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a b s t r a c t

Simple linear methods are widely used for time series modelling and prediction and in particular for the
forecast of wind speed variations. Linear prediction models are popular for their simplicity and
computational efficiency, but their prediction accuracy generally deteriorates beyond a few time steps. In
this paper we demonstrate that the prediction accuracy of simple auto-regressive (AR) models can be
significantly improved, by as much as 60.15% for day-ahead predictions and up to 18.25% for week-ahead
predictions, when combined with suitable time series decomposition. The comparison with new refer-
ence forecast model (NRFM) also shows similar accuracy gain of week ahead predictions. The combined
model is capable of forecasting wind speed up to 7 days ahead with an average root mean square error
less than 3 m/s. We also compare the performance of AR and f-ARIMA models in wind speed prediction
and observe that the f-ARIMA model is no better than the AR model when used in combination with time
series decomposition.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Wind is widely recognized as one of the fastest growing alter-
nate sources of energy all over the world. Wind energy is clean,
economically viable and safe for the environment and is available in
abundance. Compared to power produced from gas or coal, each
MWh of wind power saves no less than 500 kgs of green house
effect gases from being released into the atmosphere and this
makes wind power one of the most eco-friendly sources of energy
[1,2]. Over the last few years there has been a steady growth of the
generation and use of wind power and as of 2013, the total installed
capacity of wind power stands at 318 GW. According to European
Wind Energy Association, if the growth of wind power generation
continues at the current rate, it would account for more than 12% of
the total energy demands by the year 2020 [3]. A major factor
affecting wind power production is the highly fluctuating nature of
wind speed, under the influence of numerous meteorological fac-
tors. These variations occur at all time scales ranging from seconds
to months and even years and being able to predict these
. Kiplangat), asokank@cet.ac.
ar).
fluctuations is a key factor in the production and management of
wind energy. Based on the length of the forecasting period, wind
speed predictions are generally classified as short-term (up to 6 h
ahead), medium term (6 he1 day ahead) and long-term
(1 daye1 week ahead) [4], and improving the accuracy of pre-
dictions at all these time-scales is crucial at various stages of wind
energy production and management. Short term forecasts ranging
from milliseconds to a few minutes are needed for active turbine
control and managing wind energy at electricity grids [5,6] and
forecasts in the range of a few hours up to a few days are useful in
energy management and trading, especially in liberalized elec-
tricity markets where users devise best bidding strategy based on
expected power production [7]. Long-term forecasts of up to
several days ahead are useful inmanaging themaintenance of wind
farms and transmission lines [8]. Methods for accurate prediction of
wind speed has therefore emerged as an important research area in
recent years.

Various models for wind prediction include physical models,
which use complex mathematical equations to describe the phys-
ical relationship between various atmospheric parameters and
local topography, statistical models which use time series of past
data or probability distribution of wind speed for future predictions
and also hybrid models which combine physical models with
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Fig. 1. The geographical locations, denoted by filled circles, for the 234 sites selected
for wind speed data analysis and prediction.
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statistical tools [9]. A thorough review of the current status of wind
power forecast models, especially of the meteorology based ap-
proaches, can be found in Refs. [10] and [11]. Provided the meteo-
rological conditions do not change dramatically over short term,
time series models, which use past history of wind speed to predict
future values, are found to perform reasonably well. They include
moving average models such as ARMA, ARIMA and its variants
fitted to the time series of wind speed [12e14], models based on
artificial neural networks [13,15e17] and deterministic prediction
models suitable for chaotically varying wind speed dynamics
[18,19]. Most of these methods are capable of reasonably accurate
Fig. 2. Comparison of predicted values with actual data for AR and f-ARIMA models with a
prediction start time: 2004-12-26 12:10:00 (b) Latitude: 45.39850�N Longitude: 103.51002
96.60688�W, prediction start time: 2005-09-22 12:10:00 (d) Latitude: 38.67878�N Longitu
predictions up to a few hours, but the range of predictability often
varies significantly over topography and other local conditions [4].

Wind speed data usually exhibit long range correlations and f-
ARIMA models are especially suited for making short to medium
term forecasts of such data. Kavasseri and Sreetharaman [14] have
applied f-ARIMAmodels to forecast hourly average wind speeds up
to a period of two days ahead, with an improvement of prediction
accuracy up to 42% compared to the elementary method of
persistence. In this workwe demonstrate that decomposition of the
wind speed data into selected frequency components before
applying the forecasting technique can dramatically improve the
accuracy and longevity of prediction. The decomposition of wind
speed data is achieved by the use of wavelet transform technique,
while the actual forecasts on the component series are made by
simple prediction tools such as auto-regressive (AR) model or f-
ARIMA model.
2. AR and f-ARIMA models of prediction

A popular model for prediction of time series is the autore-
gressive (AR) model which uses a linear combination of p past
observations and a random error. An AR-model AR(q) of order p has
the form,

xt ¼ cþ
Xp
i¼1

fixt�i þ εt

where fi s are suitably chosen coefficients, c is a constant and εt is
nd without wavelet decomposition. (a) Latitude: 44.34406�N Longitude: 99.61266�W,
�W, prediction start time: 2006-03-21 12:10:00 (c) Latitude: 44.95404�N Longitude:

de: 98.59783�W, prediction start time: 2004-01-31 12:10:00.



Fig. 3. Comparison of location and time averaged RMSE of hourly mean wind speed
data between AR and f-ARIMA models both combined with wavelet decomposition.

D.C. Kiplangat et al. / Renewable Energy 93 (2016) 38e4440
the random error at time t [20]. For the analysis reported in this
paper we have adopted Burg's method [21] for estimating the pa-
rameters as implemented in the stats package of R. For time series
having predominantly deterministic character, AR model is ex-
pected to perform better in prediction compared to other linear
methods. A moving average (MA) model, on the other hand, uses a
linear combination of past errors. An MA-model MA(q) of order q
has the form,

xt ¼ mþ
Xq
j¼1

qjεt�j þ εt

where fi s are suitably chosen coefficients, m is the mean of the
series and the random errors εt�j are assumed to be independent
and identically distributed with zero mean and constant variance
[20].

An auto-regressive model of order p and a moving average
model of order q can be effectively combined to form the more
useful ARMA(p,q) model, which has the general form,

xt ¼ cþ εt þ
Xp
i¼1

fixt�i þ
Xq
j¼1

qjxt�j

Using the operators,

FðBÞ ¼ 1� f1B� f2B
2 �/� fpB

p

QðBÞ ¼ 1þ q1Bþ q2B
2 þ/þ qqBq

the ARMA(p, q) model can be written as,

FðBÞxt ¼ cþQðBÞεt

where B is the backward-shift operator so that Bxt ¼ xt�1.
ARMA models are commonly used in forecasting time series of

stationary processes. Time series of non-stationary processes are
best modelled using integrated ARMA models or ARIMA models,
which additionally uses differencing operation to remove statio-
narity. An ARIMA(p, d, q) model has the general form,

FðBÞDdxt ¼ cþQðBÞεt

where D ¼ 1�B is the differencing operator and d is an integer [20].
f-ARIMA is a generalization of ARIMA where the parameter d is
allowed to have a fractional value with the operator (1 � B)d

interpreted to have the binomial expansion [22],

ð1� BÞd ¼ 1� dBþ dðd� 1Þ
2!

B2 þ/

The possibility of wide range of choices for the parameters p, d, q
and the constants fi and qi give the model great flexibility and
wider applicability.

One of the features that distinguishes a f-ARIMA process from an
ARIMA process is that the former is characterized by a slow decay in
its auto-correlation function compared to the latter. This feature
makes f-ARIMAmodel an attractive choice for data sets that exhibit
long range correlations such as the wind speed data [14].

3. Wavelet transform

Wavelet transform allows us to decompose data or other func-
tions into its frequency components and then study each compo-
nent with a resolution matched to its scale. Whereas traditional
Fourier transform methods use superposition of sines and cosines
of different amplitudes and frequency to represent functions, the
wavelet transform does this using a collection of wavelet functions,
all of which can be generated by scaling and translating a single
base wavelet called mother wavelet. The mother wavelet and all
wavelets generated from it are, unlike sines and cosines, localized
in space and the given function or data is approximated by a series
of scaled and translated versions of these localized functions. This
allows processing of data at different scales or resolutions, with
lower scales giving finer details of the high frequency components
and higher scales yielding grosser features of the low frequency
components of the data. Measured data such as wind speed data
are inherently multi-scale due to contributions from events
occurring with different localizations in time and frequency, and
wavelets are more suited for analysis of this kind of data.

Mathematically, a mother wavelet is a square integrable func-
tion j(t), which satisfies the admissibility condition [23],

0< cj ¼
Z∞
�∞

��bjðuÞ��
juj <∞

where bjðuÞ is the Fourier transform of j(t) and preferably a regu-
larity conditionwhich requires that j(t) be fast decaying or be non-
zero only on a finite interval [23]. To decompose a given function,
wavelet transforms use a family of wavelet functions js,t(t) ob-
tained from the mother wavelet j(t) by dilations and translations;

js;tðtÞ ¼
1ffiffi
s

p j

�
t � t

s

�
; s; t2ℝ; ss0

where s is the scale parameter and t is the location parameter. The
continuous wavelet transform of a function x(t) is then defined by,

Wxðs; tÞ ¼
Z∞
�∞

xðtÞj�
s;tðtÞdt

where * denotes the complex conjugate. The admissibility condi-
tion of j(t) ensures that x(t) can be recovered from js,t(t) by the
inverse transform [23].

xðtÞ ¼ 1
cj

Z∞
�∞

Z∞
�∞

Wxðs; tÞjs;tðtÞ
dtds
s2

;



Fig. 4. Plots of averaged RMSE of 1e3 day ahead predictions at different locations as well as points of time. The left panel shows location averaged RMSE of predictions at different
points of time whereas the right panel shows the time averaged RMSE of at different locations.
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and this is called the wavelet decomposition of x(t).
The variation of the scale and location parameter of the wavelet

over a continuum of values in the continuous wavelet decompo-
sition leads to undesirable redundancy in the calculation of wavelet
coefficients. In practical applications it is more convenient to
sample the parameters s and t on a discrete set of values in the
scaleetime plane. This leads to discrete wavelets defined for suitably
chosen grid points on the s�t plane,

jj;kðtÞ ¼ s�j=2
0 j

�
s�j
0 t � kt0

�
; j; k2Z

where s0 > 1 and t0 are fixed dilation and translation factors [23].
The so called dyadic sampling corresponds to the choice s0 ¼ 2 and
t0 ¼ 1. The discrete wavelet transform(DWT) is then defined by,

Wxði; jÞ ¼
Z∞
�∞

xðtÞj�
j;kðtÞdt:

If the set of wavelets jj,k(t) forms an orthogonal basis, the above
transform can be inverted leading to the discrete wavelet decom-
position of x(t) given by,

xðtÞ ¼ 1
cj

X
j;k2Z

Wxðj; kÞjj;kðtÞ:

The DWT is especially suited for time series data sampled at



Fig. 5. (a) Location and time averaged RMSE for predictions up to 9 days ahead. (b) Percentage gain of accuracy in terms of RMSE for the AR model and the New Reference Forecast
Model (NRFM) method of persistence when used in combination with wavelet decomposition.
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equal intervals of time. We use a specific version of DWT, called
Maximal Overlap DWT (MODWT) which has some advantages over
traditional DWT. First, it is well defined for all sample sizesN, unlike
DWT which requires N to be multiple of J for a complete decom-
position of J scales. MODWT is highly redundant over DWTand also
non-orthogonal, but the redundancy allows better comparison of
the series with its decomposition [24].

At each scale J, the MODWT transforms an N dimensional vector
X, which represents the given data, into J þ 1 new vectors each of
dimension N. These vectors consists of J vectors W1,W2,$$$WJ of
MODWT wavelet coefficients corresponding to the scales tj,
j ¼ 1,2,…J and a vector VJ containing the so called MODWT scaling
coefficients. We can invert this procedure and recover the original
vector X from these wavelet and scaling coefficients. This leads to a
decomposition known as multi-resolution analysis(MRA),
expressed as [24,25],

X ¼
XJ
j¼1

Dj þ SJ

The vector Dj contains the details of the data associated with the
average variations on a scale of tj and is computed exclusively from
the wavelet coefficients in Wj. On the other hand, SJ is calculated
from the scaling coefficients in VJ and is associated with the aver-
ages at scales 2tJ and higher, which separates the smoother part of
the data [24,25]. Thus the MRA expresses the given data as a sum of
a smoother part and a set of component parts giving details of the
variations at various scales.
4. Results and discussion

In earlier works we have demonstrated that random like fluc-
tuations found in time series of wind speed could actually arise
from an underlying chaotic dynamics [18], and that in such situa-
tions deterministic forecasting methods can make significantly
accurate short term predictions of wind speed [19]. However, the
chaotic behaviour essentially limits the possibility of accurate long-
term predictions using chaotic prediction methods due to expo-
nential divergence of nearby trajectories. A time series of wind
speed is the result of interplay between numerous dynamical fac-
tors of various scales and frequencies and with a systematic pro-
cedure to keep track of the various frequencies it could be possible
to bypass these limitations to some extent and make fairly accurate
long-term predictions taking advantage of the underlying deter-
minism. We demonstrate that wavelet decomposition of wind
speed data combined with simple auto-regressive prediction
models can make long-term predictions as far as a week ahead
possible with root mean square error below 3 m/s.

For the present analysis we have used the wind speed data
sampled at 10-min intervals, for the period from January 2004 to
January 2007, for 234 locations spread across an area ranging from
34.05911�N, 106.95718�W to 48.84354�N, 69.40916�W as available
from National Renewable Energy Laboratory (http://www.nrel.
gov), USA as shown in Fig. 1. Our prediction method starts with
an MRA of the given time series, thus decomposing it into time
series of various scales by applying MODWT with Daubechies
wavelet of order 8. We have set J ¼ 12 giving rise to 12 detail series
Dj, j¼ 1,2,…11 (at scales 2j, j¼ 1,2,…11) and the smooth series S12 of
variations at scales greater than 211. A part of this component series
is then selected as the model data for predictionwhich is then used
to forecast several time steps into the future using AR or f-ARIMA
method. The resulting series are then combined, again using MRA,
to reconstruct the original series along with the predicted values.

Fig. 2 shows the results of predictions made by AR and f-ARIMA
models, for some hundred hours, on the wind speed data from four
different locations, plotted along with the actual data. Also plotted
in the Fig. 2 are the predictions by each of these models in com-
bination with wavelet decomposition technique as described
earlier. These plots clearly show that both the AR and f-ARIMA
predictions are remarkably improvedwhen combinedwithwavelet
decomposition. Whereas the forecasts by the plain models diverge
from the actual data after a few time steps, when combined with
wavelet decomposition, they yield fairly accurate predictions for a
longer period of time and pick up the dynamics of the original
series more or less faithfully.

To further investigate the reliability of this technique combining
prediction models with wavelet decomposition, and also to
demonstrate their wider applicability in wind speed prediction, we
have carried out a statistical analysis of the wind speed forecasts
made at a range of different geographical locations. The analysis
consists of computing and comparing wind speed prediction errors
at a total of 234 geographical locations mentioned earlier. We use
spatial averages of prediction errors over the various locations, as
well as time averages over various periods of time at each location,
to compare the prediction accuracies of the forecast models when
used directly and in combination with wavelet decomposition. The
prediction errors are measured in terms of the root mean squared
error (RMSE) defined as follows. Suppose that from a given time
series of n þ k observed values x1,x2,…xnþk, we choose the first n
values as constituting the model data for prediction and obtain the

http://www.nrel.gov
http://www.nrel.gov
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forecasts xpnþ1; x
p
nþ2;…; xpnþk for the next k values. The root mean

squared error is then given by,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnþk
i¼nþ1

�
xi � xpi

�2
k

vuut
For each location we obtained predictions for 1e9 days ahead at

intervals of 30 days for the 3-year period from 2004 to 2006, using
the AR or f-ARIMA model alone at first and then in combination
with wavelet decomposition. Wind speed data of previous 30 days
were used to build suitable models for predictions in all cases. The
time-averaged RMSE for each location was computed by averaging
over the RMSEs of the predictions at intervals of 30 days at the
location. The location averaged RMSE at a particular time was
calculated by averaging over the RMSEs of predictions at various
locations at the time.

To compare the performance of AR and f-ARIMA models in the
presence of wavelet decomposition, we computed both location
and time averaged RMSE for predictions up to 6 h ahead, which
evaluates to 0.01627287 ± 0.00017 for AR model and to
0.05017721 ± 0.00075 for f-ARIMA model. We have repeated this
comparison for hourly mean wind speed data and the results are
shown in Fig. 3. These results indicate that when used in combi-
nation with wavelet decomposition, the AR model fares much
better, with considerably less computational cost, than the f-ARIMA
model. The f-ARIMA model also shows the tendency to diverge for
certain scales of the data. Hence the rest of the analysis was carried
out using exclusively the AR model as the base prediction tool in
combination with wavelet decomposition.

Fig. 4 shows average RMSEs for 1e3 day ahead predictions with
the left panel showing the location-averaged RMSEs and the right
panel showing the time averaged RMSEs. These results clearly
demonstrate that wavelet decomposition significantly improves
the prediction accuracy of the AR model and that the performance
edge of the combinedmodel is more or less maintained at the same
level across all locations and all time periods. The order of ARmodel
was between 34 and 36 in almost all cases. In predictions up to
3 days ahead, the combined model is accurate to within an average
relative error of about 7e8%, which is roughly 5e6% less than what
AR model produces when used directly. For 4e9 days ahead pre-
dictions the accuracy is certainly lower than the earlier set of
forecasts, but the combined method of AR with wavelet decom-
position continues to deliver much better accuracy than the sin-
gular AR method. Fig. 5(a) shows the overall performance of
forecasting methods for predictions up to 9 days ahead by plotting
the time and location averaged RMSE against the number of days of
predictions. For comparison, we have also computed the RMSE of
predictions using the New Reference Forecast Model (NRFM),
which is an effective modification of the persistence forecast model
for forecast lengths of more than a few hours [26]. NRFM uses a
weighting between the persistence for the short term and the data
mean for the long term, where the weighting parameters depend
on the correlation and are chosen to minimize the mean square
error. This makes the long term predictions by the model approx-
imate the climatology better. The AR prediction based on wavelet
decomposition is able tomake fairly accurate predictions for up to a
week ahead, consistently across all locations and seasons, with an
average relative error of about 11% or less. As shown in Fig. 5(b) the
major benefit of the method proposed in this paper is the signifi-
cant gain in accuracy of the AR model obtained by the use of
wavelet decomposition. In terms of location and time averaged
RMSE, this gain is 60.15% for 1-day predictions and 46.24% for 2-day
predictions. Comparison of the combined model with new refer-
ence forecast model also shows similar performance advantage. For
week-ahead predictions, the use of wavelet decomposition returns
an average 18.25% of accuracy gain for the AR model. The expo-
nential decay of the accuracy gain, as seen in the figure, may be due
the chaotic behaviour of underlying dynamics of wind speed vari-
ations [18,19]. Prediction accuracy of a chaotic time series is bound
to decay exponentially as time length of the predicted value in-
creases. However, decomposition of time series before prediction is
seen to slow down this decay process appreciably.

5. Conclusion

Accurate prediction of wind speed is an important aspect of the
control and management of electricity produced at the wind farms
and consequently wind speed forecasting has emerged as a major
research area in recent years. Majority of the techniques reported in
the literature for wind speed forecasting use linear time series
models. While attractive for their computational efficiency and
simplicity, their prediction accuracy beyond a few time steps is
generally very poor. In this paper we have demonstrated through
numerical computations that the prediction accuracy of simple
linear models can be remarkably improved, even for forecasts
beyond a week, by properly decomposing the time series before
prediction. Wind speed forecasts by an auto-regressive model
combined with wavelet based decomposition of time series are
found to be accurate within an average error of 7e8% for pre-
dictions up to 3 days ahead. A statistical analysis of the predictions
made at 234 different locations reveal that time series decompo-
sition improves the accuracy of AR models by an average 60.15% for
day-ahead predictions and up to 18.23% for week-ahead pre-
dictions. Since the entire analysis has been carried out on high
resolution data of 10 min intervals, the results reported here are of
greater practical relevance.

Acknowledgement

The authors are grateful to University Grants Commission (UGC),
NewDelhi, for their financial assistance (no. F. 42-30/2013(SR)). The
first author (DCK) would like to acknowledge the financial assis-
tance from Indian Council for Cultural Relations (ICCR) through
Africa Scholarship Scheme. They wish to thank National Renewable
Energy Laboratory (http://www.nrel.gov), USA, for making their
data available and campus computing facility of University of Kerala
set up under DST-PURSE programme for providing computational
facilities. Authors are also indebted to the referees for their
constructive comments and useful suggestions which helped them
to improve the original manuscript substantially.

References

[1] M. Nicholson, T. Biegler, B.W. Brook, How carbon pricing changes the relative
competitiveness of low-carbon baseload generating technologies, Energy 36
(1) (2011) 305e313.

[2] J. Clancy, F. Gaffney, J. Deane, J. Curtis, B.�O. Gallach�oir, Fossil fuel and CO2
emissions savings on a high renewable electricity systemea single year case
study for Ireland, Energy Policy 83 (2015) 151e164.

[3] Global Wind Energy Council, Global Wind Statistics, 2013. http://www.gwec.
net/wp-content/uploads/2014/02/GWEC-PRstats-2013_EN.pdf.

[4] S.S. Soman, H. Zareipour, O. Malik, P. Mandal, A review of wind power and
wind speed forecasting methods with different time horizons, in: North
American Power Symposium (NAPS), 1e8, IEEE, 2010, p. 2010.

[5] A.S. Hering, M.G. Genton, Powering up with space-time wind forecasting,
J. Am. Stat. Assoc. 105 (489) (2010) 92e104.

[6] X. Wang, L. Hui, Multiscale prediction of wind speed and output power for the
wind farm, J. Control Theory Appl. 10 (2) (2012) 251e258.

[7] P. Gomes, R. Castro, wind speed and wind power forecasting using statistical
models: auto regressive moving average (ARMA) and artificial neural net-
works (ANN), International Journal of Sustainable Energy 1 (1/2).

[8] S. Aggarwal, M. Gupta, Wind power forecasting: a review of statistical models,
Int. J. Energy Sci. 3 (1) (2013) 1e10.

[9] A. Sfetsos, A comparison of various forecasting techniques applied to mean

http://www.nrel.gov
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref1
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref1
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref1
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref1
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref2
http://www.gwec.net/wp-content/uploads/2014/02/GWEC-PRstats-2013_EN.pdf
http://www.gwec.net/wp-content/uploads/2014/02/GWEC-PRstats-2013_EN.pdf
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref9


D.C. Kiplangat et al. / Renewable Energy 93 (2016) 38e4444
hourly wind speed time series, Renew. energy 21 (1) (2000) 23e35.
[10] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann, et al.,

Wind Power Forecasting: State-of-the-art 2009, Tech. Rep, Argonne National
Laboratory (ANL), 2009.

[11] G. Giebel, L. Landberg, G. Kariniotakis, R. Brownsword, State-of-the-art
methods and software tools for short-term prediction of wind energy pro-
duction, in: EWEC 2003 (European Wind Energy Conference and Exhibition),
2003. CDeROM.

[12] L. Kamal, Y.Z. Jafri, Time series models to simulate and forecast hourly aver-
aged wind speed in Quetta, Pak. Sol. Energy 61 (1) (1997) 23e32.

[13] E. Cadenas, W. Rivera, Wind speed forecasting in the South Coast of Oaxaca,
Mexico, Renew. energy 32 (12) (2007) 2116e2128.

[14] R.G. Kavasseri, K. Seetharaman, Day-ahead wind speed forecasting using f-
ARIMA models, Renew. Energy 34 (5) (2009) 1388e1393.

[15] M.A. Mohandes, S. Rehman, T.O. Halawani, A neural networks approach for
wind speed prediction, Renew. Energy 13 (3) (1998) 345e354.

[16] M. Bilgili, B. Sahin, A. Yasar, Application of artificial neural networks for the
wind speed prediction of target station using reference stations data, Renew.
Energy 32 (14) (2007) 2350e2360.

[17] M. Monfared, H. Rastegar, H.M. Kojabadi, A new strategy for wind speed
forecasting using artificial intelligent methods, Renew. energy 34 (3) (2009)
845e848.
[18] R. Sreelekshmi, K. Asokan, K.S. Kumar, Deterministic nature of the underlying

dynamics of surface wind fluctuations, Ann. Geophysicae-Atmospheres
Hydrospheresand Space Sci. 30 (10) (2012) 1503.

[19] G. Drisya, D. Kiplangat, K. Asokan, K.S. Kumar, Deterministic prediction of
surface wind speed variations.

[20] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: Forecasting and Control,
2008.

[21] M. De Hoon, T. Van der Hagen, H. Schoonewelle, H. Van Dam, Why Yule-
Walker should not be used for autoregressive modelling, Ann. Nucl. energy
23 (15) (1996) 1219e1228.

[22] P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, Springer Science
& Business Media, 2009.

[23] I. Daubechies, Ten Lectures on Wavelets, in: Number 61 in CBMS-NSF Series in
Applied Mathematics, 1992.

[24] D.B. Percival, A.T. Walden, Wavelet Methods for Time Series Analysis, 4,
Cambridge University Press, 2006.

[25] D.B. Percival, M. Wang, J.E. Overland, An introduction to wavelet analysis with
applications to vegetation time series, Community Ecol. 5 (1) (2004) 19e30.

[26] T.S. Nielsen, A. Joensen, H. Madsen, L. Landberg, G. Giebel, A new reference for
wind power forecasting, Wind energy 1 (1) (1998) 29e34.

http://refhub.elsevier.com/S0960-1481(16)30155-0/sref9
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref9
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref10
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref10
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref10
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref15
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref15
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref15
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref18
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref18
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref18
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref20
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref20
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref22
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref22
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref23
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref23
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref24
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref24
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref25
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref25
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref25
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref26
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref26
http://refhub.elsevier.com/S0960-1481(16)30155-0/sref26

	Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition
	1. Introduction
	2. AR and f-ARIMA models of prediction
	3. Wavelet transform
	4. Results and discussion
	5. Conclusion
	Acknowledgement
	References


