].
In Ref. [61], a COP of 2.79 was achieved while combining the gas
boiler with the GSHP to provide heating. On the other hand, it

would be more beneficial to vary the temperature of the fluid
exiting the system when a geothermal system is integrated with a
cooling tower and a boiler [69].

4. Discussion

It has been found that it is best to use geothermal energy in
hybrid systems. The combination of geothermal energy with other
sources provides various advantages especially associated with cost
of energy. Table 1 highlights the advantages and disadvantages of
hybrids as compared to conventional geothermal systems.

There has been increasing interest in research related to the
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point of view while examining the energy that could be generated
with respect to time. This will highlight the expected problems that
could mainly be solved by the help of energy storage systems.
Actually, the initial and operating costs vary significantly from one
country to the other based on the availability and abundance of
energy sources and equipment.

4.1. Recommendations

Based on the literature, it is recommended first to determine the
dominant load (cooling, heating or power) in order to specify the
preferable supplementary source in addition to the geothermal
one. With this in mind, geothermal energy is prioritized over the
other energy sources while avoiding thermal imbalance or heat
accumulation. Moreover, the supporting source must be highly
abundant and has low impact on the environment. Therefore,
increasing renewable energy and waste heat recovery utilizations is
the most favorable method to encourage people toward ecofriendly
systems.

5. Keys for future work

Nowadays hybrid system design and development is one of the
most significant areas of contribution towards the increased utili-
zation of renewable energy. There is a lot of room where significant
research contributions can be made. The following are some key
areas for further investigation:

1. Potential of specific types of hybrid geothermal systems and
especially the most common integrations such as geothermal
and solar.

2. Hybrid system optimizations.

3. New hybrid geothermal system combinations such as the inte-
gration of geothermal and wind systems or the integration of
geothermal and wave energy systems.

6. Conclusion

The use of renewable energy sources helps in reducing pollution
and gas emissions associated with traditional fossil based fuels. In
particular, geothermal energy has not been reported to have any
significant negative impact. Geothermal energy is characterized by
an almost steady supply as compared to the intermittent and
fluctuating nature of most other types of renewable energy sources.
However, geothermal energy is considered a low grade source of
energy and cannot independently support high load applications.
Therefore, hybrid systems have been studied to overcome the
inherent weakness of geothermal systems. In this work we have
discussed numerous integration possibilities of geothermal into
hybrid systems. We have shown that geothermal can be integrated
with solar energy systems, cooling towers, gas boilers, biomass
reactors, electric heaters and chillers, among others.

A review of the available literature on geothermal hybrids has
shown significant growth in interest since about 2013. The litera-
ture showed that the most frequent combination involved
geothermal and solar energies. This was followed by geothermal
systems integrated with a cooling tower. Hybrid systems have been
shown to be utilized for heating and cooling with equal proportions
(about 44% each) and to a much lesser extent for power generation
(12%). The comparison between the different HGSs showed that
each system has its own characteristics. Definitely, the combination
of geothermal energy with other renewable sources is the most
preferable hybridization followed by waste heat recovery and
especially from an environmental point of view. On the other hand,
it is quite important to mention that the efficiency, COP and plant
capital and operating costs aren’t only related to the energy sources
used. There are several other factors such as soil properties,
ambient conditions, drilling cost, materials, equipment and cycle
conditions.

The main deterrent against the implementation of geothermal
hybrids is control complexity. When different energy sources are
combined into a hybrid system, a flexible adaptive control method
should be selected to maximize the overall energy production. The
control method should take into consideration the characteristics
of each energy source. This is the most crucial aspect of the inte-
gration problem and this is where research effort is significantly
lacking.
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