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1. Introduction

Despite technological advancements that have allowed an in-
crease in energy production, both traditional and green, together
with a decrease of consumption in the residential and trans-
portation markets, demand for energy is due to grow at a fast pace
in the near future, putting at stress the production and distribu-
tion system, as well as the supply-demand balance. Instabilities,
that trigger a chain of adverse effects for all energy users, can be
mitigated by either investing to maintain a large capacity, at a high
cost, or by implementing demand side management (DSM) pro-
grams that, through controls at the customer level, make the best
use of the current capacity [1,2]. In short, DSM can be character-
ized by a set of tools for shaping the load curve, through peak
clipping, valley filling, load shifting, strategic conservation,
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strategic load growth and flexible load shape [3]. In order to
achieve these objectives, several programs have been put in place,
such as conservation and energy efficiency programs, fuel sub-
stitution, demand response, and residential or commercial load
management [1,4,5]. In particular, the problem that consists of
adjusting the load curve by taking explicitly into account
customer reaction to prices has been addressed in several articles,
such as in Ref. [6], where residential load control through real-
time pricing has been considered. Actually, real-time pricing is
frequently referred to by economists as the most direct and effi-
cient demand response program [7—9]. For a thorough literature
review concerning dynamic pricing, as well as analyses of real
cases, the interested reader is referred to [10].

In the present paper, we focus on peak load minimization
through load shifting. The importance of the issue can be illustrated
by the example of the United Kingdom, where the minimum load
during summer nights is around 30% of the winter peak, while the
average load is around 55% of the installed generation capacity [11],
emphasizing large fluctuations in the load curve, with close to half
the generation capacity being idle for long periods of time. One
foresees that the importance of load shifting will become even
more apparent when the market share of plug-in cars (fully electric
or hybrid) becomes significant. On average, PHEVs (plug-in electric
vehicle) can be driven for 5 miles per kWh [12] and hence, their
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intensive use may double the average residential electric load [13],
thus putting the network at risk.

In many countries, base load is produced by coal or nuclear
power plants whereas peak load is provided by natural gas, hydro
or renewable power. For this reason, electricity production during
peak periods is more costly than in the off-peak. Besides, installed
production capacity has to be larger than peak load in order to
ensure power supply. Since a reduction in peak load induces a
decrease of production and capacity cost, it deserves to be analyzed
properly.

The specific issue that this paper addresses is Energy Peak
Minimization (EPMP). It involves two decision levels: an energy
provider and its customers. These two levels have conflicting
objectives. The energy provider is interested in maximizing its
revenue, whereas customers try to minimize their total disutility.
While many articles have formulated the problem as a Nash game
[13—17], the relationship between a company and its customers
better fits the leader-follower framework. More precisely, our aim
is to integrate demand response explicitly into the decision
making process of the energy provider. To this end, we propose a
bilevel programming approach. In this setting, the leader in-
tegrates within its decision process the reaction of the follower.
Once the leader sets his variables, the follower solves an optimi-
zation problem, taking the leader's decisions as given. Bilevel
programming has been used to tackle several problems including,
but not limited to, toll pricing [18,19], freight tariff setting [20,21],
network design and pricing [22—25], electric utility planning
[26,27]. One should keep in mind that bilevel programs are
intrinsically difficult (NP-hard) [28,29]. Besides their nonconvex
and combinatorial nature, the feasible region of the leader is
generally nonconvex, and can be disconnected or empty [30]. In
the context of EPMP, bilevel programming allows to integrate DSM
techniques and demand response within the optimization process
of an energy provider.

The contribution of this paper is twofold. First, we develop a
bilevel model for peak minimization of an energy provider, with the
aim to achieve an optimal trade-off between revenue and peak
power consumption without delaying demand for electricity arbi-
trarily. The model uses day-ahead real-time pricing and is solved
for a global optimum. We also propose a variant of the model that
involves competing providers. Next, we analyze the relationship
between the energy provider and its customers, where the latter
are inter-connected via smart metering devices (automatic energy
consumption scheduler [13]). In this environment, the customers
not only share an energy source, but also communicate with each
other via the network of smart meters which forms the smart grid.
A detailed survey of smart grid and the associated enabling tech-
nologies are provided in Ref. [31]. In the absence of such technol-
ogy, it would be difficult for customers to keep track of hourly
prices and shift their demand accordingly, as well as for the pro-
vider to observe the actual demand response to its pricing strategy.
Smart meters enable two-way information flow and constitute an
important feature of the system, allowing the application of DSM
techniques. While it can be argued that metering is more expensive
and may be difficult to manage for residential customers, yet it
significantly decreases meter reading costs, besides assisting
different pricing strategies, and improved technology provides ever
easier meter management [32]. Moreover, the smart grid system
allows aggregation of residential customers with similar needs and
different preferences. Since customers can act as a large client
aiming at system optimum, their bargaining power is vastly
increased. A survey on demand response and smart grids can be
found in Ref. [33].

The paper is organized as follows. The next section presents the
modeling framework. It is followed by experimental results

involving different parameters and instances, and a conclusion that
points out challenges related to this field of research.

2. The bilevel models

Let us consider a power sharing system involving a set of cus-
tomers denoted by N, each one equipped with a smart metering
device. Each customer n operates a set A, of electric residential
appliances, such as air conditioners, radiators, washers, driers, re-
frigerators, freezers, pool heaters, etc. The appliances can be turned
on and off at any time, and their power can be adjusted at any
desired level. In the United States, 45% of household appliance
consumption belongs to that category of preemptive devices (see
Fig. 1), and it follows that their intelligent control may yield a sig-
nificant decrease in peak consumption.

For the sake of this study, we adopt a 24-h planning horizon H.
Each customer n is characterized by its daily demands E, 4, as well
as time windows T, transmitted to the smart meter, one per
appliance a€A;. The set of such devices retrieves and transmits
data, and thus forms the smart grid (Fig. 2). The grid is connected to
a power source and receives hourly prices from the electricity
supplier, 24 h in advance. It allows customers to benefit from
cooperation. While users are expected to have similar needs with
respect to power consumption and task scheduling, some of them
might yet be more reluctant to postpone their loads, whereas
others are willing to switch to cheaper time slots. Such behavior
differences enter the model and are taken into account by the en-
ergy provider. Precisely, the population heterogeneity with respect
to price perception is captured by an inconvenience factor specific to
each customer.

We emphasize the importance of the smart grid as a middle
agent that takes charge of scheduling, since one may not expect the
customers to monitor prices in real time, and to optimally schedule
their appliances accordingly.

In our day-ahead pricing model, the leader applies DSM to
control and smooth out the load curve. To tackle EPMP, two sce-
narios are considered: monopolistic and competitive pricing, and
these will be detailed in the next two subsections. Both of them fit
the bilevel paradigm, which is ideally suited at modeling game-
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Fig. 1. Residential electricity use in the USA, 2011 [34].
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Fig. 2. Bilevel structure.

theoretic situations involving hierarchical players and takes the
mathematical form:

max f(x,y)

xeX

s.t. yearg min g(x,y),
Y EeY(X)

which usually involves two conflicting objectives. In the above
model, the leader selects first a vector x, taking the follower's re-
action y into account. In our model, the electricity supplier sets the
prices and anticipates an optimal response from the follower. In
most situations (this is the case in this paper), the lower level
problem is convex, for given x, and can thus be characterized by its
optimality conditions. If the solution to the lower level problem is
not unique, i.e., the follower is indifferent to two solutions, we
assume that the one most favorable to the leader is implemented.
This is referred to as the ‘optimistic’ approach in the literature, and
is justified by the fact that the solution can be made unique through
an arbitrarily small deviation from the optimal optimistic solution.
More details on this model, as well as the ‘pessimistic’ (one could
say ‘conservative’) alternative, are provided in Refs. [35,36].

2.1. Monopoly pricing

Let us consider a monopolistic electricity supplier, together with
a group of customers. Once the price decision of the leader has been
set, the smart grid automatically schedules the customer’s appli-
ances, in compliance with the desires of the customer, i.e., it
maximizes their individual utilities.

At the upper level, the leader strives for a trade-off between
revenue and peak load by maximizing the sum of revenue minus a
penalty associated with peak consumption. This is achieved by a
direct control of prices ph, one for each time slot heH, and indirect
control of the peak load I', which results from the lower level
solution.

At the lower level, the objective function involves two terms,
namely electricity bill (EB) and inconvenience cost (IC). For a given

price vector set by the leader, each individual customer minimizes
weighted sum of EB and IC, which clearly conflicts with the leader’s
objective. To maximize its utility, customer n selects a power level
xﬁya for each appliance a€A; in each time slot h& Ty . The variable
x , is continuous, which corresponds to preemptive jobs, and is
bounded by g7'3%, the power limit of that device. Demand E, 4 and
time window Tnq = [TW. ,, TW¢ ;] of customer neN for appliance
a€A, is known and announced by the customer one day ahead.

Throughout the paper, it is assumed that the initial time slot of a
time window is the preferred one, and that a job cannot be per-
formed outside its window, i.e., xﬁ.a is defined only for heT,.
Whenever a job is postponed within its window, a penalty that is
proportional to the length of the delay, and inversely proportional
to the width of the desired time window, is incurred. The latter
assumption reflects the fact that customers that specify narrow
time windows are likely to be sensitive to the delaying of their tasks
by the smart grid. More precisely, let A, denote the inconvenience
coefficient of a customer n, where a high value of 1, is related to a
low tolerance to delay. The inconvenience cost of a job Cyq4(h) is
defined as

Cn'a(h) :
=An x Eng
h— TW?
x 67"“[) VneN,Yac€Ay, VheTy .
Wi, — TWn,a

The bilevel mathematical model of EPMP under monopolistic
pricing is then expressed as:

(MP) : max ST N puh g —«r

neN a€A, heTy,

st. T> > xi, VheH (1)

neN,asA,
s.t. heTp,
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0<ph<ph., VheH (2)

mxin Z Z Z (Ph+cn,a(h)>X2,a

neN a€A, heT,,

st. 0<xl, <pmX vyneN,VacAp, VheTn, (3)
> X, >Enq VneN,vVaeA,, (4)

heT,,

where the ‘arg min’ operator has been replaced by the expression of
the lower level program, to simplify the exposition.

At the upper level of the above program, Constraint (1) forces
the variable I' to exceed the load in each time slot. Since it is in the
interest of the leader to minimize peak cost, I" should match the
maximum load. Constraint (2) sets an upper bound on the prices,
and might result from government regulation or market conditions.
Constraint (3) is a technical constraint that limits the maximum
amount of power that an appliance may consume. For instance, an
air conditioner can be used at most at 30 °C for heating and g5'g*
represents its power consumption at this level. Demand satisfac-
tion is ensured by Constraint (4).

All customers being residential users, it is natural to assume that
prices only depend on time slot h. Note that if price discrimination
were allowed, then the leader's problem would be made much
easier from the computational point of view, since it would become
user-separable. Unfortunately, in our model, significant modifica-
tions of the schedule may arise from a single price change, even for
a single slot, thus making the problem non-trivial.

Model MP is a bilinear bilevel model involving continuous var-
iables. Once the leader fixes his decision variables, the lower level
objective function becomes linear, and is thus amenable to the
classical reformulation as a single level mixed integer program
(MIP) proposed by Labbé et al. [18] for a network pricing problem.
In this approach, the lower level's optimality conditions (primal
feasibility, dual feasibility, complementary slackness) are linearized
and appended to the upper level to yield an equivalent MIP
formulation. In other words, the follower's mathematical program
is replaced by a set of constraints that ensures the optimality of the
lower level for given upper level variables. The dual and primal
constraints of the follower define the feasible region of the follower,
while complementary slackness constraints ensure optimality. The
dual variables corresponding to constraints (3) and (4) are denoted
as wh ; and vy g, respectively, where w!! , is defined only for h€ Ty q.
The dual constraint corresponding to x! , is expressed as:

~Wh o +vna —p" < Cl, VneN,YacAy, VheTy,.
Complementary slackness between xﬁﬂ and the dual constraint
takes the form:

Xg,a (Wz"a — Vna +ph + CT’;G) =0 VnEN, VaEAn7 VhETnﬁa

and can be linearized using the fact that either x! , or w ; — vy q +
ph+ C,’}‘a must be zero. Therefore, by using a sufficient large number
M; and a binary variable y! , one can replace the nonlinear
constraint with linear ones (VneN,VacAy,VheT,):

Wha = na+p"+Chg < My (1-vl,)

h h
Xn,a < Ml V’n,a

wﬁﬂe{o, 1}

Similarly, one linearizes the complementarity between dual
variables and primal constraints yielding two groups of constraints.
In the mixed integer linear formulation of MP, the follower's primal
constraints are given by (6) and (7), while the dual constraint is
expressed as (8). Upon the introduction of binary variables & ,, the
linearized complementary slackness between Constraint (6) and
wﬁ,a corresponds to (9) and (10). Similarly, introducing variables
n.a, the complementarity between Constraint (7) and v, 4 becomes
(11) and (12). Next, introducing binary variable y/, ,, the comple-
mentarity between Constraints (8) and xﬁ,a is expressed as (13) and
(14). This yields, due to the presence of identical terms (the billing
cost) in the objective and the constraints, a linear expression for the
leader's objective, and hence the mixed integer program

max — maxyh EnaVna — ch xh T

Wy ack 1N 1l

ﬂET:.a " ﬁeT,':ﬂ

(5)

s.t.
r> > xi, Vh

n.a

stheT,,

0<p"<phx YheH
0<xl, <pMX VneN,acApheThq (6)
S Xl >Ena VneN,a€A, (7)
heT,, '
fWﬁﬁa + Vna fph < Cﬁ(a vneN,a€Ay, heTy, (8)
—Xj g+ MsEl g < Ms — B3* VneN,acAn, h€Tng (9)
Wh, —Ms3Eh <0 VneN,aehp, heT, (10)
Z Xﬁ,a +Meng <My +Enqg VneN,a€A, (11)
hETn.a
Una — Maeng <0 VneN,a€h, (12)

W —vng + P+ Myl <My —Cl', VneN,a€An, VheTn,
(13)

Xy~ Myh,<0 VneN,acA, helmg (14)
vl {0, 1wWh >0 VneN,acAy, YheTy,

ena€{0,1};1pq >0 VneN,a€A,.
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2.2. Competitive pricing

Now, we turn our attention to a framework involving a
competitor who declares its prices prior to the leader. The smart
grid can now choose between two options for each time slot, that is,
demand of each appliance can be either supplied by the leader, by
the competitor or even by both of them. Therefore, the smart grid
decides how much power will be supplied by the leader and the
competitor in each time slot. It is important to emphasize that a
customer does not choose a supplier for all of its demand, but rather
the grid chooses the total amount of power to be purchased from
each supplier.

The main concern about hour-to-hour selection of electricity
supplier is payment calculation and collection. However, in a smart
grid environment it is automatically calculated and billed. There-
fore, several suppliers may offer prices and the most convenient
one would be selected by the smart grid operator.

In the competitive pricing (CP) setting, the leader must address
several issues. In addition to peak minimization and revenue
maximization, as well as price ceiling constraints, market shares
will only be preserved if its prices are competitive, which signifi-
cantly reduces the leader's ‘degrees of freedom’.

In the following, we assume that competitor prices p" are fixed,
and actually assume the values p ., without loss of generality. If
they were higher, then all customers would opt for the leader and
the situation would be the same as in model MP. If they were lower,
then p" .. would be irrelevant, and leader prices would be bounded
by p". We also assume that the inconvenience factors are identical,
whether electricity is supplied by the competitor or the leader.
Finally, we make the conservative assumption that, whenever
customers buy energy from the follower, they are automatically
scheduled to their most preferred time slots.

Upon the introduction of continuous variable x ., to represent
the amount of power purchased from the competltor, the bilevel
program takes the form:

(CP)  max S5 N i

neN a€A, heT,,

st. T> Y xh, Vh

neN.aeA,
s.theT,,

0<p'<ph., VheH

min 3 3 Y (P Gt Y S Y (8

*X neN acA, heT,, neN a€A, heT,,
+ CnAa(h)>Rﬁa
s.t. x na +xna <Rt VneN,a€An heThg (15)
Z Xﬁ}a +X2}a >Epnqa VNEN, €Ay (16)
hETn.a
X X >0 VneN,acAy heTy,,

where Constraint (15) is rearranged so that the device limit is not
exceeded. Constraint (16) includes the amount of energy X/ , that is
purchased from the competitor, and ensures that demand is satis-
fied no matter which firm is the provider.

Similar to the previous model, this program can be expressed as

a single level MIP. Following the previous notation, dual variables
wﬁ‘a and vy, 4 are associated with (15) and (16), respectively. Next,
the primal, dual and complementary slackness constraints of the
lower level are appended to the upper level, while the strong
duality of the lower level is utilized to linearize the objective of the
leader:

max — Z g}gxwﬁ‘a + Z En,avn‘a — Z f)h)?ga

neN neN neN
achA, acA, AEA,
heT,,

Due to the additional lower level variables X ,, we must incor-
porate additional dual constraints, together with their comple-
mentary slackness constraints. These are linearized as in model MP
(VneNVaeA,VheTy,):

—h
Wﬁ,a +Una < Crl;,,a +p

Xg,a X (WZ#G — Una +13h + Cf{a) =0.

3. Experimental results and interpretation

In this section, we demonstrate the applicability of our approach
through a number of numerical experiments involving various
scenarios. The base case (BC) corresponds to setting all prices at
Pmax and scheduling all appliances to the preferred time slots. Re-
sults of BC, MP and CP models are compared in terms of peak cost,
peak load, net revenue, billing and inconvenience costs.

The scenarios involve 10 customers, each one controlling three
preemptive appliances regulated by the smart grid. The scheduling
horizon is composed of 24 time slots of equal duration.

The sensitivity of the models are tested with respect to two
parameters: peak weight « and time window width (TWW), which
is related to customer flexibility.

Two key parameters enter the model. First, peak weight « re-
flects the importance to decrease peak load for the leader. A higher
weight translates into a larger penalty, hence a higher effort to
smooth out the supply curve. Next, time window width (TWW)
provides the leader with some flexibility to induce job shifting
through price adjustments, and thus indirectly smoothing out the
load curve. Sensitivity of the model with respect to both parameters
has been assessed, with k assuming values ranging from 200 to
1000, with increments of 200, and TWW increased by 20% or 100%
with respect to the minimum completion time

MCT :— [En . / 5mﬂ 4

MCT denotes the minimum number of time slots required to
meet demand E, 4 if we could set all devices at their maximum level
na.. For experimental purposes, 10 instances are randomly
generated for each value of . In order to test TWW, similar jobs are
used with different widths of time windows.

In each scenario, parameters gp'g* and E,, are uniformly
generated for customer n and appliance a. Then, the early time slot
of time window for customer n and appliance q, TW,?.ﬂ is generated
within 0 and 24 — [(1 + TWW) x MCT]. The end of time window for
customer n and appliance a, TWy, ; takes the value s. For instance, let
8™ and E be equal to 2 and 8, respectively, for a given customer n,
and appliance a. Then, its MCT is 4 h. If TWW is 1.0, then its time
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window can start at some time slot in {0, ...,16} and must end 8 h
later. If TWW is 0.20, then TWr’f‘a belongs to the interval {0, ...,19}
and TWE , is TW? , + 5. '

Although all customers are residential users, they may have
different levels of sensitivity to delay and hence, they may behave
differently. Therefore, a random inconvenience coefficient A, is
generated for each customer n. As mentioned earlier, the incon-
venience penalty function C,4(h) is directly proportional with 4,
and demand Ej, 4, and inversely proportional to time window width.
Hence, when 1, assumes a low value, customers are less delay-
sensitive, which gives the model more flexibility to find a good
schedule. Alternatively, when 4, assumes a large value, certain time
slots become too costly and will almost never be selected. Note that
in real life, A, can be either selected by customers or a value can be
assigned to each customer based on past data.

Both models are solved with CPLEX version 12.3 on a computer
with 2.66 GHz Intel Xeon CPU and 4 GB RAM, running under the
Windows 7 operating system. Whenever an instance could not be
solved within the time limit of 4 h, the best integer solution has
been considered.

The first numerical results are displayed in Tables 1 and 2. They
involve 10 random instances of 30 jobs, in both the monopolistic
(MP) and competitive (MC) cases. The user costs are split between
electricity bill (EB) and inconvenience cost (IC), both percentages
being relative to the base case (BC). For instance, the first line of
Table 1 indicates that in model MP, out-of-pocket cost is 78.02% and
inconvenience cost is 21.49% of the total cost corresponding to BC,
the total (TC) being 0.5% less than in BC, for which the billing cost is
the higher. Average values over all parameters and instances are
displayed in the final row. Models MP and CP results in a 2.9% and
3.4% total cost reduction, respectively for 20% TWW instances and a
4.9% and 2.8% total cost reduction for 100% instances. All values are
less than 100%, which reflects a cost improvement for customers for
any peak weight value.

In comparison with the base case, the leader sets lower prices in
order to shift some jobs to the off-peak hours, hence customers' bill
is naturally reduced and inconvenience cost is increased. When
peak weight « is large, the leader is willing to give up some revenue
in order to achieve a smoother load curve. Hence, it lessens the bill
as well. Note that EB is lower in model MP than in model CP
whereas IC is higher. When the leader is a monopolist, he has to
provide service to all customers. However, in the competitive case,
it has the option to give up on some load in order to decrease the
peak without lowering prices. According to this reasoning, IC in-
creases as k increases in both tables for model MP, whereas it de-
creases for model CP.

Although the total cost of the follower for 20% TWW instances is
lower in the presence of competition, it is not the case for 100%
TWW instances, and there lies an interesting fact. For instance,
suppose that peak consists of a light-load and a heavy-load job
alongside others, and that they are both required to be shifted in
order to decrease the peak. Keeping in mind that the heavy-load job
has a high inconvenience cost, the leader would have to decrease
the price at least by that amount in the monopolistic case. Then, the

Table 1

Cost Comparison of models MP and CP on 20% TWW instances (BC = 100%).
K MP EB MP IC MP TC CP EB CPIC CP TC
200 78.02 21.49 99.51 78.31 21.17 99.48
400 77.15 21.59 98.74 78.01 20.13 98.14
600 75.76 21.85 97.61 77.84 18.74 96.58
800 73.52 22.16 95.68 78.07 16.81 94.88
1000 71.50 22.48 93.99 77.63 16.28 93.91

Average 75.19 21.91 97.10 77.97 18.63 96.60

Table 2

Cost Comparison of models MP and CP on 100% TWW instances (BC = 100%).
K MP EB MP IC MP TC CP EB CPIC CPTC
200 85.12 14.16 99.28 85.25 14.06 99.30
400 82.87 14.55 97.42 84.05 13.90 97.95
600 80.13 15.29 95.42 84.67 12.69 97.35
800 75.67 16.29 91.96 84.33 11.84 96.17
1000 74.95 16.44 91.39 83.70 11.45 95.15
Average 79.75 15.35 95.10 84.40 12.79 97.19

light-load job would enjoy a price reduction that is larger than its
inconvenience, and the total cost would be lower for the light-load
job and identical for the heavy one. In contrast, the leader can now
give up on the heavy-load job in the competitive case and decrease
the price only with respect to the light-load job. Hence, total cost
would stay the same for both jobs. This is valid mostly for large time
windows, because there are far fewer options for job shifting in 20%
instances.

In Tables 3 and 4, the computational results of model MP and CP
are compared for 20% and 100% TWW instances, respectively.
Average computing time (in seconds), the average optimality gap of
unsolved instances, and the number of unsolved instances are
presented. As aforementioned, the running time limit is set to 4 h
(14 400 s) and the values displayed in the tables are the average
computation time over all instances that could be solved within 4 h.

In both tables, the average computation time of both models
increases together with peak weight «, since the leader is more
willing to modify its prices in order to smooth out the load curve,
providing extra room for improvement. The average gaps and
number of unsolved instances also support this argument. In
addition, one can observe that average computation time is larger
in Table 4. Large time windows induce high running times, since
there are more options to consider. Another important point is that,
on average, model CP takes longer to solve if we include the un-
solved instances. This result can be explained by the increased
combinatorics, the leader having the additional alternative to
provide energy for a job or leave it to the competitor. In accordance
with real life, competition makes the decision process more
challenging.

Peak cost, peak load and net revenue (objective function value of
leader) comparisons of model MP and CP to BC for 20% instances
are shown in Figs. 3 and 4(a) and 5(a), respectively. Similar values
are shown for 100% instances in Figs. 3—5(b). The x-axis consists of
the peak weight parameter k and the y-axis represents the mone-
tary value in Figs. 3 and 5, whereas it represents peak power usage
in Fig. 4. In Fig. 3, it can be observed that peak costs for models MP
and CP increases slower than the peak cost of BC, as weight « in-
creases. Since there is a possibility of not satisfying some of the
demand for the leader in model CP, peak load and hence peak cost
is lower than in model MP, as expected. In Fig. 3(a) and (b), it can be
observed that peak cost decreases in model MP when time win-
dows are wide, whereas it does not change much in model CP. In
accordance, in Fig. 4(a) and (b), it is clear that peak load decreases in

Table 3

Comparison of models MP and CP with 20% TWW Instances.
(k) Av comp time Av gap # unsolved

MP CcP MP CcP MP CcP

200 1.10 1.20 0.00% 0.00% 0 0
400 3.10 3.50 0.00% 0.00% 0 0
600 6.80 13.10 0.00% 0.00% 0 0
800 8.90 56.60 0.00% 0.00% 0 0
1000 17.90 63.00 0.00% 0.00% 0 0
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Table 4

Comparison of models MP and CP with 100% TWW Instances.
(k) Av comp time Av gap # unsolved

MP CcP MP CcP MP CcP

200 28.10 321.10 0.00% 0.00% 0 0
400 339.50 592.67 0.00% 0.55% 0 1
600 2040.20 1232.88 0.00% 3.87% 0 2
800 4666.40 2350.67 0.00% 3.73% 0 4
1000 7707.00 2034.14 0.00% 6.04% 0 3

model MP. As a result, net revenue in model MP increases consid-
erably when time windows widen.

We now turn our attention the leader's revenue. Average net
revenue of BC is dominated by that of model MP, and the latter is
dominated by CP. Both bilevel models provide a higher net revenue
despite the discount on some prices. In view of the peak cost
constraint, the leader can adjust its pricing strategy to increase total
revenue. Perhaps more surprising, it can benefit from an open
market by willingly letting demand flow to the competition, for the
sake of meeting the peak constraint. It is important to note that the
model behavior is very similar in both the 20% and 100% instances.
On average, model MP provides a 13.71% and 24.34% net revenue
increase with respect to BC on 20% and 100% TWW instances,
respectively. Meanwhile, model CP provides a 38.31% and 40.31%
net revenue increase with respect to BC on 20% and 100% TWW

70000
60000
50000

40000

30000

20000 —Peak Cost of BC
Peak Cost of MP
Peak Cost of CP

10000
200 400 600 800 1000

(a) Peak Cost for 20% TWW Instances

instances, respectively.

Different load shapes are handled differently by the model. If the
initial load curve has a single ‘high’ peak, then it attempts to assign
attractive prices around the peak to shift some of the load to later
periods. However, when there are more than one peak, the shifting
issue becomes more complex. Load distributions with respect to
different values of k of an instance under model MP and 100% TWW
are shown in Fig. 6(a). When « is less than 400, the model ignores
the peak at time 12 and focuses on the one at time 10. However, as
increases, the model tries harder and harder to level the load curve
around both peaks. In Fig. 7(a), where the corresponding price
vectors are displayed, low prices illustrate the effort of the leader to
shift jobs around. The magnitude of price reduction escalates as «
increases. Besides, it is again clear that prices around the other peak
start moving when « exceeds the value 600. These two graphs
provide a better picture of how an energy provider can achieve an
optimal trade-off between revenue maximization and peak
minimization.

When model CP is solved on instances of Figs. 6 and 7(a), load
distribution and prices change as shown in Figs. 6 and 7(b),
respectively. The leader leaves some load to the competition in
return for lower peak value. By applying this strategy, it manages to
keep prices higher than in the monopolistic case and achieves a
smaller generation capacity. It is further observed that the leader
tries to decrease peak to the level of the second highest load value
(SHL). In order to achieve this, two strategies are exercised: if the
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Fig. 3. Peak cost comparison.
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Fig. 4. Peak load comparison.
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Fig. 5. Net revenue comparison.

PP: ¥ Kappa=0

pp: pp

(a) Load distribution of one instance (Model

MP)

pp: ™ Kapp: W Kappa=200 M Kappa=0

PP PP

(b) Load Distribution of an Instance (Model CP)

Fig. 6. Load comparison.

Kappa=1000 * Kappa=800 = Kappa=600 B Kappa=400 M Kappa=200 B Kappa=0

(a) Leader prices of one instance (Model MP)

zoJ\

0 ¥l
T
01 T
23454 784 el
1011 4, N
13 14 15 T
U

~—rf

6 17 -
1819 20 5 5, N

Kappa=1000 = Kapp  Kapp ®Kapp

M Kappa=200 M Kappa=0

(b) Leader Prices of an Instance (Model CP)

Fig. 7. Price comparison.

time slot following peak hour has small load, then the leader opts
for shifting some load to that time slot. Else, if the difference be-
tween peak load and SHL is larger than the difference between SHL
and the load at the time slot following the peak, then the residual is
left to the competition.

4. Conclusion

Maintaining an efficient supply-demand balance in the

residential energy market is a difficult task, due to variability of the
demand. In order to guarantee stability during peak periods, pro-
viders must install very large capacities, or resort to costly imports.
In order to address this issue, we investigated a hierarchical
framework where the leader optimizes the weighted sum of rev-
enue and peak penalty, given that the smart grid optimizes
customer choice. Since electricity generation requires large in-
vestments, both for capacity building and maintenance, it is
frequently handled by a private monopolist, independent or not of
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the state. This corresponds to our first model. However, along with
technological developments in the renewable energy generation
and PHEVs, one can foresee the advent of smaller players, hence the
relevance of our second model.

In this paper, we have shown that day-ahead energy pricing can
be a powerful tool in terms of DSM when a smart grid system is
incorporated into the system. A more efficient energy supply sys-
tem is designed by flattening load curve without requiring a drastic
change of habits from customers. By using pricing as a design
mechanism, an optimal trade-off between revenue and user cost
can be quantified in both a monopolistic and competitive situation.
By performing sensitivity with respect to the peak load parameter,
insight into efficient regulations could be achieved.

Throughout our study, we have assumed that customers are not
competing with each other, but rather behave as a cooperative that
devolves the decisions to the smart grid, providing them with
bargaining power. Analyzing EPMP under different assumptions, as
well as developing heuristic algorithms that scale better than exact
methods are two issues that will be addressed in subsequent works.
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