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a b s t r a c t

The kinetic evaluation of the methane potential from poultry slaughterhouse waste streams was per-
formed using modified sigmoidal bacterial growth curve equations (Richards, logistic, Gompertz) in
order to investigate their suitability to describe the degradation patterns associated with complex
substrates, primarily composed of fats. The methane potential and degradation patterns under meso-
philic conditions were assessed using Biochemical Methane Potential (BMP) assays. A nonlinear least-
square regression analysis was performed to fit the sigmoidal functions to the cumulative methane
production curves with respect to time generated from the BMP assays. In the cases modelled the
Gompertz and logistic, three parameter models, sufficiently described the methane generation of the
simple substrates (dissolved air flotation sludge) with no sign of acute inhibition due to high fat contents.
When dealing with more complex degradation patterns of the substrates with a higher fat content (soft
offals) and increased bioavailability of the organics, the three parameter models became insufficient in
describing the experimental data due to features of the original growth functions, in particularly their
fixed points of inflection. In such cases the fourth parameter afforded in the Richards model became
critical allowing variability in the point of inflection allowing a much better fit to the experimental
curves.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Poultry slaughtering industry

The slaughtering industry is a major facet of the agri-food sector,
one of Ireland’s largest and most important indigenous industries
as measured by wealth generation (7.7% of gross value added),
exports (11.5% of total merchandise exports) and employment (9.2%
of total employment) [1,2]. Poultry slaughtering accounts for 3% of
annual agri-food exports with a total of 76.17 million birds
slaughtered in 2014 [2]. The poultry industry produced a total of
125,000 tonnes of carcass weight equivalent in 2014 representing
approximately 63e73% of the live weight of the slaughtered ani-
mals [3,4]. This results in high amounts, as much as 27e37% of the
live weight of the animal, of organic by-products which are
considered to be waste generated from this industry [4]. As regards
the main solid organic wastes, there are feathers from the de-
feathering process, intestinal residue or soft offal (SO) from the
Ltd. This is an open access article u
evisceration process as well as heads, feet and meat trimmings
[5,6]. Moreover, dissolved air flotation sludge (DAF) from the
wastewater treatment plant of the slaughterhouse is generated.
These organic wastes are characterised by high organic content
mainly composed of animal proteins and fats [7e9]. They are
strictly managed by legislation, Animal By-Products Regulation
(ABPR) 1069/2009/EC, in order to prevent the outbreak and spread
of diseases [10].

Anaerobic (AD) is a robust technology and its application for the
treatment of organic wastes has been emerging in recent years with
an annual growth rate of 25% [11]. The use of AD as a treatment
method has multiple benefits including its application on both
small and large scale, generation of a multifaceted gaseous fuel that
can be employed as a renewable energy resource etc.. Appels et al.
lists and discusses the main beneficial properties of AD as well as
current trends in research [11]. AD, is an approved treatment
method for animal by-products according to the ABPR, is a prom-
ising alternative for the treatment of these solid organic wastes
[10,12]. In AD the organic waste is converted to biogas, primarily
methane, and a nutrient rich digestate through a series of
biochemical processes. The methane produced can be utilised for
energy production while the nutrient rich digestate can be used for
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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example as a soil conditioner [7]. This alternative treatment
method is an effective option, combining material recovery as well
as energy production allowing the possibility of moving towards an
energy self-sufficient industry as well as incorporating a holistic
waste treatment method [6e8,13].
1.2. Biochemical methane potential assays

As the AD of organic industrial wastes is becoming more
established as a sustainable approach for waste management and
energy recovery, the demand and necessity to find suitable sub-
strates is continuously increasing. The BMP test is increasingly
being recognised as a viable method to explore and determine the
feasibility of a material to serve as a substrate in AD [14]. BMP as-
says provide an array of information on the substrate including how
fast and how much of the material can be degraded under optimal
conditions, as well as the potential methane yield from the mate-
rial. A primary output of BMP assays is cumulative methane pro-
duction curves, where the cumulative specific methane production
is plotted against time. The patterns these curves follow are far
from trivial and have meaningful implications on the degradation
of the substrate. The kinetics of the different stages of the AD
process (hydrolysis, acidogenesis, acetogenesis and methano-
genesis) and ultimately the shape of the methane production
curves is primarily controlled by the biodegradability characteris-
tics of the substrate, the production of inhibitory intermediate
fermenters and the performance of the methanogenic bacterial
populations [15]. Some typical cumulative methane production
curves are shown in Fig. 1. Labatut et al. (2011) outlines their
relevance in aiding and identifying important biodegradability
characteristics of the substrate and any inhibition issues [15]. The
evaluation of these curves can be significantly aided using mathe-
matic modelling of the kinetics of the methane production,
allowing further insight into the behaviour of the substrate during
the AD process.
1.3. Evaluation of cumulative methane curves using kinetic
modelling

Modelling of microbial growth has been used to estimate
various parameters, such as the specific growth rate and lag time
(1) to study microbial growth rate under different conditions, (2) to
evaluate the effects of antimicrobials under investigation, (3) to
formulate appropriate microbiological media, or (4) to construct
Fig. 1. Examples of typical cumulative methane production curves [15,16].
prediction models for use in food and fermentation microbiology
[17]. Growth curves are a tool used in all such studies to describe
how a variable increases over a particular time interval, until it
approaches its saturation value. Bacterial growth curves typically
demonstrate a phase in which the specific growth rate begins at a
value of zero (minimum asymptote) and then accelerates to a
maximum growth rate (mm) in a certain period of time denoted as
the lag phase (l), see Fig. 2. In addition the growth curves contain a
final phase in which the growth rate decreases and finally reaches
zero, so that a point of saturation or the maximum asymptote (A) is
reached. Indefinite growth does not take place other than in the
initial moments, since in nature it is not logically or physically
viable. Consequently, a curve to represent a growth process will
typically present as a sigmoidal curve as shown in Fig. 2, with a lag
phase just after t ¼ 0 followed by exponential phase and then by a
stationary phase [18]. This can be related to the characteristic shape
of cumulative gas production curves seen from BMP assays where
three similar phases are observed 1) the phase of slow gas pro-
duction (lag phase), 2) the phase of rapid gas production (expo-
nential phase), 3) the phase in which the rate of gas production
slows and eventually reaches zero (asymptotic or stationary phase).

During the lag phase the initial breakdown of insoluble sub-
strates occurs through the hydrolytic bacteria. When the substrate
is physically broken down and becomes available to the acido-
genic, acetogenic and subsequently the methanogenic bacteria the
phase of exponential gas production is reached. During this phase
the most easily degradable portions of the substrate are degraded
first, leavening an increasingly less digestible portion of the sub-
strate. Finally the remaining non degradable portion of the sub-
strate is left and the gas production reaches zero. The
commonality between bacterial growth curves and the cumulative
gas production curve in BMPs suggest that biogas production
should obey sigmoidal functions [17,19]. Fitting sigmoidal func-
tions to the cumulative methane production curves obtained from
BMPs allows further information to be gathered on the perfor-
mance of the substrates under anaerobic conditions; such as if
the maximum methane yield was reached (A), the maximum rate
of methane production (mm) as well as the duration of the lag
phase (l).

1.3.1. Existing sigmoidal models
A number of sigmoidal models are found in literature, such as

the models of Gompertz, Richards, Stannard and logistic model
[17,18]. Most of the equations describing sigmoidal growth curves
containmathematical parameters (a, b, c…) rather than parameters
with biological meaning (A, mm and l). This makes it difficult to
estimate start values if they have no biological meaning. Zwietering
et al. modified some of these equations in such a way that they
Fig. 2. Typical bacterial growth curve [18].
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contain parameters that are microbiologically relevant as shown in
Table 1 [18].

Once modified the Richards and the Stannard equation become
the same. The Richards model, which is a generalisation of the lo-
gistic model, introduces a fourth parameter v, which allows some
flexibility in the shape of the curve. For v ¼ 0 and 1 the Richards
model is reduced to the Gompertz and logistic model respectively
[17,20]. The biological parameters determined from these modified
equations are achieved as follows: mm is given by the slope of the
line during exponential gas production (tangent to point of inflec-
tion), l is the x-axis intercept of this slope and A is the y-axis
intercept of the highest point of the curve (see Fig. 2).

1.3.2. Kinetic modelling of complex substrates
The kinetic modelling of the methane production from labora-

tory evaluation of substrates is becoming more and more common
in literature. The modified Gompertz equation, typically applied to
the degradation of simple organic substrates, is themost commonly
used model for the determination of methane production kinetics.
These simple substrates adopt the reverse L-shape curve shown in
Fig. 1. For more complex substrate that contains a high level of
animal fats the degradation patterns observed are typically not as
straight forward. The slower degradation of the fats as well as the
potential of acute inhibition results in curves more related to the
elongated S-shape or the stepped curve. The three parameter
Gompertz equation becomes less suitable to such shapes due to its
fixed point of inflection; as such a fourth shape parameter needs to
be introduced as is done in the Richards model.

1.4. Focus of paper

This paper assess the degradation patterns of the organic waste
streams produced in the poultry slaughtering process using BMP
assays and kinetic modelling. The primary aim is to demonstrate
the inadequacies of three parameter sigmoidal kinetic models to
accurately describe the methane production kinetics of complex
substrates. A number of popular modified bacterial growth curves,
Richards, logistical and Gompertz models, were applied to assess
their applicability to the different forms of methane production
kinetics observed from the BMP assays.

2. Materials and methods

2.1. Substrates

The slaughterhouse wastes were sampled from a poultry
(broiler chickens) slaughtering facility with a capacity of 150,000
heads per week, located in Cork, Ireland. The slaughtering process
employed at the facility was to the point of whole and chilled
carcass production with no further processing for meat cutting or
Table 1
Models use in bacterial growth and their modified forms according to Zwietering et al. [

Model Equation

Logistic y ¼ a
½1þexpðb�cxÞ

Gompertz y ¼ a:exp½�expðb� cxÞ�

Richards y ¼ af1þ v:exp½kðt� xÞ�gð�1=vÞ

Stannard
y ¼ a
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y: cumulative specific methane production (mLCH4 gVS�1), A: maximum specific metha
(mLCH4 gVS�1 d�1), e: exp(1), l: lag-phase (days), t:incubation time (days), v: shape coe
deboning. SO (not including heads and feet) from the evisceration
process and DAF from the wastewater treatment were sampled for
this study. The SO and DAF were also mixed according to their
annual production ratios (1:1.84-SO:DAF) referred to as SHWM
from this point onward. This was done to investigate the implica-
tions of treating the two waste streams collectively. The SO was
tested in an un-pasteurised (SO) and pasteurised (PSO) state as per
the ABPR regulations for category 3 material.

2.1.1. Sampling
The primary sample was provided by the slaughtering facility

grounded on providing a typical representation of the waste
streams generated during a shift of slaughtering. The consistency of
the primary samples did not permit their direct use in accurate BMP
assays or composition analysis. As such the entire primary samples
were firstly macerated in order to reduce the particle size (<8 mm)
and then blended using a high rate paddle mixer until maximum
“homogeneity” was achieved. This preparation process improved
the homogeneity of the primary samples considerably. However it
is important to note that even after the preparation process the
offals are still characterised as heterogeneous, which needs to be
taken into account when considering the preparation of secondary
samples for reference analyses and BMP testing as well as when
considering the results [7]. Three dimensional sampling of the
prepared primary sample was carried out in order to ensure
representative secondary sampling of the substrates.

2.2. Analytical methods

The composition analysis was carried out in terms of basic,
organic and elemental characterisation. The basic parameters used
for substrate and inoculum description were the Total Solids (TS)
and Volatile Solids (VS) content determined in accordance to
Method 1684 of the U.S. EPA for Total, Fixed and Volatile Solids in
Water, Solids and Biosolids [21]. The organics (VS) within the
substrates were further broken down into primary constituents of
fats, proteins and carbohydrates. Fats and proteins were deter-
mined by an approved laboratory for the microbiological testing of
ABP in accordance with Commission Regulation 142/2011/EU
implemented by the ABPR [10,22]. The difference between VS, fats
and protein content was designated as carbohydrates. The
elemental composition (C, H, N) was determined following the
standard operating procedure of a CE440 Elemental Analyser, with
O being designated as the difference between VS and the C, H and N
content.

2.3. Biochemical methane potential assays

The methane potential of the solid organic waste streams was
determined using BMP assays under mesophilic conditions (39 �C).
18].
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Fig. 3. Graphical representation of experimental set-up [24].

Table 2
Characteristics of organic waste streams.

DAF SO PSO SHWM

TSa 11.7 (0.59) 40.3 (3.69) 44.9 (2.17) 24.2 (0.21)
VSa 93.4 (0.02) 96.6 (0.70) 96.6 (0.70) 94.8 (0.11)
Fatb 2.7 36.1 36.1 24.3
Proteinb 53.5 34.0 34.0 40.9
Carbb 37.2 26.5 26.5 29.6
Cb 51.6 55.3 55.3 54.0
Hb 7.8 9.4 9.4 8.9
Ob 25.2 26.7 26.7 25.5
Nb 8.8 5.1 5.1 6.4

a % (standard deviation).
b % of TS.
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The BMP protocol followed in this study was based on principles
described in DIN 38 414 (S8) and VDI 4630 with alterations to the
gas measurement system for direct measurement of the methane
fraction of the biogas produced [16,23e25]. A graphical represen-
tation of the experimental set-up can be seen in Fig. 3. The BMP
procedure employed was described in Ware and Power 2016a [24].
The inoculum employed was sourced from a mesophilic reactor
treating dairy processing waste and was pre-incubated under the
same temperature range as the operational temperature of the
BMPs to deplete any residual biodegradable organic material. The
pre-incubated inoculum resulted in lowered volumes of back-
ground gas being produced in the BMP assays. The inoculum to
substrate ratio for all of the BMP assays was 2 based on VS content.
The assays were performed in a working volume of 900 mL using a
1000 mL reactor. The large reactor size employed was to ensure an
adequate sample size to allow representative sampling of the
organic waste streams, due to their heterogeneous nature. Tripli-
cate BMP assays were carried out for each of the solid waste
streams and were incubated for a period of 30 or 50 days in tandem
with triplicate control assays, containing only inoculum in the same
quantity as the active reactors in order to estimate the background
gas coming from the inoculum. The guideline for the termination of
the assays was when the daily gas production was equivalent to
approximately 1% of the total volume produced over the period of
the test. The initial incubation period selected for this study was 30
days as the majority of the biodegradation would be completed at
this stage, if required an extended period of 50 days was employed
[15].

The methane production was determined directly through
positive liquid displacement using an alkaline solution (0.5 M
NaOH), removing the carbon dioxide fraction of the biogas. The
methane production was measured daily to allow the kinetics of
the process to be followed and to provide direction as to the sta-
bility of the process. At the end of the incubation period, a pH
measurement was taken of all BMP assays to ensure that the
methane production had not ceased due to acidification or if
alkaline solution had been drawn into the reactors.

2.4. Evaluation of BMP assays

2.4.1. Potential methane yield
The net methane production from the substrate was calculated

by subtracting the methane production of the control reactors from
that of the active reactors. The methane potential of the substrates
were evaluated based on their Specific Methane Yield (V0) defined
as the net volume of methane produced during the incubation
period per amount of VS initially added to the reactor, measured as
mLCH4 gVS�1.

2.4.2. Kinetic modelling
A nonlinear least-square regression analysis was performed

using the solver tool in MS Excel 2013 to fit the nonlinear equations
(Richards, logistical and Gompertz) to the average specific cumu-
lative methane production curves with respect to time generated
from the triplicate BMP assays. This method searches for values for
A, mm, l with the primary objective of minimising the sum of the
squares of the differences between the predicted and the measured
values. The predicted specific methane yields from the nonlinear
regression analysis were plotted against the measured specific
methane yields in order to ascertain a visual fit to beginwith. At the
same time the coefficient of determination or correlation coeffi-
cient (R2) was also obtained to determine the correlation of the
model to the experimental data. The R2 value was calculated using
the regression data analysis tool in MS Excel 2013. A confidence
interval of 95% was chosen for the goodness of fit of the predicted
data. It is important to note that the R2 value alone cannot be used
to determine the suitability of the model; a combination of the R2,
visual inspection of the fit of the predicted and measured curves
and expected parameter values must be taken into consideration,
as will become evident.

It is worth noting at this time that the maximum specific daily
methane yields from the BMP assays and mm are not specifically the
same measurement. The maximum specific daily methane yields
from the BMP assays are single data points giving the highest
methane production in any one 24hr period. While the mm values
are determined from the slope of the line during the exponential
growth phase of the curve incorporatingmultiple data points, more
representative to the maximum specific daily methane production
to be achieved during continuous AD as oppose to batch assays.
2.4.3. Statistical analysis
All of the experiments were performed in triplicate, and the

results are expressed as mean values and relative standard de-
viations where applicable. All statistical analysis was carried out
using SPSS. Normal distribution was assumed based on the agree-
ment of parametric and non-parametric testing and thus all infer-
ence was carried out using t-tests and a level of significance (a) of
0.05.
3. Results

3.1. Biochemical methane potential assays

3.1.1. Characterisation of organic waste streams
The characteristics of the sampled organic waste streams are

presented in Table 2. The characterisation identifies the waste
streams as having high organic content (93.4e96.6%) with DAF
being the lowest and SO being the highest. Fat content was highest
(36.1%) in the SO with SHWM and DAF showing fat contents of
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24.3%, and 2.7% respectively. Protein was highest (53.5%) in the DAF
primarily due to the high quantities of blood mixing with the
wastewater, followed by SHWM, and SO at 40.9% and 34.0%. The
carbohydrate content across the board is similar ranging from 26.5
to 37.2%. The high fat contents of the SO and SHWM bode well in
terms ofmethane productionwith fats having a 85% and 75% higher
methane potential than carbohydrates and proteins respectively
[16,26]. The pasteurisation process does not alter the VS content,
organic or elemental composition of the PSO as the operation
temperature of 70 �C and duration of the process is too low to
reduce the organic content of the samples, nor can this process add
organics to the original sample [24]. That is not to say that the
process did not alter the chemical structure of the organics but the
overall quantity of fats, proteins and carbohydrates stayed the
same.
3.1.2. Methane yield and degradation patterns
Table 3 presents the results of the BMPs including V0, the in-

cubation period (IP), the maximum daily specific methane yield
(V0d max) as well as the technical digestion period, the required time
in order for 80% of V0 to be reached. While the average cumilative
methane curves of the triplicate assays for each of the substrates
tested are presented in Fig. 4. The V0 achieved ranged from 261.35
to 594.59mlCH4 gVS�1.

The DAF presented with the lowest V0 at 261.35 ± 20.39 mlCH4
gVS�1 with 80% of this being produced within the first 10 days of
the IP. V0d max was observed on day 1 of the IP followed by a steady
decrease in methane production over the following 7 days. The
high dailymethane production in the initial phase of the IP resulted
in a reverse L-shape cumilative cure (see Fig. 4), typical of organic
wastes containing simple organic matter that are easily hydrolysed
into soluble compounds thus increasing the rate of the AD process
and subsequently methane production. The lower V0 in comparison
to the other substrates was to be expected given themuch lower fat
content (2.7%) of the DAF and given the fact that protein and car-
bohydrates have a lower energy content than fats. The higher fat
content of the SO and PSO (36.1%) resulted in significantly higher
V0’s of 499.11 and 501.13 mlCH4 gVS�1 respectively. However it is
clear to see from the cumilative curves that the degradation pat-
terns of these substrates differed from the simple reverse L-shape
of the DAF.

The cumulative curve observed for the SO closer resembled an
elongated S-shape, characterised by a high rate of methane pro-
duction in the initial phase of the incubation period, followed by a
decrease in daily methane yield, trailed by a significant increase in
methane production at a rate that is higher than that seen in the
initial phase, finally plateauing to V0. This curve is typical for the AD
of organic waste streams with high concentrations of complex
compounds, in this case fats. This degradation pattern resulted in a
technical digestion period of 21 days and the V0d max occurring on
day 17. The elongated S-shape curve was due to the degradation
rate of the fats within the SO [24]. In an anaerobic environment, fats
are firstly hydrolysed to glycerol and free long chain fatty acids
Table 3
Results of BMP assays.

Substrate IPa (days) V0 (mlCH4 gVS�1)

DAF 30 261.35 ± 20.39
SO 30 499.11 ± 35.44
PSO 50 501.13 ± 40.59
SHWM 50 594.59 ± 38.05

Note: relative standard deviation applied where necessary.
a IP- Incubation period of BMP.
b ( ) day on which maximum daily V0 occurred.
(LCFAs). This process is catalysed by extracellular lipases that are
excreted by the hydrolytic acidogenic bacteria. The further con-
version of the hydrolysis products (glycerol and LCFAs) takes place
in the bacterial cells [24].

Glycerol is converted to intermediate fermenters such as ace-
tate, volatile fatty acids (VFAs) and alcohols by the fermentative
acidogenic bacteria, while LCFAs are converted to acetate (or pro-
pionate a VFA in the case of odd-number carbon LCFAs) and
hydrogen through syntrophic nature of the acetogenic and meth-
anogenic bacterial populations [8,27]. LCFAs are differentiated by
their chain length, number of chemical bonds and their physical
state (solid or liquid). The hydrolysis rates of fats are dependent on
these chemical characteristics as well as physical characteristics
such as the available surface area. The slower degradation of the
fats and LCFAs resulted in a lag phase observed for the SO, indicated
by the reduction in methane production for a period of time. This
identified the degradation of the fats/LCFAs as the rate limiting step
in the AD of the SO [24]. The gradual breakdown of the LCFAsmeant
that during the lag phase a steady methane production was
observed. If the LCFAs were generated at a higher rate possible
acute inhibition of the process may occur as seen for the PSO and
SHWM.

The effect of the pasteurisation process on the methane yield as
well as the biodegradation of the SO is discussed by Ware and
Power 2016a [24]. In brief, the pasteurisation of the SO resulted in
an insignificant increase in V0 to 501.13 mlCH4 gVS�1 (p ¼ 0.96)
[24]. However it increased the bioavailability of the organics within
the substrate, in particularly the fats, indicated by the shift of the
V0d max from day 17 for the SO to day 1 for the SOP (p¼ 3.01� 10�5)
[24]. The increase in bioavailability incurred the negative conno-
tation of increased rate of formation of LCFAs to inhibitory levels
causing the ceasing of methane production for a period of time. The
inhibition was deemed acute and full recovery of the process
occurred. This resulted in a stepped cumulative methane produc-
tion curve. The combination of the PSO and the DAF waste streams
to create the SHWM saw a Vo of 594.59 mlCH4 gVS�1 a statistically
insignificant increase from that of the PSO (p ¼ 0.08). However,
considering one tonne of the SHWM digested in its individual
fractions according to the ratios of annual production the sum of
the methane yield would be 416.7mLCH4 gVS�1. Therefore the
combination of the waste streams resulted in a 42.7% increase in
potential methane yield. The degradation behaviour of the SHWM
was similar to that of the PSO (stepped cumulative methane curve).
This was to be expected as the addition of DAF to the PSO shouldn’t
have a significant effect on the physical and chemical breakdown of
the PSO. The high fat content and rapid degradation of LCFAs was
again the cause of the acute inhibition observed in the SHWM.
3.2. Kinetic study

The modelled results using the modified Richards, logistic and
Gompertz equations are plotted against the average cumulative
specific methane yield measured from the triplicate BMP assays in
V0d max
b (mlCH4 gVS�1 d�1) 80% of V0 (days)

46.19 ± 1.34 (1) 10
32.80 ± 0.39 (17) 21
45.81 ± 0.14 (1) 36
45.10 ± 1.42 (23) 32



Fig. 4. Cumulative methane production fitted with models.



Table 4
Kinetic parameters of average cumulative methane production curves.

Substrate Models V0 (mLCH4 gVS�1) A (mLCH4 gVS�1) mm (mLCH4 gVS�1 d�1) l (days) v R2 % Error V0 and A

DAF Richards 261.35 ± 20.39 259.98 26.31 0 0 0.995 �0.54%
Logistic 257.83 24.62 0 e 0.995 �1.36%

Gompertz 259.98 26.31 0 e 0.995 �0.54%

SO Richards 499.10 ± 35.44 512.28 27.12 5.24 1.96 0.993 2.64%
Logistic 540.51 25.36 4.35 e 0.999 8.30%

Gompertz 634.20 22.92 3.02 e 0.996 27.07%

PSO Richards 501.10 ± 40.59 501.67 28.61 21.93 7.78 0.991 0.11%
Logistic 566.43 20.94 17.23 e 0.982 13.04%

Gompertz 663.93 19.06 15.75 e 0.971 32.49%

SHWM Richards 594.60 ± 38.05 576.87 36.88 17.92 1.86 0.997 �2.98%
Logistic 585.25 35.42 17.35 e 0.997 �1.57%

Gompertz 601.94 35.97 17.05 e 0.996 1.23%
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Fig. 4. The parameters determined from the nonlinear regression
analysis as well as the R2 and difference between the measured V0

and the predicted asymptotic methane production (A) are pre-
sented in Table 4.

3.2.1. DAF
From visual inspection all three models provided reasonably

good fits for the experimental DAF data (see Fig. 4) while the R2 for
all three models were 0.995. All three models were observed to
adequately describe methane production from the tested manures
with minimal variances between the calculated parameters A, mm
and l observed between models. The shape factor v attained from
the Richards model was 0 meaning that it reverted into the Gom-
pertz equation as can be seen from thematching of the results from
both models in Table 4.

The largest difference between the experimental specific
methane yield and the modelled methane yield was 1.36%. Patil
et al. reported errors of up to 8.7% when predicting methane yields
from water hyacinth using sigmoidal growth curves, while Raposo
et al. reported errors up to 10% in predicting methane yields from
sun flower oil cake when using first-order kinetic models [28,29].
From these observations all three of the models can be reasoned as
a good fit for the methane production from the DAF. This was to be
expected given the relatively uncomplicated digestion of this sim-
ple substrate, i.e. no inhibition, with minimal fat content (below
3%), and proteins accounting for the majority of the organics
measured resulting in characteristic cumulative methane curves
compliant to the sigmoidal functions described by the models. The
lag phase (l) determined for the DAF was 0 days indicating the high
bioavailability of the organic compounds within the substrates.

3.2.2. SO
Immediately it can be seen from Fig. 4 that the Gompertz and

the logistic models do not provide very accurate visual fits to the
experimental data of the SO, with the modelled curves seen to
continue to rise at the end of the incubation period, even though
the R2 values achieved for the models fit to the experimental data
was at least 0.993. If the Gompertz and the logistic models curves
are extended to the asymptotic values derived in Table 4 for the SO,
the inaccuracy of the visual fitness becomes much clearer (see
Fig. 5).

This highlights the importance of not relying solely on the R2

values as although the model fitted the data within the incubation
period provided for the experimental results both models grossly
overestimated the asymptote (A). The logistic model overestimated
A by 8.30%, while the Gompertz model overestimated A by a higher
degree of 27.07%. It is worth noting that this trend, Gompertz
overestimating the asymptote by a higher degree than the logistic,
was seen each time the models were not a suitable visual fit for the
remaining substrates tested.

This resulted in the l values being underestimated by 16.9% for
logistic and 42.2% for Gompertz and mm being underestimated by
6.5% for logistic and 15.5% for Gompertz when compared to the
Richardsmodel. The Richards equation provided an adequate visual
fit as well as high R2 (0.993) with the calculated asymptotes varying
by no more than 2.64% from the V0 of the experimental data. The
inadequate fit of the logistic and Gompertz equations can be related
back to particular features of the original growth functions as
presented in Table 1, as well as the biodegradation patterns
observed from the BMP assays of the SO. All of themodels are based
on monotonically increasing functions (i.e. function always as-
sumes that the growth rate is increasing and never equals zero or
decreases) and lie between two asymptotes at y ¼ 0 and y ¼ a [30].
All three functions have a single point of inflection, the point on the
curve where the sign of the curvature changes from concave to
convex or vice versa i.e. maximum growth rate [30,31]. The logistic
and the Gompertz functions both have fixed points of inflection.
The logistic function is symmetrical about its point of inflection
which exists when the growth reaches half of its final growth
(maximum asymptote) [30e32]. Whereas the Gompertz function is
asymmetrical about its point of inflection occurring at a much
earlier point than that of the logistic model, approximately 1/e of its
final growth (maximum asymptote) [30e32]. Due to the high fat
content of the SO and the various difficulties in their biodegrada-
tion, LCFA accumulation, significant hydrolytic lag phases etc. as
discussed in Section 3.1, the highest rate of methane production (i.e.
inflection point) of the cumulative specific methane curves is
observed in the later phases of the incubation period. As such when
carrying out the nonlinear least-square regression analysis both the
Gompertz and the logistic functions match this latter phase of the
experimental curves to the earlier sections of the modelled curves
(see Fig. 5) to coordinate their relative inflection points to the
maximummethane production observed in the experimental data.
As the points of inflection are fixed for both these functions the
remainder of the curves are modelled in accordance to the location
of these points as well as the assumption of symmetry for the
logistical function and asymmetry for the Gompertz. As such the
maximum asymptotes are overestimated and the l and mm values
are underestimated as described above.

The fact that the inflection point for the logistic model occurs
earlier than that of the Gompertz provides a justification as to the
much larger overestimation of the Gompertz. As the curves defined
by these functions are constrained by their fixed points of inflection
the additional parameter of the Richards model becomes very
important. The Richards equation includes an additional shape
parameter (v) which allows the point of inflection of the curve to be



Fig. 5. Cumulative methane production fitted with models extended to predicted maximum asymptotes.
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at any value between the minimum and maximum asymptote [32].
Thus allowing the model to adapt to the maximum methane pro-
duction occurring at a later stage of the incubation period without
any of the inherent problems observed due to a fixed inflection
point as observed for the Gompertz and the logistic models. As such
the Richards model provided the most accurate description of the
experimental data. The high fat content of the SO resulted in a l of
5.24 days due to the complex degradation of the fats and subse-
quent LCFAs. The mm calculated was 27.12mLCH4 gVS�1 d�1, occur-
ring in the latter stages of the IP due to the delayed degradation of
the fats.
3.2.3. PSO
For the same reasoning as the SO the logistic and the Gompertz

models failed to accurately visually represent the experimental
data for the PSO as can be seen from Fig. 5. Again the asymptotes
are overestimated (greater for the Gompertz than the logistic) and l

and mm were underestimated. The Richards model provided a
relatively good fit to the experimental data as well as R2 values of a
minimum of 0.991 and a maximum variance of 0.11% of A from the
V0 determined in the BMP assays. It is worth noting however that
the visual fit of the Richards model is not faultless. This is due to the
stepped curve resulting from the LCFA inhibition of the methano-
genic bacteria and the subsequent temporary ceasing of methane
production. The Richards model as mentioned previously is based
on a monotonically increasing function, always assuming that
growth/methane production is increasing between asymptotes
[30]. As such the model cannot replicate the period of 0 gas pro-
duction after gas production has begun. This results in the gas
production during the lag phase to be underestimated initially and
slightly over estimated as it reaches the very beginning of the
exponential phase. However once full methanogenic recovery is
reached and exponential methane production phase is reached the
predicted and experimental curves are a more than adequate fit.
Meaning that the determined mm, the slope of the line during
exponential gas production (tangent to point of inflection) and l, x-
axis intercept of this slope, calculated from the Richards model can
be taken as accurate representations of the biodegradation kinetics
of the PSO.

As discussed in Section 3.1, pasteurisation failed to have a sta-
tistically significant effect on the specific methane yields of the
offals however the process did have an effect on their bioavail-
ability. The kinetic modelling of the P offals supported the hy-
pothesis that the bioavailability had been increased. The increased
bioavailability of the organics within the PSO resulted in rapid
accumulation of LCFAs resulting in acute inhibition of the meth-
anogenic bacteria (methane production dropped to zero and sub-
sequently fully recovered). As a result of this an increase in l was
seen from, 5.24e21.93 days a statistically significant increases
(p¼ 0.007). The increased bioavailability was most likely due to the
rendering action during pasteurisation releasing the fats from the
meat and tissue of the offal discussed fully in Ware and Power
2016a [24]. The mm achieved during the exponential phases were
similar to that of the SO at 28.611mLCH4 gVS�1 d�1.
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3.2.4. SHWM
All threemodels were observed to adequately describe methane

production from the SHWM with minimal variances between the
calculated parameters A, mm and l determined, with the logistic and
Richards models shown to have the highest correlation with a R2 of
0.997. Again the monotonic nature of the functions can be observed
in the lag phases of the SHWM curves in Fig. 4. The biodegradation
patterns seen for the SHWMwere similar in nature to those seen in
PSO, LCFA inhibition observed in the early stages of the incubation
period followed by the full recovery of the methanogenic bacteria.
However the addition of the DAF to the PSO resulted in statistically
significant reductions in the observed l; 21.93e17.92 days
(p ¼ 0.045). This indicated that the build-up of LCFAs was not as
severe with themethanogenic bacteria recovering at a quicker pace
indicated by the mm value of 36.88mLCH4 gVS�1d�1.

4. Discussion

The three parameter models (logistic and Gompertz) gave no
difficulties in providing accurate descriptions of the experimental
data and providing correct modelled parameters when dealing
with substrates consisting of simple organics which degraded with
no indications of inhibition or extended hydrolytic delays. Both
models accurately represented the characteristic reverse L-shape
curve provided by such substrates (DAF). These models, in partic-
ular the Gompertz, are the most commonly utilised kinetic model
in literature [19,28,33e35]. However these three parameter models
did not describe this studies data satisfactorily for complex sub-
strates that showed rapid gas production in the latter parts of the
incubation period as well as those which exhibited acute meth-
anogenic inhibition in the early stages of the incubation period. The
fixed point of inflection of both models as well as the inability to
fluctuate their symmetrical (logistic) or asymmetrical (Gompertz)
nature resulted in inaccurate modelled parameters being produced
obvious from the poor visual fit of the predicted curves to the
experimental data and overestimation of maximum asymptotes
(A).

The fourth parameter v considered in the Richards equation
eliminated the issues of fixed inflection points and allowed a degree
of variability in the symmetry of the curves being produced. As such
the Richards model provided accurate description of the complex
substrates as well as those consisting of simple organics which
degraded with no signs of inhibition or extended hydrolytic delays.
This fourth parameter is considered a shape parameter and has no
obvious biological interpretation but becomes pertinent when
dealing with substrates that accumulate large quantities of inter-
mediate fermenters such as LCFA’s in the case of this study [18,32].

The kinetic parameters determined from the modelling pro-
vided further valuable insight into the results of the BMP assays in
particularly the biodegradation patterns of the substrates. The low l

value seen for the DAF demonstrated their simple nature and high
biodegradability. Although the BMP assays indicated that the pas-
teurisation process had no effect on the V0 of the SO the kinetic
modelling revealed that it did have an effect on the bioavailability
of the organics, as was assumed from the BMP results. The pas-
teurisation process increased the bioavailability of the organics,
primarily fats, which promoted more rapid accumulation of inter-
mediate fermenters causing LCFA inhibition and increased lag
phases in the PSO (5.24e21.93). The effects of mixing the slaugh-
terhouse waste streams and digesting as a single substrate were
also highlighted. The addition of the DAF to the PSO reduced the lag
phases observed from 21.93 to 17.92 days and increased mm to
36.88mlCH4 gVS�1 d�1. This allowed for more rapid and stable
degradation of the organics within the substrate. The parameters
determined from the kinetic modelling allows for valuable insight
into the biodegradation kinetics of the substrates when applied
correctly. In addition to the conclusions drawn from the BMP re-
sults valuable discernment of the behaviour of each of the sub-
strates tested can be eluded to allowing for more accurate
assessments of the substrates.

5. Conclusions

In this study organic waste streams from a poultry slaughtering
facility were anaerobically digested in BMP assays under meso-
philic conditions. The methane yields achieved, ranging from
261.35 to 594.59mLCH4 gVS�1, are encouraging for potential energy
generation from the poultry slaughtering industry. The high fat
content of the SO and the SHWM resulted in almost double the
methane yield observed for the DAF, with the fat content as well as
pasteurisation having an effect on the process kinetics as a whole
and the suitability of the various kinetic models to the experi-
mental data. The variation in the degradation patterns caused is-
sues when applying kinetic models to the experimental data. The
three parameter Gompertz and logistic models were limited in
application to the degradation patterns of more complex substrates
with high fat contents. When dealing with more complex sub-
strates the fourth parameter afforded in the Richards model allows
for variability in the predicted data and thus a better fit to the
experimental curves. As is the nature of biological modelling there
is no one size fits all solution to the kinetic modelling of cumulative
methane production from a variety of substrates. As such the
conclusion of this investigation is simply stated as follows: when
actual experimental data of a growth process/methane production
are available, both three parameters and four models should be
applied in order to determine the model of best fit.
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