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ABSTRACT

This work aims at proposing a robust strategy to determine the optimal operating parameters based on
fuzzy modeling for enhancing the productivity of methane using Pelvetia canaliculata. The applied
strategy is a combination of fuzzy logic (FL) modeling and particle swarm optimizer (PSO). First, FL is
used to build a model that describes methane production using the experimental datasets. Second, a PSO
algorithm is used to obtain the best-operating conditions of the production process. The decision vari-
ables used in the optimization process are beating time and the feedstock/inoculum ratio (F/I). Each
parameter was studied for three different values. The beating time was set at 0, 30, and 60 min while the
F/I ratio was set at 0.3, 0.5, and 0.7. To assess the resulting performance, a comparison study was carried
out between the optimized results thought proposed strategy and those obtained by using Response
Surface Methodology (RSM). The FL model produced a higher accuracy, i.e., lower values of Root Mean
Squared Errors (RMSEs), compared with the RSM. Therefore, the obtained results confirmed that the
proposed strategy is better than RSM.

Optimization

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The fossil fuel that is the main energy source is limited in re-
sources and fluctuated in prices and has as severe environmental
impacts that resulted in climate changes and health issues [1,2]. To
decrease the reliance on fossil fuels, significant efforts are being
made to improve the efficiency of the current energy conversion
devices [3—5] or using renewable energy sources such as solar
energy [6,7], geothermal energy [8], wind energy [9], hydro energy
[10], and biomass energy [11—13]. Biomass energy is the most

* Corresponding author. Mechanical Engineering and Design, Aston University,
School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
** Corresponding author. College of Engineering at Wadi Addawaser, Prince Sat-
tam Bin Abdulaziz University, KSA.
E-mail addresses: aolabi@sharjah.ac.ae (A.G. Olabi), hegazy.hussien@mu.edu.eg
(H. Rezk).

https://doi.org/10.1016/j.renene.2020.10.069
0960-1481/© 2020 Elsevier Ltd. All rights reserved.

attractive one due to its role in waste management. For instance,
the wastewater’s biomass can be converted into electricity or
hydrogen while producing treated wastewater using bio-
electrochemical systems [14,15] or using fuel cells [16,17].
Macroalgae is considered one of the biomass energy sources
first investigated in 1973 during US Ocean Food [18]. Macroalgae
demonstrated promising biogas productivity [19,20]. Macroalgae
are currently used in food, fertilizer, medicine, and chemical pro-
cessing industries [21]. Biofuels derived from algae are the so-called
“third-generation” and include bioethanol [22,23], biodiesel
[24,25], and biogas [26]. Some advantages of macroalgae over
terrestrial plants are the shorter life cycles, no need for freshwater,
and furthermore, no competition for resources with the food in-
dustry [27]. While microalgae biofuel production is mainly focused
on biodiesel due to the high lipid content of some microalgae
species, biogas is the most widely biofuel produced from macro-
algae. Integrated production of biodiesel and biogas is being
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developed using microalgae debris after lipid extraction for
anaerobic digestion. Macroalage contains a higher amount of car-
bohydrates, which can be converted to bioethanol [28]. The major
advantage of macroalgae is the mild pre-treatment conditions
required compared to second-generation biofuels. Generally, prior
to processing the algae for the conversion process to biofuels, lower
temperatures, less severe acid conditions, and shorter reaction
times are mandatory requirements. Algal biomass is made of
organic substance that mainly consists of complex polymeric
macromolecules, such as polysaccharides and proteins. Through
the anaerobic digestion process, these macromolecules are con-
verted into biogas which essentially contains methane and carbon
dioxide. Generally, the anaerobic digestion process can be sum-
marized as three main consecutive steps: (1) hydrolysis, (2) ace-
togenesis, and (3) methanogenesis. The hydrolysis is defined as the
rate-limiting step in the process, and it depends on several pa-
rameters such as the size of the substrate, pH, and the permeability
of enzymes to substrate’s membranes. In order to increase the
surface area available for the enzymatic attack, the algae biomass
must be pretreated prior to the anaerobic degradation [29].

Pre-treatment methods for macroalgae biomass are mandatory
to obtain better results. These methods can include physical, ther-
mal, chemical, biological, and combined processes. The mechanical
method is already used for decreasing the size of the macro-algal,
and thus increasing the surface/volume ratio, which results in
decreasing the digestion cycle [28]. The methane yield is signifi-
cantly improved, and reduced conversion times are achieved when
filamentous algae Rhizoclonium was treated in a warring blender
until the particle reaches a size less than 0.1 mm. A further increase
was achieved if the mechanically treated samples were further
sonicated for 10 min [30]. Enzymatic (lipase, a-amylase, xylanase,
protease, and cellulase) treatment of Rhizoclonium demonstrated
high methane productivity. These enzymes can be used in the form
of a mixture, or it can be used separately [30]. In the prototype
machine owned by TK Energi A/S, the methane potential for
F. vesiculosus and filamentous red algae are increased after a me-
chanical pretreatment process is applied. The machine applied
pressures up to 1000 bar, which is able to convert a mixture water-
algae to a shredded slurry. Fucus vesiculosus can produce maximum
methane potential when the pre-treatment is followed by the
addition of an enzymatic mixture [31]. At the same temperature
(11-13% increment), the pre-treatment of red macroalgae Palmaria
palmata with NaOH at moderate temperatures (20—80 °C) is posi-
tively influencing the productivity of the methane compared with
the standard thermal pre-treatment process [32]. When pre-
treated for 10 min on a Hollander beater, Laminariaceae spp.
attained excess by 52% and 53% in biogas and methane yield,
respectively, in a thermophilic range. The same treatment
increased the biogas production of Fucus Vesiculosus Linnaeus and
Fucus Serratus from 64 ml/gTS to 181 ml/gTS and from 72 ml/gTS to
230 ml/gTS, respectively [33]. Mechanical pre-treatment has
proved to enhance the biofuel yields of other substrates such as
waste paper (21% improvement in methane yield) [34], ley silage
(59% improvement in methane yield), meadow grass (+24%
methane production), switchgrass (improvement in methane Kki-
netics) [35], microalage (18% lipid extraction yield) [36], maize
silage and manure [35].

In this study, the effect of two controlling process parameters
(inoculum to feedstock ratio and the beating time on a Hollander
beater) on the methane yield from Pelvetia canaliculata is evaluated.
The optimal parameters are identified through PSO based on the
model, which has been built using the fuzzy logic technique. First,
the experimental dataset has been used to build the model using
the FL modeling technique. Second, the PSO algorithm, as one of the
simple and fast optimizers, is used for the optimization process.
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2. Methodology
2.1. Experimental setup

In March 2016, the macroalgae Pelvetia canaliculata were
collected on-shore in Rothesay (Scotland). The inoculum was pro-
vided by Energen Biogas Plant (Cumbernauld, Scotland), the plant
used food residues as feedstock. Both algae and inoculum were
stored at 4 °C and used within 48 h [37]. The general character-
ization of the sludge and algae used in this study is shown in
Table 1. The algae were pre-treated in a Hollander beater under the
effect of the shear stress between the rotating bladed drum and the
bedplate. The exerted pressure is controlled through the adjust-
ment of the distance between the blades and the bottom plate. The
beater had 40 kg of water and 0.9 kg of algae. The sample’s pre-
treatment was processed at 30 and 60 min.

Biochemical methane potential (BMP) tests were carried out as
specified in Ref. [28] according to standard procedures [38]. The
reactors were supplied with a constant amount of inoculum, and
the quantity of pre-treated algae pulp was adjusted to achieve the
required F/I ratios (0.3, 0.5, and 0.7). The pH was adjusted to
6.70 + 0.15 with potassium dihydrogen phosphate (KDP) as a buffer
solution. The digestion process was terminated as long as the daily
biogas production rate was decreasing. In other words, the rate is
decreasing to reach a value of less than 1% of the overall obtained
volume [38]. A temperature of O °C and a pressure of 1 atm are
considered as the standard conditions to give the methane volumes
for dry gas.

2.2. Fuzzy logic (FL)

Artificial intelligent (Al) technology has a great impact on the
systems’ modeling due to two reasons. First, it is considered as a
general approximator for linear and nonlinear systems. In other
words, it can efficiently model a signal that has a high complexity
between the output and its corresponding inputs. Second, it has the
ability to learn from the input-output data samples and hence
updates the system’s parameters accordingly in order to improve
its performance.

Al techniques are proved to be efficient modeling tools as they
have the ability of learning. FL modeling is considered as one of the
most efficient Al modeling tools where it is capable of tracking the
trends of data precisely with a small number of training epochs
[39]. Fuzzification, inference system, and defuzzification are the
main stages of the FL modeling. In the fuzzification, stage, the in-
puts are transformed from their crisp values to the corresponding
fuzzy values via a mapping function, namely membership function
(MF). The most popular are the Gaussian and the triangular shape
functions. As soon as the inputs have been fuzzified, they are fed to
the inference system in the second stage to fire the fuzzy rules.
Usually, the rules are built either by an expert or from the input-
output data. The first method is popular in fuzzy control systems;
however, the second is used in fuzzy modeling as in the current

Table 1

Inoculum and macroalgae characterization.
Parameters Inoculum Macroalgae
Total Solids (%) 4.70 + 0.01 18.7 + 0.01
Volatile Solids (%) 62.98 + 0.09 81.68 + 0.06
Ash content (%) 37.02 + 0.09 18.32 + 0.06
C (% of TS) - 37.09 + 0.01
H (% of TS) - 5.41 + 0.01
N (% of TS) - 2.48 +0.01
O (% of TS) - 37.51 + 0.01
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case. There are many algorithms to extract the fuzzy rules from the
input-output data. The most famous one is the “Subtractive Clus-
tering” method, adopted in the present research. This method
partitions the input-output space into different clusters, and by
using an optimization algorithm, it relates the inputs-space to the
output-space in the form of an IF-THEN rule.

In fuzzy logic, there are two well-known fuzzy rule forms. The
Mamdani-type and the Takagi-Sugeno-Kang-type. Sometimes, the
latter is abbreviated to TSK-type or Sugeno-type. The fuzzy rule of a
two-input one-output system takes the form as in Equations (1)
and (2) for Mamdani-type and Sugeno-type, respectively:

IF Inputy is in MFjn; and Input; is in MFjpz THEN Output is MFo(1)

IF Input; is in MFjy1 and Input; is in MFjp2 THEN Output = f{Inputy,
Inputy) (2)

where MFj,; and MFj,, are the membership functions of input 1
and input 2, respectively, and f(.) is a function of the inputs which
could be linear or nonlinear.

The outputs of the rules are aggregated together to produce the
final fuzzy output. Then, this output is defuzzified to its corre-
sponding crisp value. The Centre of Gravity (COG) and Weighted
Average are the two famous defuzzification methods in the case of
Mamdani-type and Sugeno-type, respectively. More details about
the best fuzzification and defuzzification methods as well as the FL
modeling, can be found in Refs. [40—43].

The methane yield from macroalgae could be enhanced through
optimizing the beating time and feedstock/inoculum ratio. The
methane yield production under-considered optimal controlling
parameters has been studied in our previous work [37]. With
different operation conditions, twelve different experiments were
conducted. The Implementing Design of Experiment methodolo-
gies, modeling, and optimization were carried out using the set of
the collected data.

In a real experiment, the collected data is highly expected to be
superimposed with noisy signals. This results in a dataset that
contains uncertain data values. In this case, the fuzzy logic tech-
nique is the best to produce a robust model. In our previous study
using ANOVA [37], the obtained model is built using a highly
nonlinear data set. To obtain a better model, in this work, we have
used the fuzzy logic tool to build the model. The model is con-
structed using a two-input and single-output set of the 12 experi-
ments which were conducted in our previous study [37] where an
optimum methane yield of 283 ml/gVS was obtained for 50 min
pretreatment time and a ratio F/I of 0.3, which represents an in-
crease of 45% compared to non-pretreated algae.

Before starting the training phase, the training data samples
were randomly selected from the whole set, and the remaining
samples were reserved for the testing phase. The training set has 8
data samples, while the remaining 4 samples were assigned as the
testing and validation stages. Fig. 1 shows the FL model structure of
the methane yield process. In the figure, “Sug21” refers to a fuzzy
system of Sugeno-type with two inputs and one output.

2.3. Particle swarm optimization (PSO)

Some living creatures inspired researchers to emulate their
ways of movement. This movement is usually performed in a
swarm. The algorithms that describe these procedures are called
swarm optimizers. One of these optimizers is the PSO, which
mimics the movement behavior of a swarm of birds. This algorithm,
like many other optimization algorithms, starts by suggesting some
solutions, typically called particles [44]. During the optimization
process, the particles are modifying their orientations and locations
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Mormalized Beating Time (min) (8) sug21

(sugeno) fiu}

8 rules

Methane Yield (8)

System sug21: 2 inputs, 1 outputs, 8 rules

Nomalized Ratio F/l (8)

Fig. 1. Structure of the FL model.

in an iterative process. The next movement of the particle is
calculated based on its best position as well as the best position
found so far of the whole swarm’s particles [45]. For every particle
in the swarm, the next velocity vector Vel**! and the next position
vector Pos*t1 are calculated based on the previous velocity Vel* and
the previous position Pos¥. Equations (3) and (4) are describing the
updating rules of the position and velocity vectors, respectively.

Poskt1 = Posk + Velk™1 [46] (3)
Velk+l — W Velk +cp *rp * (POSLocalBest _ POSk) 4 Co*ra * (POSGlobalBest
— Posk) [47] (4)

where, w denotes the weight of inertia; c¢; and ¢, denote the self
experience weight and the social experience weight, respectively;
r; and ry are two random generators changing from O to 1.

Beating time and FI ratio are two independent controlling pa-
rameters that are controlling the methane yield. Therefore, they are
selected as the decision variables in the optimization process, and
methane yield is the cost function required to maximize.

The flexibility to form hybrid tool optimization tools, the easy
implementation, the few parameters to adjust required and the use
of simply logic and mathematical operations are the main advan-
tages of PSO. Furthermore the ability to handle functions with
probabilistic nature and the ability to start the iteration process
even with a bad initial solution makes PSO a powerful technique for
the optimization of this type of processes.

3. Results and discussion

Two input parameters were studied at three levels: the beating
time was set at 0, 30, and 60 min, while the feedstock/inoculum
ratio was fixed at 0.3, 0.5, and 0.7. The response variable was the
methane production in terms of ml per g of volatile solids (ml/gVS).
Biochemical methane potential test results from the Response
Surface Methodology are shown in Fig. 2.

The fuzzy model had 8 rules which take the IF-THEN Sugeno-
type form, as mentioned before. Each rule describes a unique
relationship between the system’s output and inputs within the
input-output space. The following is the form of the mth rule used
in this work:

Rule #m: IF “Beating-Time” is in “Input 1 Cluster #m” and “Ratio F/
I"” is in “Input 2 Cluster #m” THEN “Methane Yield” is in “Output
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Methane yield (ml/igVS)

340.295
e

X1 = A: Beating time
X2 = B: Ratio F/I

47.015

CH4 yield (mligVs)

Ratio F/I

BT (min)

Fig. 2. Response surface plot for methane production from RSM.

Cluster #m”; where, m = 1, 2, ...,8.

The system is usually trained by passing a training batch (input-
output samples) to the model and then calculating the output’s
error. Based on this error and using a training algorithm, the
model’s parameters are changed accordingly in order to minimize
the system’s error. In the Al field, the training batches are referred
to as the training epochs. In the current case study, the number of
epochs is set to a value of two.

In fuzzy systems, the membership function (MF) is a function
used to map the values of the input variables to their corresponding
fuzzy values. This mapping function is the initial step of the fuz-
zification process. The Gaussian and triangular shapes are the most
popular MFs. The former is adopted in this study as shown in Fig. 3.
In the figure, the word “normalized” referred to the value of the
scaled value of the input. To unify the weights of the inputs during
the training phase, the values of the inputs are scaled (normalized)
to be in the range [0 1].

The adequacy of the RSM model was tested through ANOVA, the
statistical significance of the model’s terms and the model itself is
examined using the lack-of-fit test and the sequential F-test. The
model is considered adequate if Prob. > F for the model and each
model’s term does not exceed the level of significance (o = 0.05 in

0.7

=}
@

0.6

=}
wm

0.5

=}
>

04}

Membership Functions
Membership Functions

o
w

03r

=}
[N}

02r

=
o

01

0.6

e e———

08 1

a®

4 0.6

0.2
Normalized Beating Time (min)

0.4

0.8 1
Normalized Ratio F/l

Fig. 3. Normalized inputs’ MFs of fuzzy model.
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this case).

During the FL modeling, the training process is continued until
reaching satisfying test results of RMSE and MSE. The RMSE value is
found to be 3.8122 for the fuzzy model; however, it was 8.1294 for
the ANOVA model [37]. Accordingly, the RMSE is decreased by 53%
using the fuzzy model compared to the ANOVA. Additionally, the
value of the coefficient of determination for the fuzzy model is
found 0.99775, while it was 0.99074 for the ANOVA. From the
resulting values of the statistical markers, the fuzzy model is
proved superior, which produced less RMSE and high R? values over
their correspondings of the ANOVA model. Table 2 shows an ac-
curacy comparison between the results of fuzzy and ANOVA, while
the validation results are shown in Table 3. As seen from the two
tables that the accuracy of the results obtained from the FL model is
better than those of the ANOVA.

Fig. 4a illustrates the resulting predictions obtained using the
fuzzy model in this study in comparison with the experimental data
and the optimized results using the ANOVA. The experimental runs
resulted from setting the beating time at 0, 30, and 60 min and the
F/I ratio at 0.3, 0.5, and 0.7, the experimental table is specified in
Ref. [37]. By deep investigations of the plots, it can be seen that the
predictions from the built model using fuzzy logic are almost
coinciding with the experimental data to a large extent, which in-
dicates that the fuzzy model is reliable relative to the case of the
ANOVA model.

Methane yield for 60 min mechanical pre-treated algae
increased by 74% compared with untreated algae, while the incre-
ment for 30 min beaten samples was 6%. The pretreatment clearly
starts to be effective at beating times higher than 30 min, increasing
the surface area of the biomass, which makes it readily accessible to
the microorganisms. It is found that the hydrolysis of the feedstock
can be accelerated by an excessive particle size reduction of the
substrate, which can result in the accumulation of volatile fatty
acids (VFAs), leading to the process inhibition and stopping the
methane production [26,35,48]. This seems not to happen in this
study even at the highest pre-treatment times, as the methane
yields are maximum at the highest beating time regardless of the
feedstock/inoculum ratio. Even that the particle size was not
measured against the beating time, it can be concluded that pre-
treating the macroalgae P. canaliculata for 60 min in a Hollander
beater does not reduce the algae particle size to such extent to lead
to a digestion inhibition. VFA accumulation due to excessive par-
ticle size reduction was not found in previous studies of different
macroalgae species [28,49]. Results from Tedesco et al. showed a
maximum biogas yield for 10 min pretreatment lower than the
obtained in the present study, confirming that higher beating times
have a positive effect on the methane production [49].

The methane yield versus the normalized inputs data in 3-D
spatial shape is shown in Fig. 5. As seen from the figure, the
methane yield has a nonlinear relationship with the contributions.
Both process parameters have an exponential effect on the
methane yield. The methane yield is exponentially increasing with
the increase of the pre-treatment time, while the effect of the F/I
ratio is the opposite; higher F/I ratios resulted in lower methane
yields. The effect of pre-treatment time in the methane production
is more accused at lower F/I ratios, as shown by comparing the
slopes of the 3D plot at low and high F/I ratios. Methane yield is

Table 2

Accuracy of the FL model in comparison with that of the ANOVA.
Model type MSE RMSE R? Validation Data MSE
Fuzzy 14.5326 3.8122 0.99775 9.2989
ANOVA [37] 66.0872 8.1294 0.99074 31.9337
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Table 3
Validation results of FL model in comparison to that of the ANOVA.
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Exp. Inputs Actual Methane yield (ml/gVS) Predicted ANOVA [37] Predicted Fuzzy % Error ANOVA [37] % Error Fuzzy
Beating time (min) Ratio F/I
1 20 0.4 130.38 137.53 126.07 —5.484 3.307
2 35 0.6 80.73 77.16 80.66 4.422 0.085
i Yield values (sorted)
350 T T T i
5 e 3 5
% Fuzzy Model w0
300 - { ANOVA i % :?ZUU L
5E
< 400 | [—©—Experimental
250 g’ — - % — Fuzzy Model
—-&— ANOVA
0 i . . . .
- 0 2 4 6 8 10 12
g —~ 200 ) @ 8 8
22
g 120 ® 1 Prediction Error
é o & " MSE,,, =14.5326, MSE ., = 66.0872
100 - L] 8 B ‘ [ é [
8 2K
o 10F R q
o ] N PN
ST 7 > 7 L P ~. e
@ I et A S AR SO G e et
£ Sev e e \
. | | | | . | ¢ O s |
0 2 4 6 8 10 12 ¥ \
Experimental Run

Experimental Run

Fig. 4. (a) FL output against the experimental data and ANOVA. (b) Prediction error for ANOVA and FL model.

increasing with the decrease of the F/I ratios, both for untreated and
pre-treated samples at 30 and 60 min. Non treated algae at a F/I
ratio of 0.3 resulted in a methane yield of 196 ml/gVS, while for a F/I
ratio of 0.7, the methane production was 100 ml/gVS. According to
literature, an optimum F/I ratio for anaerobic digestion is around
0.5 [16], the present study shows that the F/I ratio can be further
decreased to 0.3 for the digestion of P. canaliculata macroalgae.
Keeping the industrial anaerobic reactors to operate at the opti-
mum F/I ratio permits a better manipulation of the biomass and
prevents the undigested material leaving the reactor as digestate.
Similar results were achieved for the anaerobic digestion of pig

3-D Surface with Contours

300
300 4
250
5 250
E ©
< 200 o
[} >
& 150 200 g
£ £
= 100 - b
50 J 1 150
0
100
<
0.6 S _/-/"/ 0.5 50
0.5

Normalized Ratio F/I
Normalized Beating Time (min)

Fig. 5. The methane yield versus the normalized inputs data in 3-D from PSO.
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urine and rice straw where the lowest F/I ratio resulted in a better
operation performance both in terms of biogas production and
volatile solids reduction [50]. Usually, high F/I ratios can cause an
accumulation of VFAs, resulting in the process inhibition (the same
effect produced by excessive communication) [51]. In the case of
P. canaliculata, even at the highest F/I ratio of 0.7 studied, no inhi-
bition is produced.

Comparing the surfaces plots from both techniques, PSO’s plot
(Fig. 5) showed a higher accuracy fitting the experimental data
compared to RSM’s plot (Fig. 2). Even the shape of the surface is
similar in both techniques, PSO is able to identify depressions (e.g at
high F/I ratio and medium BT) and peaks (e.g. at low both F/I ration
and BT) that RSM showed as smooth surface.

In the modeling field and to trust the resulting output of the
model, testing the modeling accuracy is a necessity. This can be
done by feeding the model with new or unseen data and then
investigating the prediction accuracy. To measure the prediction
accuracy, the predicted output is plotted versus the target, as
illustrated in Fig. 6. It can be noticed from the plots that the data of
the resulting fuzzy model output is distributed very close to the
diagonal line that represents the one hundred percent accuracy.
The very high correlation between predicted and experimental
values demonstrated the suitability of the fuzzy methodology to
model the methane production from mechanically pre-treated
macroalgae. This proves the high accuracy of the FL model in
tracking the data.

The plot of the cost function, related to the best (maximum)
value of the optimization processes found so far through the one-
hundred runs, is illustrated in Fig. 7.

The movements of the ten solution particles are recorded during
the thirty iterations optimization process to study the particles’
convergence. Fig. 8a and b presents the convergence curves for the
solutions with the optimizing variables of the beating time and
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Fig. 7. Cost function variation versus iteration during the optimization process.

ratio F/I, respectively.

One of the features of the Fuzzy model is the ability to predict
values outside the training range. Accordingly, the optimization
process search space of the inputs is expanded by certain different
percent below and above the lower and upper bounds, respectively.
The obtained optimization results are presented in Table 4. It can be
noted from Table 4 that the extension beyond the training range of
the inputs improves the methane yields, especially that of the
beating time.

4. Conclusion

The mechanical pre-treatment on a Hollander beater of
P. canaliculata macroalgae is studied. The effect of feedstock/

2195

Renewable Energy 163 (2021) 2190—2197

Particles convergence curves; #Partlcles 10

60 =% s —4—3 _i_ —4—
* + ¥ * *
Tt iﬂ“ S +$r 3]
55+ $ t¥ $ S =1
* t? I ¥ 4
: * +
50 § ¥
+
45 [ 1
. * | *
< *
Eaot 1
@ L *
E * .
=351 1
[=]
=4
= *
= +
@30T *
m
B+ F 1
g
200 % 1
*
15 1
*
*
10 ) ) . | I
0 5 10 15 20 25 30
Iterations
Figure 8a. Particles’ convergence plots for the beating time.
Particles convergence curves; #Particles =10
0.65 . T . - .
06 [+ 1
£
*
0.55
*
*
= 051 1
w *
el * *
T +
@ 045 £ 3
* 4
%
*
04 % * 1
* *
+
* *
0.35 i % *
SIS T IS TP ELLINE:
st
L LT L T **i‘m %_"'
0.3 ¥
0 5 1 15 30
Iterations

Fig. 8. (a) Particles’ convergence plots for the beating time. (b) Particles’ convergence
plots for the ratio F/I.

inoculum ratio and the beating time on the resulting methane
yields is evaluated. An accurate fuzzy logic (FL) model to estimate
the methane yield based experimental datasets is proposed. To
achieve an acceptable testing error, the fuzzy model using 2 epochs
has been trained until the target is met. The predicted data using
the fuzzy model is dispersed nearby to the diagonal line, which
confirms the superiority of the model for prediction purposes. The
coefficient of determination values are 0.99775 and 0.99074,
respectively, for FL and Response Surface Methodology. But the
RMSE values are 3.8122 and 8.1294 respectively for FL and
Response Surface Methodology. This demonstrated the high pre-
cision of FL modeling compared with ANOVA. Then, to identify the
optimal operating conditions of the process, a PSO technique has
been utilized. Two input parameters; beating time and feedstock/
inoculum ratio are assigned as decision variables during the opti-
mization procedure for maximization of methane yield. The ob-
tained optimized results endorse the superiority of the integration
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Table 4
Optimized results.

Renewable Energy 163 (2021) 2190—2197

The extension (%) Statistical Measure

Methane Yields (ml/gVS)

Associated Optimal Inputs

Beating time (min) Ratio F/I

0 Min 204.1299 0 0.4038

Max 340.1674 60 0.3096

Avg 323.8427 52.8 0.3210

StD 44.4294 19.5959 0.0310

RMSE 1.2761e+02 5.6285e+01 8.8394e-02
5 Min 204.1301 0 0.4039

Max 355.4615 63 0.3064

Avg 340.3283 56.7 0.3163

StD 45.6280 18.9952 0.0295

RMSE 1.4357e+02 5.9767e+01 9.2426e-02
10 Min 204.1302 0 0.4040

Max 369.3012 66 0.3040

Avg 362.6942 63.36 0.3081

StD 32.5298 12.9985 0.0197

RMSE 1.6183e+02 6.4667e+01 9.7877e-02
15 Min 204.1301 0 0.4039

Max 381.7298 69 0.3022

Avg 369.2976 64.17 0.3093

StD 45.5421 17.6938 0.0262

RMSE 1.7127e+02 6.6541e+01 9.8159e-02
20 Min 204.1299 0 0.4038

Max 392.9587 72 0.3009

Avg 377.8523 66.24 0.3091

StD 51.4859 19.6315 0.0282

RMSE 1.8112e+02 6.9060e+01 9.8771e-02
25 Min 204.1288 0 0.4053

Max 403.2548 75 0.2999

Avg 399.2720 73.5 0.3020

StD 28.0180 10.5529 0.0147

RMSE 1.9712e+02 7.4246e+01 1.0432e-01

of Fuzzy logic and PSO compared with ANOVA. The best values of
methane yields are obtained for high pre-treatment times and low
feedstock to inoculum ratios, allowing better exploitation of the
macroalgae biomass. However, according to this study, a value of
340.1674 ml/gVS of methane yield can be reached at a beating time
of 60 min and an F/I ratio of 0.3096.
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