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a b s t r a c t

A previously described observer of wind misalignment is validated using field test data collected on the
NREL CART3 wind turbine. The observer uses blade root bending moment 1P harmonics, computed using
the transformation of Coleman and Feingold, to infer the rotor-equivalent relative wind direction. The
observation model parameters are determined by a least squares fitting using recorded blade loads and
met-mast measured wind direction and speed; a random sample consensus (RANSAC) algorithm is used
to robustify the parameter estimation procedure while detecting outliers in the experimental samples.
The observer is validated using an independent verification data set: recorded blade bending loads are
fed to the observer and the estimated wind misalignment is compared to both the one provided by the
met-mast vanes, assumed as the ground truth, and by an on-board nacelle-mounted wind vane. Results
show that the rotor-equivalent wind misalignment estimates provided by the proposed observer are well
correlated in the low frequency spectrumwith the met-mast reference, and in general are in much better
accordance with it than the on-board wind vane measurements.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Reliable information about the misalignment of the wind with
respect to the rotor of a wind turbine is important because of a
number of reasons. In fact, wind misalignment reduces power
capture and may increase loading and fatigue. Furthermore, the
realignment into the wind of the rotorenacelle assembly of a
modern multi-MW machine implies the motion of a very massive
structure, which should then be driven by accurate and reliable
information about the wind direction.

Wind misalignment is routinely measured on-board wind tur-
bines by local sensors, often represented by wind vanes placed on
the nacelle. Such sensors are possibly disturbed by the rotor wake
and by the three-dimensional flow around the nacelle. Further-
more, they invariably provide a local information at a point in
proximity of the nacelle, information that may bear little resem-
blance to the actual distribution of wind direction over the rotor
disk, which may span an area of very considerable diameter.
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To overcome the limits of existing wind direction sensors, a
windmisalignment observer was described in Ref. [1]. The observer
uses blade bending moments, as measured by strain gages or fiber
Bragg grating (FBG) optical sensors, to infer the rotor-equivalent
wind misalignment. In fact, a misalignment of the wind with
respect to the rotor affects the aeroelastic response of the blades;
exploiting this fact, by simply looking at the lowest one-per-rev (or
1P) harmonics of the blade loads, one may estimate the wind di-
rection relative to the rotor. In contrast to existing sensors, such as
wind vanes, the information provided by the observer represents
the effective wind direction felt by the rotor, which is in fact the
quantity that should be used for driving realignment strategies and
that is clearly superior to any local point measure, especially on
very large rotors.

The structure of the observer described in Ref. [1] was suggested
by the analysis of a simple analytical flapping blade model. For a
better fidelity of the observer, however, the actual parameters of
the model were not the ones obtained from the analytical model,
but were rather based on an estimation approach. This process can
be conducted either using an aeroelastic model of the machine
(model-based approach) to simulate its response, or directly using
data collected on the target wind turbine (model-free approach). As
the former relies on a model of the machine, any imprecision in the
same model may pollute the estimates provided by the observer.
The latter approach avoids this problem by not relying on a model,
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Notation

ei misalignment observation error for the ith time sample
f frequency
m blade bending moment
Cxy coherence between signals x and y
Ep normalized misalignment observation error increase

for the pth perturbation type
Pxy power spectral density of signals x and y
V wind speed
a vector of observation model parameters
m vector of blade moment driving inputs
w vector of measured wind misalignments
M matrix of measured driving inputs
C consensus set
I identification data set
V verification data set
b blade flap angle
j azimuth angle
4 misalignment angle

U rotor angular speed
($)* observed quantity
($)T transpose
($)IP rotor in-plane component
($)OP rotor out-of-plane component
($)wv wind vane measured quantity
($)b quantity pertaining to blade b
($)k quantity pertaining to the kth wind speed
($)n nominal (unperturbed) quantity
($)p quantity pertaining to the pth perturbation case
($)1c first cosine harmonic
($)1s first sine harmonic
ð$Þ average quantitycð$Þ filtered quantityfð$Þ normalized quantity
FBG fiber Bragg grating
LPV linear parameter varying
LQR linear quadratic regulator
RANSAC random sample consensus
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but necessitates field test data of sufficient quality and informa-
tional content to allow for the synthesis of the observation model
so as to cover the entire operating regime of interest. Ref. [1]
demonstrated both approaches, the model-based one using a
high-fidelity aeroelastic model of a multi-MW machine, and the
model-free one using an aeroelastically-scaled wind tunnel model.

The main goal of this paper is the demonstration and validation
of the wind misalignment observer using the model-free approach
based on field test data collected on the Control Advanced Research
Turbine (CART3) of the National Renewable Energy Laboratory
(NREL), described in Refs. [3,4], and the development of the
necessary data processing algorithms. The machine is equipped
with blade load sensors and an on-boardwind vane; furthermore, a
met-mast provides for the measurement of wind speed and di-
rection at three different altitudes above ground.

Prior to the analysis using the experimental data, an investigation
is conducted using a high-fidelity simulation model aimed at veri-
fying the robustness of the observer in the face of perturbations of
some of the parameters of the wind turbine, including foundation
characteristics, orographic effects on the wind vertical direction,
airfoil aerodynamics, rotor imbalance and blade sensor miscalibra-
tion, all quantities that may easily change between one installation
and the other of a same wind turbine version. Results indicate that
the observer is robust to such parameter changes; this is mainly due
to the fact that the observer formulation uses only the low-
frequency (1P) response of the rotor, a quantity that is little
affected by small changes in the wind turbine characteristics.
Therefore, onemay think of calibrating the observer using amachine
equipped with a met-mast (or equivalent sensor), and then use the
same observer on-board other installations of the same version of
that machine; this also implies that re-calibration of the observer
during the lifetime of each wind turbine is probably unnecessary.

After this study, a first experimental data set is used for the
synthesis of the observation model: met-mast measured wind di-
rections and associated blade load harmonics computed by the
transformation of Coleman and Feingold (see Ref. [6]) are used for
the least squares fitting of various models at varying wind speeds,
leading to a linear parameter varying (LPV) wind scheduled
observation model covering the entire range of wind speeds of
interest. Given the level of noise and turbulence in the data set, as
well as because of the presence of outliers, a two stage procedure is
developed to robustify the identification process. At first, candidate
time sequences are identified where the wind conditions and the
response of the machine are sufficiently constant for a sufficient
length of time. Next, outliers in the time sequences are discarded by
using a random sample consensus (RANSAC, cf. Ref. [7]) algorithm.
The results reported in this work are limited to the partial and full
load regimes, as the analysis of the available data sets in the tran-
sition region around rated wind speed revealed a large number of
outliers, making the selection of suitable time sequences difficult
and the identification results quite unreliable.

Having identified the observation model, a second independent
data set is used for the validation of the observer. Here again, a
similar two stage procedure is used for selecting suitable time se-
quences and for discarding outliers. Results show that the proposed
observer is in general better correlated with the met-mast refer-
ence than the wind vane, supporting the initial hypothesis that the
point information provided by the standard sensor may often be
grossly in error. Furthermore, the observed wind misalignment
time histories appear to match well the met-mast ones in the
lowest frequency spectrum, which is the one used for driving yaw
control strategies on-board wind turbines, as the machine is in fact
actually yawed only when the misalignment has been sufficiently
large for a sufficient length of time. Conclusions on the results of
the present study are given in the final section.

2. Wind misalignment observer formulation

2.1. Observation model

An observer for rotor-flow misalignment and vertical shear us-
ing blade root loads was presented in Ref. [1] and it is briefly
reviewed here. The structure of the observer is based on the
analytical model of the flapping blade, as presented in Ref. [8],
while the actual model coefficients are obtained by a process of
parameter estimation. We consider here the sole observation of
wind misalignment in non-yawing conditions; the more general
case that includes the vertical wind shear and a steady state yawing
maneuver are analyzed in Ref. [1].

The model structure is found by considering a flapping rigid
blade, connected to the hub by an elastic hinge; hub off-set and
hinge stiffness are tuned to represent the blade first natural mode
of motion and its frequency. The structural blade representation is
complemented by an aerodynamic model that computes the lift
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and drag at each blade station, by considering the effects of blade
rotation and flapping motion, of the induced velocity, and of the
wind intensity, direction and vertical shear. One assumes steady
wind conditions and a resulting periodic response of the blade,
which, truncating the blade flapping angle b at the 1P harmonic, is
expressed as

b ¼ b0 þ b1c cos jþ b1s sin j; (1)

where j is the blade azimuthal angle. Next, by substitution of the
truncated blade response in the flap equation of motion, dropping
higher order terms in the process, one can express the coning b0
and the two cyclic terms b1c and b1s as functions of the wind pa-
rameters (speed, misalignment and shear).

The crucial observation of Ref. [1] is that this linear relationship
can be inverted. Hence, one can compute the wind misalignment
(and vertical shear), from the sole knowledge of the blade 1P har-
monics. Replacing the flap angle with the easier to measure out-of-
the-rotor-plane blade root bendingmoments, and adding the rotor-
in-plane bending moments as well for increased observability (cf.
Ref. [1]), one finally gets the observation model in the form

4 ¼ aðVÞTm: (2)

The wind misalignment angle 42[�p/2,p/2] is defined as
4 ¼ 4wind � 4nacelle, where 4wind is the absolute wind direction,
measured with respect to the North and positive when coming
from the East, and 4nacelle is the absolute direction of the nacelle.
Furthermore, a is a vector of coefficients, which are scheduled in
terms of the mean rotor-equivalent wind speed V, while m is the
driving input vector of load harmonics

m ¼
�
mOP

1c ;m
OP
1s ;m

IP
1c;m

IP
1s

�T
; (3)

where out and in-plane components are noted ($)OP and ($)IP,
respectively.

The coefficients a suggested by the analytical model are not used
in practice, as themodel is rather crude and only serves the purpose
of understanding the physics and suggesting the model structure.
Coefficients a in model (2) are then considered as unknown, and
must be derived by a process of identification from known wind
inputs and associated blade responses, as described later on.

Ref. [1] showed that the least variability in the model co-
efficients a is obtained by normalizing the driving input vector m
by the zeroth harmonic, i.e. by using m1c/m0 and m1s/m0. This was
avoided here, because inaccurate calibration or drifting of the load
sensors may affect m0 thereby polluting the wind misalignment
estimates. The present choice implies a slightly increased vari-
ability of the model coefficients with wind speed, which is simply
addressed by using a larger number of wind speeds at which co-
efficients are pre-computed for later model interpolation during
run time scheduling.

2.2. Model synthesis and interpolation

A process of parameter estimation is used in order to find the
unknown coefficients a in Eq. (2). Wind direction and speed are
measured just upstream of the rotor by a suitable instrument, as for
example a met-mast. Furthermore, bending moments in the flap
and lag directions at the root of each blade are measured by strain
gages or FBG optical sensors, and transformed into out and in-plane
rotor components based on the blade pitch attitude.

The bending moment lowest harmonic amplitudes m1c and m1s
are computed at each instant in time by the transformation of
Coleman and Feingold (see Ref. [6]), which writes
�
m1c
m1s

�
¼ 2

3

�
cos j1 cos j2 cos j3
sin j1 sin j2 sin j3

�8<
:

m1
m2
m3

9=
;; (4)

where jb is the azimuth of the bth blade, andmb the corresponding
out or in-plane bending moment component. A zero-phase low-
pass fourth-order Butterworth filter is used to remove undesired
disturbances at 3P and above in the Coleman-transformed har-
monic amplitudes (see Ref. [9]).

The identification is based on a set of samples, including wind
misalignment and speed, and associated 1P harmonic loads, each
sample corresponding to a given time instant ti. In order to account
for the variability of the observer coefficients with respect to wind
speed, different models are identified for different pre-selected
wind speeds Vk in the operating range of the machine; such
models are then interpolated at run time as explained later on to
obtain an LPV observation model.

To select samples based on wind speed, at first a mean wind
speed estimate bV is generated by filtering with a 5 s moving
average the instantaneous wind speed measurements. Next,
misalignment and load samples are assigned to the corresponding
wind speed bucket if their filtered velocity satisfiesbV i2½Vk � DV ;Vk þ DV �, where DV is the half bucket amplitude. This
defines the set of samples used for identification at the kth wind
speed as Ik ¼ f4i;mi; i ¼ 1;…;NIk

���bV i2½Vk � DV ;Vk þ DV �g, where
NI k is the number of samples in that set.

Using Eq. (2) and collecting together all samples within set k,
one gets

wk ¼ MT
kaðVkÞ; (5)

where

wk ¼
�
41;42;…;4NIk

�T
; (6a)

Mk ¼
h
m1;m2;…;mNIk

i
: (6b)

Solving for the unknown model coefficients by least squares
gives

aðVkÞ ¼
�
MkM

T
k

��1
Mkwk: (7)

Once the identification has been completed over the considered
range of wind speeds, so that a(Vk) is known for all the reference
wind speeds Vk of interest, the observer is used at run time as
follows. A meanwind speed estimate bV is generated by filtering the
wind turbine instantaneous wind speed measurement, obtained by
the on-board anemometer or, preferably, by a wind speed observer
(see Refs. [10e12]). At the generic time instant ti, the bucket con-
taining the current meanwind estimate bV i is found by determining
k such that bV i2½Vk;Vkþ1�. Finally, the instantaneous model co-
efficients are computed by linear interpolation as

a
�bV i

�
¼ ð1� xÞaðVkÞ þ xaðVkþ1Þ; (8)

where x ¼ ðbV i � VkÞ=ðVkþ1 � VkÞ.
The run-time interpolation of the observation model coefficients

is needed because of their variability with respect to wind speed.
However, it is important to remark that one needs only to follow the
average wind speed around which the machine is operating, simi-
larly to what is commonly done in the scheduling of control gains
[13]. In this sense, bV must not be an accurate instantaneous value of
the wind speed (which would be very difficult to obtain in a reliable



Fig. 1. Wind time history for robustness analysis. From top to bottom: rotor averaged
wind speed, shear power law coefficient, wind misalignment angle, blade bending
moments at root of blade 1 for the nominal wind turbine model.
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manner), but only a reasonable estimate of the average wind speed,
a quantity that in general can be obtained with good accuracy. To
this end, the use of a wind speed observer is particularly recom-
mended because it provides for a rotor-effective estimate, as filtered
by the response of the machine. Extensive testing has showed that,
because of the way this piece of information is used in the overall
misalignment observation algorithm and because of the rather mild
variation of the observer coefficients with wind speed, the perfor-
mance of the observer is quite robust with respect to wind speed
scheduling as long as bV is capable of tracking changes in the set
point around which the machine is operating.

2.3. Robustness of the estimator

As explained before, the synthesis of the observation model by
the model-free approach requires synchronized wind measure-
ments (provided by a met-mast or equivalent sensor) and blade
bending loads. However, the met-mast will not in general be
available on all machines, but only on selected wind turbines used
for calibration and testing activities. Therefore, one is faced with
the problem of ensuring the correct operation of the observer for
machines other than the met-mast equipped ones.

As the method described here uses only the 1P amplitude of the
response, it is reasonable not to expect a significant variability of
this harmonic amplitude across different machines of the same
version; clearly, the situation would be more delicate with a more
complex observer based on a wider spectrum of the machine
response. If the 1P response due to misalignment changes little
from one machine to the other of a same version, then one could
perform the model identification on a machine equipped with a
met-mast, and subsequently use the same observer on other wind
turbines of that same version.

A related problem is the possible drift of some characteristics of
the machine with time, as these may also in principle affect the
quality of the estimates provided by the observer.

Both problems can be studied by considering the robustness of
theobserver in the face of perturbations of somewind turbinemodel
parameters. If the observer is sufficiently robust, in the sense that its
performance is not significantly affected by such parameter changes,
then it will be applicable to different installations of a same wind
turbinemodel and itwill accompanyeachmachine along its lifetime.

In order to investigate the robustness of the observer for both of
the aforementioned important problems, a simulation study was
conducted by considering the same 3 MW horizontal-axis three-
bladed wind turbine used in Ref. [1]. The machine was modeled in
Cp-Lambda, a finite element multibody wind turbine simulator
[14,15], and the model included flexible blades, tower and drive-
train/nacelle system, compliant foundations, and a classical BEM
aerodynamic model enhanced with tip, hub and unsteady correc-
tions, dynamic stall and tower-interference models. This variable-
speed machine was regulated by a collective-pitch/torque
controller based on a speed-scheduled linear quadratic regulator
(LQR) with integral state [13].

The observer model identification phase was performed as
previously explained, by subjecting a nominal wind turbine model
to wind fields of different known mean speed and direction, and
recording the associated blade root moments. This nominal
observation model was then used for estimating wind mis-
alignments from the response of perturbed wind turbine models,
obtained by changing some of the machine parameters with
respect to their nominal values. The study considered perturbations
in the following model parameters:

� Stiffness of foundations (up to �40% change), on account of
different soil characteristics of different installations. Only
reductions in the foundation stiffness of the reference virtual
model were considered, as higher values did not lead to
noticeable changes in the response.

� Vertical inclination of the wind flow (up to ±6� with respect to
the value used for the identification of the observation model),
on account of orographic effects of different installation sites.

� Rotor imbalance due to pitch misalignment of one of the three
blades (up to ±0.9�).

� Miscalibration of one blade load sensor, where bendingmoment
m in the flapwise or edgewise direction is assumed to be sensed
as ms ¼ c þ sm, c being a constant bias (up to ±0.1% of the
bending moment at standstill with the blade parallel to the
ground) and s a miscalibration scaling factor (considered to be
comprised in the range s2[0.9,1.1]).

� Changes in the airfoil aerodynamic characteristics (up to 24%
increase in drag and up to 24% reduction in lift), on account of
effects such as leading edge erosion, dirt accumulation and
formation of ice on the blades.

Two wind time histories were considered in the analysis. The
evolution in time of the wind speed, misalignment angle and shear
coefficient of the first time history are reported in Fig. 1, together
with the corresponding blade loads for the nominal model; the
second wind time history simply differs in the misalignment angle,
which is of the opposite sign. The figure also reports with a dashed
line the misalignment observed with the present formulation,
based on the response of the nominal model.

Simulations were run for all considered perturbation types and
intensities, and for both wind time histories. In order to evaluate
the robustness of the observation performance with respect to the
nominal condition, an average observation error throughout each
simulation was defined as follows

D4 ¼ 1
T

Z
T

���4�ðtÞ � 4realðtÞ
���dt; (9)

where ($)* is an observed quantity, and the time window was
defined as T ¼ te � ti, with ti ¼ 100 s and te ¼ 750 s, respectively, to
exclude initial transients. The average error computed for the pth
perturbed case is labeled D4p, while the average error committed
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under nominal conditions (i.e. when the misalignment observer
was operated in conjunction with the same simulation model used
for the synthesis of the observation model) is termed D4n. The
robustness performance measure for each perturbation type p was
finally defined as the following relative increase with respect to the
performance of the observer in the nominal case:

Ep ¼ D4p � D4n

D4n
: (10)

The results of the robustness analyses are presented in Fig. 2
that, for each perturbation type and intensity, reports the result-
ing relative increase in the observation error, after averaging over
the two considered time histories (differing in the sign of the
misalignment angle).

The effects of miscalibration were studied through eight
reasonable combinations of the bias and sensitivity parameters, but
the results show a rather negligible effect of these changes on the
results. Similarly, it appears that in general even considerable
perturbations in the various parameters considered here lead to
limited increase in the average observation errors. In fact, error
increases are usually limited to less than 15%, and actually much
less in most of the cases.

Exceptions are found for a pitch imbalance of �0.9�, which
however is a rather large error as certification guidelines prescribe
a value of 0.3� [2] for the analysis of the effects of imbalanced ro-
tors, and for changes in upflow angles in excess of about 2�. This in
fact appears to be the parameter that induces the largest effects on
the quality of the observer. This might be taken into account when
using the observer on machines located in complex terrains or
where the upflow is significant because of the surrounding orog-
raphy of the terrain.

3. Field testing: methods and results

The misalignment observer described in the previous section
was synthesized and tested using data collected on the CART3
Fig. 2. Results of robustness analysis in terms of the average normalized performance metr
pitch imbalance, miscalibration parameters, aerodynamic properties of the blades.
wind turbine (see Refs. [3,4]), a 550 kW, 40 m diameter
horizontal-axis three-bladed variable-speed machine developed
and operated by NREL's National Wind Technology Center
(NWTC). The turbine blades are instrumented with strain gages,
while an anemometer and a wind vane are installed in the nacelle.
A met-mast, placed at about two diameters upstream of the rotor,
provides independent speed and direction information at 15, 36.6
and 58.2 m above ground, roughly corresponding to the rotor
lowest, center and top points, respectively. Met-mast and wind
turbine on-board measurements are synchronized and sampled at
400 Hz.
3.1. Model identification and RANSAC-based outlier detection

In order to synthesize good quality models using field data, care
must be exercised to select and properly use the available samples,
as the recorded time histories of wind turbine on-board and met-
mast measurements may contain extremely turbulent events,
shut-downs and run ups, yawing maneuvers, and other situations
that might not be advisable to use in the model identification
phase. In fact, the observation model expressed by Eq. (2) is based
on the assumption of a periodic response of the machine in steady
wind conditions; although wind direction estimates need only
capture slowly varying changes in the flow, it is clear that exces-
sively dynamic conditions may negatively affect the model identi-
fication phase. Furthermore, it is necessary to assign samples to
their relevant mean wind speed buckets, so as to develop a wind
scheduled LPV observation model as previously explained.

A two stage procedure was developed to effectively address
these problems, that includes a pre-selection of time sequences
followed by a RANSAC-type (cf. Ref. [7]) detection of outliers.

The goal of the pre-selection phase is the identification of time
sequences of consecutive samples where conditions are sufficiently
constant for a sufficient length of time, and to assign them to their
respective mean wind speed buckets. By considering all samples in
the set of measurements available for identification, termed I,
ic of Eq. (10). From top: effect of change in stiffness of foundations, wind upflow angle,



Fig. 3. Inlier ratio Card(C)/Card(Ik) vs. wind speed for different values of the error
threshold emax.
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sequences of samples are first selected according to the following
criteria:

� A rotor speed satisfying sðUÞ=U � 5%, where s(U) is the rotor
speed standard deviation, and U the rotor speed average over
the considered time sequence.

� A wind misalignment satisfying 4� 42±20�, where 4 is the
misalignment average over the considered time sequence. Here
again, misalignments were spatially averaged over the three
values provided by the met-mast vanes at three different
heights above ground.

� Both of the above conditions should be uninterruptedly verified
for at least 30 s.

Time sequences that have passed the above tests are assigned to
their corresponding wind speed bucket, if they have a filteredmean
wind speed bV that is at all timeswithin the sequence in the range of
±1 m/s with respect to a center-bucket reference wind speed Vk. All
samples assigned to bucket k form the sample set Ik. The mean
wind speed bV was obtained by a 5 s moving average of the average
of the three met-mast measurements.

The second stage of the procedure uses a RANSAC algorithm to
detect outliers in the sample time histories, trying to identify those
samples that for any possible reason are not coherent with the ma-
jority of other samples. Notice that no a priori assumption ismade on
the reasonwhy a given sample should be considered an outlier. The
method synthesizes afirstmodelbyparameterestimationbasedona
random set of samples, checks the validity of themodel with respect
to the rest of available samples according to a given goodness crite-
rion, discards the samples (outliers) that fail to satisfy it, and then
repeats the identification with the remaining inliers. By iteratively
repeating this process, the procedure tries to find themaximum size
set of samples (named consensus set) that, when used for model
parameter estimation, satisfies the goodness criterion.

More precisely, for each set of samples Ik associated with wind
speed Vk, the algorithm proceeds as follows:

1. Form a random consensus subset C of Ik, i.e.
C ¼ {4j,mj2IkjCard(C)¼ NC}. Using C, identify model parameters
a using Eq. (7). Here NC ¼ 4 was used, which is the smallest
possible value since there are four unknown parameters in the
model.

2. Apply the identified observation model to the whole set of load
samples mi2Ik, which gives all corresponding observed mis-
alignments as 4�

i ¼ aTmi, i ¼ 1;…;NIk .
3. For each sample i in Ik, compute the difference between esti-

mate 4�
i and available met-mast measurement 4i, ei ¼ 4�

i � 4i,
and insert the sample in the consensus set C if the difference is
below a user defined tolerance emax, i.e.
C ¼ f4j;mj2Ik

���absð4�
j � 4jÞ � emaxg.

4. If Card(C) has increased with respect to the last iteration, i.e. the
consensus is expanding, re-identify new model parameters a
with Eq. (7) using the consensus set C, and go to 2, unless a
maximum number of iterations has been reached. Otherwise,
the consensus is reducing, and the method is re-initialized from
step 1 picking a new random set.

Fig. 3 plots the inlier ratio Card(C)/Card(Ik) vs. wind speed for
different values of the threshold emax. It appears that the inlier ratio
changes with respect to wind speed, decreasing around rated and
at high winds. The low ratio found in proximity of the rated wind
speed may be due to the relatively high level of noise that can in
general be observed in the machine response around this operating
region, at least for the time histories that were available to us for
this study. In fact, for winds oscillating just above and below rated,
the wind turbine exhibits rapid and rather significant fluctuations
in rotor speed and a pronounced control activity. A second reason
for the rather low inlier ratio may be due to the quite high turbu-
lence intensity at the installation site [5].

Given the relatively low achievable inlier ratios at wind speeds
close to rated, little can be said regarding the actual performance of
the proposed observer in this regime, and further investigations are
needed with an expanded data set or using another machine. We
notice however that the observation algorithm was used success-
fully in Ref. [1] in simulation studies across the whole wind speed
range, including the partial load, transition and full power regions.

The plot also shows that, as expected, more generous error
tolerances emax increase the inlier ratios; based on these results, the
value emax ¼ 5� was selected for the remainder of the analysis. For
this value, relatively good inlier ratios are obtained, except around
rated, suggesting a reasonable coherence of informational content
amongst the various available measurements.

3.2. Observation results

After having identified observation models at each wind speed
of interest, as previously explained, their quality was checked
against an independent verification data set V, not used during the
model estimation phase, i.e. V∩I ¼ ∅.

The verification data set was subjected to the same pre-selection
procedure described for the model estimation data set. Therefore,
even in this case, time sequences composed of successive samples
were identified for which the rotor speed satisfied sðUÞ=U � 5%, the
wind misalignment did not change excessively according to
4� 42±20�, and that were of at least 30 s of duration.

For each time sequence, a mean wind speed estimate bV was
computed by filtering with a 5 s moving average the average of the
three met-mast wind speed measurements. At the generic ith
sample, the observationmodel coefficients were interpolated based
on bV i using Eq. (8), and the observed misalignments were
computed as 4�

i ¼ aðbV iÞTmi, discarding the first 5 s of each
sequence on account of the moving average filtering.

A similar criterion used by the RANSAC algorithm was used to
detect outliers in the verification set. All computed misalignment
estimates andmet-mastmeasurements were processedwith a zero-
phase fourth-order Butterworth low-pass filter with a cut-off fre-
quency of 1.1 Hz. Next, for each sample, the error between estimates
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and measurements was determined as ei ¼ 4�
i � 4i, and the sample

was classified as inlier if ei� emax, and as outlier otherwise. Similarly,
when considering the wind vane time histories, after filtering the
error was computed as ei ¼ 4wv

i � 4i, where 4wv
i is the wind vane

measured quantity and 4i the met-mast one, and the sample was
classified as inlier if ei � emax, and as outlier otherwise.

In order to account for the delay between measurements
collected on themet-mast and on the turbine (in terms of the nacelle
wind vane, blade loads and rotational speed), the distance between
their respective geographical positions was divided by the mean
wind speed for the considered data set, computedover its full length.
The resulting delay was then used for realigning the time histories.

Two examples of the time histories of observed and measured
quantities are presented in Fig. 4. The figure shows the met-mast
misalignment using a solid line, the observed value using a
dashed line, and the wind vane measurement using a dash-dotted
line; all quantities are zero-phase low-pass filtered as explained
previously. In both cases, the estimates provided by the proposed
observer are well correlated with the met-mast reference, espe-
cially at the lower frequencies that are used for wind turbine yaw
control. It also appears that the quality of the correlation is much
better for the observed misalignments than for the ones measured
by the nacelle wind vane.

When comparing these quantities, it should be remembered
that met-mast measurements are not a perfect reference. In fact,
apart from noise and biases, they only measure the wind direction
at three points on the rotor disk. Furthermore, the met mast is
located about two diameters away from the wind turbine. This may
induce errors when thewind direction is not parallel to the turbine/
met-mast line, and because the flow does not in general obey
Taylor's frozen turbulence hypothesis; even if it did, the correction
for the time delay between met-mast and on-board measurements
can only be approximate because of the need to estimate a mean
transport velocity. Because of these and other reasons, one should
keep in mind that met-mast measurements provide for a crucial
but imperfect reference.

A coherence measure was used in order to better quantify the
similarity of the observations and wind vane measurements with
respect to the reference provided by the met-mast vanes. The
magnitude squared coherence function Cxy (cf. Ref. [16]) between
two signals x and y assumes values between 0 and 1 indicating how
Fig. 4. Two wind misalignment time histories, as measured by the met-mast vanes (solid l
(dashed line).
well the two time histories correspond to each other at any given
frequency f, and it writes

Cxyðf Þ ¼
P2xy

�
f
�

Pxx
	
f


Pyy

	
f

 ; (11)

where Prs indicates the power spectral density. The coherence
function was estimated using Welch averaged periodogram
method (see Refs. [17,18]); time histories were divided into eight
sections of equal length with a 50% overlap, and a Hamming win-
dow scheme was applied to each of them.

Fig. 5 reports the plots of coherence vs. frequency for the two
time histories of Fig. 4. The coherence between observed wind
misalignment and met-mast vanes is reported with a dashed line,
while the one between wind vane and met-mast vanes using a
dash-dotted line. These plots quantify in more precise terms what
can be visually perceived from the time histories: the signals are
reasonably well correlated at the lowest frequencies (the observer
doing better than the wind vane), while for both the correlation
rapidly drops at the higher frequencies.

A normalized integral coherence was defined as

~Cxy ¼ 1
F

ZF
0

Cxy
	
f


df : (12)

This quantity tries to capture with one single scalar the good-
ness of the coherence between two signals in a frequency band of
interest [0,F] Hz. Here the choice F ¼ 0.25 Hz was made, as only
slow changes of wind direction are typically of interest for yaw
control of wind turbines.

Fig. 6 reports the normalized coherence for those time histories
where all observed filtered misalignment samples were classified
as inliers, using an error threshold of 5�. These are therefore time
sequences where the observed misalignment is reasonably close at
all times to the met-mast reference, and the plot tries to compare
their quality in terms of coherence with the corresponding on-
board wind vane measurements. The normalized coherences be-
tween observed and met-mast misalignments are plotted using *
symbols, while ◊ symbols indicate normalized coherences
ine), by the on-board wind vane (dash-dotted line) and as obtained from the observer



Fig. 5. Coherence vs. frequency for the time histories of Fig. 4, between observed wind misalignment and met-mast vanes (dashed line), and between on-board wind vane and met-
mast vanes (dash-dotted line).
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between on-board wind vane and met-mast measurements, each
pair being connected by a dashed line. As * symbols are consistently
and significantly higher in the graph than ◊ symbols, the plot
shows that the proposed observer yields results that aremost of the
time in much better correlation to the ground truth than the on-
board wind vane. Notice also that at times the coherence of the
on-board wind vane is extremely low, indicating a measurement
that is grossly in error with respect to the reference.

Fig. 7 reports the normalized coherence for those time histories
where all on-board wind vane filtered measurement samples were
classified as inliers, using the same error threshold as before. These
are therefore time sequences where the on-board wind vane per-
forms relatively well. As for the previous case, normalized co-
herences between observed and met-mast misalignments are
plotted using * symbols, while normalized coherences between on-
board wind vane and met-mast misalignments with ◊ symbols.
Fig. 6. Normalized integral coherence ~Cxy vs. average wind speed for time histories
where observed misalignments were classified as inliers. Coherence between observed
and met-mast misalignments: * symbols; coherence between on-board wind vane and
met-mast misalignments: ◊ symbols.
This second plot shows that when the on-boardwind vane provides
reliable estimates with respect to the met-mast vanes, the same is
largely true for the proposed observer; in addition to this, as the *
symbols are generally higher than the ◊ ones, the observer also
typically provides for a better coherence and it is therefore more
precise. Furthermore, it appears that on average the normalized
coherence of the inlier time histories (◊ symbols in Fig. 7) is much
lower than in the previous case (* symbols in Fig. 6), indicating once
again a significantly better performance of the observer than the
on-board wind vane.

4. Conclusions

A previously described observer of wind misalignment has been
tested with the help of experimental data collected in the field on
NREL's CART3 wind turbine. The observer uses 1P blade load
Fig. 7. Normalized integral coherence ~Cxy vs. average wind speed for time histories
where on-board wind vane misalignments were classified as inliers. Coherence be-
tween observed and met-mast misalignments: * symbols; coherence between on-
board wind vane and met-mast misalignments: ◊ symbols.
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harmonics to infer the rotor-equivalent wind misalignment. The
simple linear structure of the observer is suggested by the analysis
of an analytical flapping blade model, while the actual model pa-
rameters were here identified using a model-free approach by least
squares fitting.

Based on the results of the present investigation, the following
conclusions may be drawn:

� The observer appears to be rather robust to changes in some of
the wind turbine parameters that may vary among different
installations of a same wind turbine version. This seems to
indicate that one may calibrate the observer using a met-mast
equipped machine, and then use the same observer on-board
other wind turbines of the same version, possibly with no
need for re-calibration during the lifetime of each machine.

� The model-free setup of the observer avoids the use of an
aeroelastic model of the machine (cf. Ref. [1]), whose possible
imperfections may pollute the resulting estimates. On the other
hand, the direct estimation of the model parameters from field
test data shall be performed with care, given the presence of
noise, turbulence and of outliers in the available data due to a
large number of possible reasons. A specific two stage procedure
was developed in the present paper to cope with these prob-
lems, that first pre-selects suitable candidate time histories and
then identifies and discards outliers from the samples using a
RANSAC-type method. This approach was instrumental for
achieving satisfactory identification results.

� The available data sets appeared to be too noisy and turbulent
around rated wind speed to allow for a credible verification of
the observer in this operating regime. Because of this, it was
difficult to identify time sequences of sufficient length where
the wind and rotor speed were relatively constant. Additional
data sets would be necessary to extend the validation work to
this wind speed region, an activity that we hope to perform and
report on in the near future.

� In the lower and higher wind speed regime, the available time
histories exhibited a better consensus, indicating a coherent
informational content within the measurements; in turn, this
allowed for the identification of observation models of good
quality, covering by wind-scheduling a significant wind speed
range. Results obtained with the proposed observer suggest that
wind misalignment estimated by blade loads is in general better
correlated with the met-mast reference thanwindmisalignment
measured by the on-board wind vane. Time history and coher-
ence plots have shown that the on-boardwind vane sensor can at
times be grossly in error, possibly because of disturbances due to
the nacelle and rotor wake, and also because of the very local
point measurement that it performs, all problems that do not
affect the proposed observation approach. Furthermore, the
accordance between observed and met-mast misalignments is
especially good in the lowest band of the spectrum. This is
important, because low frequency changes in wind direction are
routinely used for driving wind turbine yaw control strategies.

As the CART3 has a relatively small rotor diameter of 40 m, the
spatial variability of wind direction over its rotor disk might in
general be not too large. Additional investigations on larger ma-
chines might further highlight the importance of the rotor-
equivalent wind misalignment information provided by the pro-
posed approach, compared to the point local measurements of
standard sensors.
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