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 ABSTRACT 21 

Insufficient available energy has limited the economic growth of Nigeria. The country suffers from frequent 22 

power outages, and inconvenient black–outs while residents and industries are forced to depend on self-23 

generated electricity. Life-cycle assessment methodology was used to assess the environmental burdens 24 

associated with self-generated electricity (SGE) and proposed embedded power generation in Nigeria. The study 25 

shows that SGE from 5 kVA diesel generators contributes to greenhouse gas (GHG) emissions of 1625 kg CO2 26 

eq./MWh, along with other environmental burdens. Based on a point estimate of diesel electric generators in 27 

Nigeria, SGE can contribute 389 million tonnes CO2 eq. to climate change every year. This can reposition 28 

Nigeria as one of the top 20 emitters of CO2 globally. A mandatory diesel fuel displacement with Jatropha 29 

biodiesel can reduce annual GHG emissions from SGE by 76% provided combined cycle power plants are 30 

adopted for embedded power generation. The magnitude of these benefits would depend on material inputs, seed 31 

yield as well as the environmental status of the reference fuel. Minimal use of fertilizers, chemicals and 32 

resources and fossil fuel substitution with renewable options can minimize adverse environmental burdens. 33 

Keywords: Jatropha curcas, independent power generation, gas turbines, diesel engines, environmental impact 34 

assessment 35 

 36 
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1. INTRODUCTION 37 

As part of the MINT (Mexico, Indonesia, Nigeria and Turkey) countries, Nigeria is expected to emerge as one of the 38 

world’s economic giants by 2050, as a result of the rapid population growth and economic activities [1]. This 39 

projection can position Nigeria to be the third most populous country in the world [2], with the country’s economy 40 

comparable to France, Germany and the United Kingdom. The projected economic growth, however, cannot be 41 

achieved under Nigeria’s current energy realities. 42 

There is a large imbalance between energy demand and supply in Nigeria. Out of the 14 GW nominal installed 43 

capacity of power-generating plants in 2014, the highest peak electricity ever recorded was 4.5 GW [3]. This leaves 44 

the country’s electricity supply rate at below 40% of the installed nominal capacity while energy demand is 45 

projected at about 40 GW in 2015 [3]. This energy deficiency has reduced energy access throughout the country. 46 

Nearly 75% of the rural population is estimated to have no access to grid electricity. The rural population is forced 47 

to depend on fuel wood consumption as the primary source of energy [4]. Those with access to grid electricity suffer 48 

from severe power-outages, epileptic power-supplies and persistent black-outs. The residents in the urban 49 

population and industries are compelled to depend on self-generated electricity using diesel and gasoline engines. 50 

Therefore, energy shortage is one of Nigeria's greatest economic bane. 51 

Based on recent surveys, 25.7% of Nigerian households have generators [5], while 70.7% businesses own or share a 52 

generator and this contributes to 60% of businesses’ electricity consumption in Nigeria. Ogunbiyi [6] showed that an 53 

average household and business possess more than one generator while Tyler [7] reported that 97% of surveyed 54 

businesses owned generators and use them for 67% of their production time. In 2011, Nigeria was estimated to 55 

operate 60 million electric generators [3] —valued at $0.25 billion USD based on the 2011 statistics of imported 56 

electric generators [8]. Another estimate reported that local businesses, manufacturers and families spend an average 57 

of $26 billion annually to operate electric generators. These estimates [3,8] place Nigeria as the lead importer and 58 

operator of decentralized electric generators in Africa. Since exhaust emissions from the consumption of fossil fuels 59 

are one of the largest contributor to greenhouse gas (GHG) emissions, the widespread use of decentralized diesel- 60 

and gasoline-powered generators in Nigeria is a threat to environmental balance. More so, the delivery of fossil 61 

fuels, typically from foreign refineries increases the cost and environmental burdens of these fuels. Nigeria has to 62 

demonstrate a strong commitment to mitigating GHG emissions and developing renewable and sustainable energy 63 

options as a signatory to the Paris Agreement on Climate Change (COP 21) in December 2015. There are optimistic 64 

suggestions that commercialization of renewable fuels could be achieved by the use of energy crops [9]: one such 65 

crop is Jatropha curcas. 66 
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Jatropha curcas is favored as one of the promising energy crop in Nigeria because it grows locally and does not 67 

compete for areas directly with food. Typical Jatropha oil seeds in Nigeria possess oil yield as high as 53% [9-10] 68 

with promising energy benefits. This oil can be converted into more energy accessible forms such as bio-ethanol, -69 

gas, -kerosene and -diesel, depending on the conversion process employed [11]. Because of the ability of the plant to 70 

adjust to marginal lands, and adverse climatic conditions, the plant is perceived to be of environmental and 71 

economic benefits, including the reduction (and even the reversal) of rural-to-urban migration through employment 72 

creation and skill development that consequently leads to rural development [12]. These are large assumptions in 73 

environmental sustainability, if considerable amount of fossil-fuels and -derived materials are to be consumed 74 

during the production and use of the Jatropha biodiesel fuel.  75 

There are ongoing efforts to adopt renewable energy sources to alleviate Nigeria’s energy and fuel problems. The 76 

Energy Commission of Nigeria and the United Nations Development Programme (UNDP) have developed a 77 

Renewable Energy Master Plan. This master plan is aimed at integrating renewable energy sources in existing 78 

electricity generation and distribution systems. This will be supported by the National Renewable Energy and 79 

Energy Efficiency Policy (NREEEP), a legislative framework designed to increase power generation capacities and 80 

share of renewable energy sources in Nigeria [13-14]. On approval, renewable energy sources would account for at 81 

least 10% of Nigeria’s electricity supply in 2025 [13]. To this effect, small-, medium- and large pilot power plant 82 

projects are proposed across the country for embedded power supply for public facilities and large industrial estates 83 

[6]. The African Development Bank (AfDB), among other development partners, is also currently funding 84 

renewable energy generation and efficiency projects through the Sustainable Energy Fund for Africa (SEFA) to 85 

encourage the generation, distribution and commercialization of clean energy in Africa. Hence, environmental life 86 

cycle assessment is required to assess the environmental status of substitute renewable fuels. Life Cycle Assessment 87 

(LCA) is a useful tool for identifying, quantifying and evaluating the burdens associated with a system, process, 88 

product, or technology [15-16]. It is widely applied in biofuels research to assess the energy requirements and 89 

environmental burdens of fuels, oils and co-products [17-20].  90 

In literature, there is sparse information on the environmental burdens associated with widespread use of 91 

decentralized diesel and gasoline generators for self-generated electricity in Nigeria. A few studies [21-23] that have 92 

investigated the LCA of power generation options in Nigeria have considered only the use of natural gas, liquefied 93 

natural gas fuels and oils for thermal power plants. Moss and Gleave [24] showed that Nigeria can reduce emissions 94 

by 63% by replacing individually-owned diesel generators with electricity from large scale natural gas power plants. 95 

The study was however limited and not holistic for a standard LCA because it only considered the direct exhaust 96 
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emissions of carbon in engines and presented natural gas as the only alternative. Nigeria is said to be one of the top 97 

producers of crude with the largest amount of flared gas in the world [25]. Katsouris and Sayne, [26] described how 98 

stolen crude-oil is shipped from Nigeria to foreign refineries for instant processing and sales through complex co-99 

loading and along multiple routes to reduce the risk of being caught and to avoid payment of levies. Kessom et al. 100 

[27] showed that Nigeria crude oils are subject to inefficient processes and gas flaring activities. More so, the supply 101 

chain for refined products from crude in Nigeria is complex: part of the crude that is produced locally is exported for 102 

sales, while others are transported overseas for processing and imported back into the country as refined products. 103 

Due to fuel shortages, pipeline vandalization, and poor maintenance of pipeline networks; fuels are often transported 104 

from depots and import jetties over long distances using petroleum tankers and usually with empty trips. Imported 105 

fuels are transported over long distances using wide ranges of sea transport vessels. Hence, applying studies that 106 

have assumed the U.S. National or European average as the reference diesel fuel, which in many cases, the 107 

assumptions were not clearly written, cannot be appropriate in the Nigerian context. In other words, a comparative 108 

fuel assessment that excludes local conditions such as multiple transportation distances, flared gas and fugitive 109 

emissions for the diesel reference system under local power generation realities in Nigeria can underestimate or 110 

overestimate the environmental benefits of the alternatives. 111 

This study therefore presents the environmental burdens associated with the use of petroleum diesel fuel for power 112 

generation from a life cycle perspective, in an attempt to quantify the environmental burdens associated with self-113 

generated electricity and proposed embedded power plants in Nigeria. It proposes the use of Jatropha biodiesel as a 114 

less carbon intensive option and examines the environmental implications of fuel displacement with Jatropha 115 

biodiesel. This is subsequent to the study by Onabanjo et al. [28] that showed that Jatropha-biodiesel is a worthwhile 116 

substitute for petroleum diesel fuel with significant environmental benefits in power generation. The study 117 

contributes to the published literature on LCA of Jatropha biodiesel production and use [29-32] through the 118 

application of an understanding of realities in the Nigerian context.  119 

  120 
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2. METHODOLOGY 121 

The life-cycle impact studies were carried out using standard LCA methodologies, as described in detail elsewhere 122 

[15-16]. These include the steps of (i) goal and scope definition; (ii) inventory analysis; (iii) impact assessment; and 123 

(iv) interpretation. The goal of the LCA was to account for the environmental burdens associated with the use of 124 

petroleum diesel fuel and Jatropha biodiesel in power generating plants in Nigeria. To this effect, a system boundary 125 

that covers the production of petroleum diesel-fuel in Nigeria, was defined for the base-case comparative study —126 

Figure 1. This incorporates the processes involved in the extraction and lifting of crude-oil from Nigerian oil-wells 127 

(onshore/offshore), local refining of crude-oil to diesel fuel, crude-oil swaps and the export of crude-oil for refining. 128 

It also includes onshore extraction of crude-oil from overseas facilities and its transportation to an overseas refinery 129 

and associated transportation processes. Because only limited pertinent information exists for commercial scale 130 

cultivation of Jatropha curcas seeds and production of biodiesel in Nigeria, a generic system was described for 131 

Jatropha biodiesel. The processes include Jatropha plant cultivation and harvesting, oil extraction, oil conversion via 132 

transesterification and associated transportation processes —Figure 2. The functional unit for this study is defined as 133 

1 kg of fuel consumed in the engine per year. The inventory includes inputs, such as materials, electricity and fuels. 134 

The outputs include wastes and emissions. These data were obtained from the public domain, existing scientific 135 

literatures, with emphasis on local conditions and agricultural farming-systems [20,33-35]. In the event, where the 136 

required data were not available, plausible technical assumptions were adopted from literature. Product allocation 137 

was only considered for glycerol in the Jatropha biodiesel fuel production system. Allocation of the glycerol co-138 

product was undertaken based on energy content of the products. The input, output and emissions were allocated 139 

based on a 90:10 ratio for Jatropha biodiesel fuel to glycerol. 140 

The life-cycle impacts of Jatropha biodiesel-fuel and the reference diesel-fuel were analysed using SimaPRO 141 

8.0.3.14 software, a computational tool developed by Product Ecology Consultants [36]. This software incorporates 142 

comprehensive databases, including U.S. Life-Cycle Inventory (US LCI), Agri-food Libraries, Eco-invent Libraries, 143 

European Reference Life-Cycle Database (ELCD) for several processes and systems and allows the development of 144 

customized modules. The software was used to build and analyze the inventories of Jatropha biodiesel-fuel and 145 

diesel-fuel production systems with preference given to Agri-food and Eco-invent libraries. In the absence of 146 

Jatropha or country-specific data, technologically close substitutes of inputs were chosen for the present analysis 147 

such as the manure application in SimaPRO, which is based on input of manure application in Colombia and 148 

nitrogen fertilizer application in SimaPRO environment, which is based on field visits in India. The life-cycle impact 149 

was assessed using ReCiPe Midpoint methodology with twelve impact categories, and an egalitarian perspective 150 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

that views emission contributions on a long-time frame, typically 500 years [34]. The GHG emissions from fertilizer 151 

applications were calculated using the IPCC global-warming potential (GWP) frame of 1, 25 and 298 within a 100 152 

years' time-scale for CO2, CH4 and N2O. Additional environmental impacts, such as eutrophication and acidification 153 

potential, were calculated using inorganic elements such as PO4, NO3 and NH3 and metals including Pb, Cd, Ni, Zn, 154 

Hg, Cu, and Cr, as emissions to soil, water or air. The emissions associated with the use of farm machinery, lorries 155 

and small transport-vehicles were already taken into account in SimaPRO.  156 

2.1. System Boundary for the Reference Diesel Fuel  157 

A generic diesel production and use system, is illustrated in Figure 1. This framework has been developed following 158 

the reported yields of fuels from Nigerian refineries in 2012 [37] and public information available on the export of 159 

crude oil and the importation of refined products into Nigeria [38]. This is to simplify the diesel fuel production 160 

system, which is a complex mixture resulting from diverse crude types and sources, product-refinery processes and 161 

means of transportation.  162 

Figure 1: Description/System Boundary for the Reference Diesel System 163 

Crude-oil production includes activities such as oil exploration, drilling, extraction, as well as water and/or gas re-164 

injection. According to the NNPC Annual Statistical Bulletin [37], the amount of crude-oil extracted from Nigerian 165 

oil-wells in 2012 was 8.53 billion barrels (bbl), of which 34.9 million barrels (mbl) were processed locally in four 166 

national refineries. The refined products were then imported to a local regional storage depots and refineries for 167 

distribution [37]. The rest of the crude-oil extracted was exported overseas via pipelines and Very Large Crude 168 

Carriers (VLCC) for processing —55.4 mbl under a swap arrangement and 22.7 mbl for off-shore processing 169 

agreements (OPAs), although the exact locations of the refineries were not disclosed. The present analysis examined 170 

a swap arrangement for a refined product from a US refinery, located in Chicago, and an off-shore processing 171 

agreement from the Société Ivoirienne de Raffinage (SIR) refinery in Cote d’Ivoire. Importation of diesel fuel into 172 

Nigeria was assumed to be from Saudi Arabia, although there are numerous sources of importation, e.g. India, 173 

Venezuela, the Middle East, neighbouring countries in Africa and many parts of the U.S.A. and Europe. This is 174 

based on the estimated fuel demand in Nigeria, valued at 12 million litres per day (MLPD) in 2012 [38]. The 175 

transportation processes include crude transport to local, SIR and Chicago refineries, refined product transport to 176 

their regional storage, and Nigerian local regional storage depots and refineries and finally diesel transport to 177 

consumer. Sea transport is assumed to be covered using a VLCC of about 200,000 deadweight tonnes —Table 1. 178 

Table 1: Transportation Distance & Related Parameters 179 
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Local refineries in Nigeria produced 2.63 MLPD of diesel fuel [37] with a product yield of 18.2% - a value deduced 180 

from the reported 2012 annual production of 818,678 metric tonnes of diesel fuel. Thus, from a market diesel-fuel 181 

demand of 12 MLPD [38], it can be deduced that 2.6 MLPD of it was produced locally, 4.3 MLPD and 1.5 MLPD 182 

of diesel fuel were obtained by SWAP and OPA arrangements respectively, while 3.5 MLPD of diesel fuel was 183 

imported into Nigeria, assuming that the yield of product was 18.2% for Bonny light crude-oil and 35.4% for Arab-184 

medium crude-oil. Thus, the present analysis estimates that 3.36 kg of Bonny light crude-oil and 0.36 kg of Arab-185 

medium crude-oil are extracted from the ground per kg of diesel fuel consumed.   186 

All the above-described processes were simulated in SimaPRO by creating an assembly. The on-shore production of 187 

petroleum and gas products in Nigeria describes crude production and includes datasets for oil production, energy 188 

use and emissions. This is linked to the data for the rest of the world (Saudi Arabia in this case). Allocation for co-189 

products (crude oil and natural gas) was based on heating value. Because, refining covers the flows of materials and 190 

energy from 1 kg crude oil into the products and co-products (petrol, bitumen, diesel, kerosene, naphtha, refinery 191 

gas, secondary sulphur and electricity), the environmental impacts are allocated accordingly. Transportation 192 

includes pipeline transfer (onshore and offshore), freight and lorry transport. Exhaust and non-exhaust emissions 193 

such as tyre, brake and road wear per tkm are already included in the inventory for transportation.  Non-CO2 exhaust 194 

emissions such as NOx, SOx and CO considered for the different engines and fuels are stated in Table 2.  195 

Table 2: Inputs of non-CO2 exhaust emissions from different power plants [28,39-40] 196 

2.2. Jatropha biodiesel Production System 197 

A generic Jatropha farming system is described in Figure 2. This assumes that numerous small-scale farms for 198 

growing Jatropha exist in Ogun-State, Nigeria. The Jatropha curcas is planted initially but widely on a small to 199 

medium scale under two scenarios: a) small-scale and, b) a large-scale farming system. The small-scale farming 200 

system (SFS) employs manual labour and relies on rain-fed agricultural system while the large-scale farming system 201 

(LFS) utilizes diesel fuel powered farm machineries for irrigation and related activities. Jatropha plantation of 1 202 

hectare (ha) and over a 20-year period is considered.  203 

Jatropha seedlings were assumed to be grown in polythene bags on nursery beds using seeds with 80% claimed 204 

survival rates for 60 days. These are watered at 0.2 L plant-1 day-1 and transferred to the field with a plant spacing of 205 

3m x 3m. Field preparation activities include stump removal, clearing, ploughing and harrowing and pits 206 

preparation. The plant takes up carbon dioxide from the technosphere and this is equivalent to the carbon content of 207 

the seeds. In small-scale farming, these activities are usually carried out by manual labour using axes, hoes and 208 
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cutlasses over several days. We estimated that manual labour for field preparation would require 5 men ha-1 day-1. 209 

The energy expended by manual labour was calculated using the average daily food-intake of 2120 kcal (8.9 MJ) 210 

capita-1 day-1, as estimated for a West African adult [41]. Field preparation in large-scale plantations is presumed 211 

would be undertaken by mechanized farming. Eshton et al. [20] and Gm¨under et al. [42-43] report diesel 212 

consumptions of 12-15 litres (L) of diesel fuel ha-1 for land preparation, whereas Prueksakorn and Gheewala [35] 213 

concluded that the range is 25-40 L of diesel fuel ha-1. Adewoyin [44] reported values of 17-32 L of diesel fuel ha-1 214 

at ploughing depths of 20-30 cm on a sandy-loam soil. In Nigeria, farm machinery is rarely new, owned and 215 

properly maintained, so farm machineries often have high fuel consumption rates. We assume twin run of a farm 216 

tractor with a diesel-fuel requirement of 45 L ha-1 run-1. Here, the soil is assumed to be ploughed to a depth of at 217 

least 50 cm and has sandy loam characteristics. 218 

Figure 2: Description/System Boundary for the Jatropha biodiesel System 219 

Fertilizer application is not a common practice on small-scale farms in Nigeria due to the costs involved and because 220 

effective fertilizers are rarely produced locally. So, we have not included fertilizer application for the small-scale 221 

farming system, asides the use of compost manure of 0.5 kg plant-1 yr-1. In the large scale farming system, we 222 

assume that 122, 47 and 134 kg ha-1 yr-1 of Nitrogen (N), Phosphorus (P), Potassium (K) [35,45] are applied twice 223 

per year for the first three years of the plantation, after which the residues from the Jatropha plantation, such as 224 

husks and seedcake are returned to the field. Contrary to popular opinion about the protective insecticidal and 225 

microbicidal properties of Jatropha plant, Terren et al. [45] reported pests and diseases to be prevalent in Jatropha 226 

farming. Thus, it is assumed for this investigation that Jatropha plants do not appear to be protected by their in-built 227 

insecticidal and microbicidal properties. Artificial insecticide applications of 0.04 g plant-1 of Chloropyrifos 20EC 228 

(organophosphorous-compound, 20%) is assumed to be applied every 3 years, based on local availability, together 229 

with herbicides, Glyphosphate (3 L ha-1) and Paraquat (2 L ha-1) [35].  230 

Weeding, pruning and fertilizing are assumed to be accomplished manually at 5 men ha-1 day-1 for the small-scale 231 

farming system while the large scale farming system requires a diesel consumption rate of 25 L ha-1 run-1. 232 

Harvesting is done in both systems at an average of 50 kg of dry seeds per worker-1 day-1. Both systems require these 233 

activities twice per year for the first five years [35]. Gasoline consumption of 40 L ha-1 yr-1 per persons was 234 

incorporated in order to account for the transportation of workers in and out of the farm. All other forms of manual 235 

labour, such as those relating to the operation of equipment were not included. Irrigation is considered for the large 236 

scale farming, although the average annual precipitation in Ogun-State exceeds 1000 mm. Irrigation is assumed to 237 

be supplemented daily by 8 L of water per plant per application for the first 5 years and during the dry season that 238 
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lasts up to six months, i.e. between October and March. Also, this activity involves the use of farm machinery with 239 

diesel fuel requirement of 60 L ha-1. The small- and large-scale farming systems require additional 60 L ha-1yr-1 for 240 

miscellaneous activities such as lighting and security respectively. 241 

Typically, a seed yield range of 3 to14 tonnes of dry seed ha-1 yr-1 is reported [19,33] for good soil and as low as 0.7 242 

tonnes ha-1 yr-1 for poor soil or wasteland [47]. Studies by Achten et al. [48] showed that a minimum yield 243 

requirement of 2 tonnes ha-1 yr-1 is required for a sustainable Jatropha farming system. Hence, this study has adopted 244 

a standard seed yield of 2.5 tonnes ha-1 yr-1 for both farming systems. Although, this is a pessimistic yield-value 245 

assumption in view of the current rapid advancements in Jatropha farming, spoilage is nevertheless likely during and 246 

after harvesting due to poor use of storage facilities in Nigeria. Adverse ambient conditions such as high 247 

temperatures and humidity are also contributing factors. Other losses, such as product theft could be suffered by 248 

farmers: this would result in such an overall low-seed recovery. The study assumes a centralized fruit-cracking and 249 

expelling hub facility for multiple Jatropha farms. Farms are typically located near villages which are farther away 250 

from cities in Nigeria, transportation distances of up to 50 km from the plantation field was included, alongside with 251 

an additional 40 km for transportation to the biodiesel-production facility. The crop is assumed to be transported by 252 

a farm truck of 20 tonnes capacity with fuel consumption rate of 20 miles per gallon (14.1 litres per 100 km).  253 

Available power at the required time is a severely limiting factor in Nigeria. Thus, small-scale industrial facilities 254 

will likely choose the least expensive and readily available technology for expelling oil. Seeds are assumed to be 255 

sun-dried and harnessed by manual labour. The technology assumed, in this study, for extracting oil from the dry 256 

seed is cold pressing considering a standard conversion facility that is available to all farming systems. This process 257 

begins with the use of a fruit cracking machine to remove the seed shells, followed by an oil expeller that ejects oil 258 

from the seeds: finally, a filtering unit is used to purify the oil. Oil yield of 35% was assumed and the residue (i.e. 259 

the seed cake) is returned to the field to supplement the applied organic fertilizer. It is deduced that 2.5 tonnes of dry 260 

Jatropha seed will yield approximately 0.88 tonnes of crude seed-oil, 0.66 tonnes of seed cake and 1.05 tonnes of 261 

seed husk, with oil yields of 35% and husk yield of 42% respectively. To reduce the fraction of free fatty acids the 262 

oil is first pre-treated by allowing it to react with methanol and sulphuric acid [20], followed by a base-catalyzed 263 

transesterification reaction in an 80 L biodiesel batch–reactor, which has 97% efficiency. The mixture of glycerol 264 

and biodiesel fuel produced is separated in the presence of excess water. All the above described inputs are 265 

summarized in Table 3. Land use is considered using the default SimaPRO parameters. Here, Jatropha is considered 266 

a permanent crop and assumed to occupy former arable lands, bare lands, and primary and secondary lands. The 267 
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total value of the land transformed is estimated using the average productivity ha-1 year-1 and the lifetime of the 268 

plantation.  269 

Table 3: Inventory for Jatropha biodiesel System 270 

2.3. Life cycle Assessment  271 

This study assumed the use of 5 kVA and 30 kVA diesel generators with power factor of 0.8 for self-generated 272 

electricity in Nigeria. Embedded power plant (industrial diesel and gas turbines) were considered in the place of 273 

self-generated electricity and these include: a) 200 kVA diesel generator, b) 126 MW open cycle gas turbine 274 

(OCGT) and c) 375 MW combined cycle gas turbine (CCGT) power plants. Jatropha biodiesel was considered as 275 

the renewable substitute to the reference diesel fuel. The environmental impact categories for the different engine 276 

cases were calculated from their respective life cycle emissions per kg of fuel and based on the engine’s average fuel 277 

consumption rate. For appropriate comparison, results are expressed per MWh of electricity generated annually. 278 

3. RESULTS  279 

3.1. Life Cycle Environmental Impact  280 

The environmental burdens associated with the use of the reference diesel fuel in the above-listed engines are 281 

summarised in Figures, 3a-k and sub-sections 3.1.1-3.1.6. Results are also presented for the Jatropha biodiesel fuel 282 

cases (SFS and LFS) for comparison. Unless stated otherwise, the LFS is mainly used for comparison, since this is 283 

the high-input system and the worst-case scenario. 284 

Figure 3a-k:  Environmental Contributions as a Function of fuel types, farming systems and engine 285 

application: a) Climate Change, b) Ozone Depletion, c) Freshwater Eutrophication, d) Marine 286 

Eutrophication, e) Fossil Depletion, f) Metal Depletion, g) Ionizing Radiation, h) Photochemical Oxidant 287 

Formation, i) Particulate Matter Formation, j) Eco-toxicity and k) Terrestrial Acidification. 288 

SFS – small-scale farming system; LFS – large-scale farming system; SGE – self-generated electricity; EPG – embedded power generation 289 

3.1.1. Climate Change and Ozone Depletion 290 

Climate Change (CC) uses CO2 equivalents (eq.) to account for major GHG emissions such as CO2, methane, 291 

nitrogen oxide and fluorinated gases that result from human activities and are responsible for increasing global 292 

temperatures. Ozone Depletion (OD) on the other hand quantifies substances that erode the ozone layer in the 293 

stratosphere using trichlorofluoromethane (CFC-11) as the reference [49]. The results in Figure 3a show that the use 294 

of the reference diesel fuel in 5 kVA and 30 kVA diesel generators can contribute 1625 and 833 kg CO2 eq./MWh to 295 
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CC respectively. For industrial engines, the environmental contributions from diesel fuel consumption are 643 kg 296 

CO2 eq./MWh (for 200 kVa diesel engine), 698 kg CO2 eq./MWh (for OCGT) and 459 kg CO2 eq./MWh (for 297 

CCGT). The GHG emission for industrial engines are at least lower than 57% of emissions from to the diesel-298 

operated 5 kVA engines. In terms of OD (Figure 3b), the annual environmental contributions from SGE are 2.04 g 299 

CFC-11 eq./MWh (for 5 kVA engines) and 1.04 g CFC-11 eq./MWh (for 30 kVA engines). These values can reduce 300 

to 0.81 g CFC-11 eq./MWh (for 200 kVA diesel engine), 0.88 g CFC-11 eq./MWh (for OCGT) and 0.58 g CFC-11 301 

eq./MWh (for CCGT) by switching to embedded power generation. Additional benefits can be achieved by 302 

integrating Jatropha biodiesel in these engines. Jatropha biodiesel fuel substitution in 5 kVA engines can prevent 303 

352 kg CO2 eq./MWh (CC) and 1.91 g CFC-11 eq./MWh (OD) corresponding to 22% and 94% reduction 304 

respectively. Integrating Jatropha biodiesel in other engines used in this study can result in reductions ranging from 305 

973 - 1227 kg CO2 eq./MWh for CC and about 2 g CFC-11 eq./MWh for OD. The best-case scenario is the Jatropha 306 

biodiesel powered CCGT and the reductions nearly offset the impact of SGE in 5 kVA engines. For further 307 

reductions, a small-scale farming approach can be adopted. This ensures an additional 15% and 1% in CC and OD 308 

contributions respectively from the LFS cases.  309 

3.1.2. Freshwater and Marine Eutrophication 310 

Eutrophication considers the accumulation of nutrients in the environment and how they affect water quality and the 311 

ecosystem [49]. These include direct and indirect effects of the use of fertilisers and chemical substances and 312 

emissions of ammonia, nitrates, nitrogen oxides and phosphorous on the ecosystem, a process differentiated into 313 

freshwater eutrophication (FE) —Figure 3c and marine eutrophication (ME) —Figure 3d. The use of the reference 314 

diesel fuel in 5 kVA diesel generators can contribute 4.71 g P eq./MWh and 0.39 kg N eq./MWh to FE and ME 315 

respectively. These values are minimal with 30 kVA diesel generators —2.41 g P eq./MWh, (FE) and 0.20 kg N 316 

eq./MWh (ME) and at most 1.33 g P eq./MWh (FE), and 0.11 kg N eq./MWh (ME) for the CCGT case. Fuel 317 

substitution with Jatropha biodiesel increases FE and ME, as annual contributions of 283.64 g P eq./MWh (FE), and 318 

3.01 kg N eq./MWh (ME) are obtained for the 5 kVA engines and 145.32 g P eq./MWh (FE), and 1.54 kg N 319 

eq./MWh (ME) for the 30 kVA engines. In embedded power plants, the use of the Jatropha biofuel contributes 320 

between 88.70 g P eq./MWh (CCGT) and 134.96 g P eq./MWh (OCGT) to FE. The contributions to ME, on the 321 

other hand, are 0.94 kg N eq./MWh (CCGT) and 1.4 g N eq./MWh (OCGT) based on the use of embedded power 322 

plants. These contributions to FE and ME from the Jatropha LFS can be reduced significantly by 83% and 96% 323 

across all engine types, if small-scale farming systems are adopted. While the impact on marine eutrophication can 324 
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be reduced below the final values of the reference diesel fuel cases, fresh water eutrophication are 10-11 times more 325 

than those of the LFS. 326 

3.1.3. Fossil and Metal Depletion 327 

Fossil depletion (FD) quantifies the rate of consumption of fossil fuels and minerals while metal depletion accounts 328 

for the unsustainable consumption of metals. The results in Figure 3e show that a decline of 3521 kg oil eq./MWh 329 

(for 5 kVA engines) and 1804 kg oil eq./MWh (for 30 kVA engines) can result from SGE. The annual contributions 330 

to FD from embedded power generation is 1392 kg oil eq./MWh (for 200 kVA diesel engines), 1512 kg oil 331 

eq./MWh (for OCGT) and 994 kg oil eq./MWh (for CCGT). The use of Jatropha biodiesel in these engines however 332 

can minimize fossil depletion by avoiding the use of 2907 and 1489 kg oil eq./MWh in 5 kVA and 30 kVA diesel 333 

generators respectively. The highest potentials are observed with the embedded power plants. Here, FD was reduced 334 

to 243 kg oil eq./MWh (for 200 kVA diesel engines), 292 kg oil eq./MWh (for OCGT) and 192 kg oil eq./MWh (for 335 

CCGT), a 81-83% reduction from when diesel only was used. The small-scale farming system can ensure an 336 

additional 5% reduction in FD from the LFS.  337 

Metal depletion as much as 13.02 kg Fe eq./MWh (for 5 kVA) and 6.67 kg Fe eq./MWh (for 30 kVA) were 338 

observed from Jatropha biodiesel-operated generators (Figure 3f). These values reduced to 4.07 kg Fe eq./MWh in 339 

the CCGT but still as much as 6.19 kg Fe eq./MWh for OCGT. All MD values from the Jatropha biodiesel fuel cases 340 

are significantly higher than the environmental contributions from diesel powered engines, even in self-generation 341 

scenarios.  342 

3.1.4. Ionizing Radiation and Photochemical Oxidant Formation  343 

Ionizing radiation, quantified as kBq uranium-235 (U235) eq. takes into account radiations such as α-, β- and γ-rays 344 

resulting from human activities and their toxicological effects on human health. The impact of SGE in this category 345 

include 167 kBq U235 eq./MWh and 85 kBq U235 eq./MWh for 5 and 30 kVA diesel generators respectively 346 

(Figure 3g). The embedded power generators reduced the impact values to 66 kBq U235 eq./MWh (for 200 kVA 347 

diesel engines), 72 kBq U235 eq./MWh (for OCGT) and 47 kBq U235 eq./MWh (for CCGT), but still twice as 348 

much as the case of Jatropha biodiesel in self-generating engines. The renewable embedded power options are 349 

beneficial in terms of ionizing radiation effects as they ensure an overall reduction of about 88% from 5 kVA diesel 350 

engines.  351 

Photochemical Oxidant Formation (POF) reflects contributions to ground level ozone formation and accumulation. 352 

Ozone is formed from increased interaction between volatile organic compounds and nitrogen oxides in the presence 353 
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of heat and radiations from sunlight [49]. At high concentration, ozone has toxic effects on human, and promotes the 354 

formation of smog that reduces visibility although it is highly useful in the stratosphere to prevent global warming. 355 

POF accounts for exhaust emissions such as sulphur dioxide, nitrogen oxides, and non-methane volatile (NMVOC) 356 

that are released during engine operation. Thus, the contributions (Figure 3h) from small diesel powered generators 357 

include 22.81 kg NMVOC (5 kVA) and 11.69 kg NMVOC (30 kVA). Diesel-operated embedded power plant 358 

however contribute 9.02 kg NMVOC (200 kVA large diesel), 9.80 kg NMVOC (OCGT) and 6.44 kg NMVOC 359 

(CCGT) respectively to POF. A fuel substitution with Jatropha biodiesel for SGE can therefore ensure a reduction of 360 

about 84%, values of 3.63 and 1.86 kg NMVOC for 5 kVA and 30 kVA diesel engines respectively. With embedded 361 

power generation options, the values reduce further to 1.44, 1.73 and 1.14 kg NMVOC for 200 kVA diesel, OCGT 362 

and CCGT engines respectively.  363 

3.1.5. Particulate Matter Formation  364 

Particulate matter formation (PMF) accounts for particles as small as 10 µm, which are generated from human and 365 

industrial activities and can trigger a number of respiratory health problems such as asthma, allergies etc. In this 366 

study, the contributions to PMF are largely from Jatropha biodiesel LFS. Here, the use of the fuel for self-generated 367 

electricity contributes 4.64 kg PM10 eq./MWh (5 kVA) and 2.38 kg PM10 eq./MWh (30 kVA) —See Figure 3i.  368 

These values are 30% higher than the reference diesel fuel cases and could have resulted from plant cultivation as 369 

well as those resulting from fertilizer application. The contributions from the renewable embedded power generation 370 

options are much lower with values of 1.83 kg PM10 eq./MWh, 2.21 kg PM10 eq./MWh and 1.45 kg PM10 eq./MWh 371 

from 200 kVA large diesel, OCGT and CCGT engines respectively, a 35-58% reduction in environmental 372 

contributions when compared to the Jatropha biodiesel fuel cases. The contributions from the LFS can be reduced by 373 

adopting a small-scale farming approach to Jatropha production. This can ensure an additional reduction of 56% in 374 

PMF as compared to the LFS, an overall reduction of 34-40% in PMF across all engine types in the reference diesel 375 

fuel cases. 376 

3.1.6. Ecotoxicity and Terrestrial Acidification  377 

Ecotoxicity (ET) accounts for emission of substances that are above the tolerance levels of toxicity and can include 378 

human, fresh water, marine, and terrestrial toxicity. This study shows that the use of Jatropha biodiesel has adverse 379 

contributions on ecotoxicity, with a range of 8223-16050 kg 1,4-DB eq./MWh depending on engine capacity —380 

Figure 3j. This range is about 21-54% higher than those of the reference diesel fuel in 5 kVA and 30 kVA diesel 381 

generators and is as a result of direct application of chemicals, and fertilizers related substances. It also includes the 382 
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contributions from the use of chemicals for oil conversion processes. The use of the Jatropha biodiesel in embedded 383 

power plants can reduce ET to 6346 kg 1,4-DB eq./MWh (200 kVA), 7637 kg 1,4-DB eq./MWh (OCGT) and 5019 384 

kg 1,4-DB eq./MWh (CCGT) annually; however, these values are still twice as much as the reference diesel fuel 385 

cases. 386 

In the case of Terrestrial Acidification (TA) as shown in Figure 3k, the contributions include a range between 9.54 387 

and 4.89 kg SO2 eq./MWh from the consumption of diesel in 5 kVA and 30 kVA diesel generators, values that 388 

reduced up to 2.69 kg SO2 eq./MWh with CCGT operation. The contributions from Jatropha biodiesel fuel 389 

consumption were much higher and similar to diesel fuel consumption in self-generation capacities even under best 390 

case scenarios with CCGT. The contributions include 28.69 and 4.89 kg SO2 eq./MWh from Jatropha biodiesel fuel 391 

substitution in 5 kVA and 30 kVA diesel generators, as well as 11.34 kg SO2 eq./MWh, 13.65 kg SO2 eq./MWh and 392 

8.97 kg SO2 eq./MWh in 200 kVA diesel, OCGT and CCGT engines respectively. Acid deposition is largely 393 

contributed by the emission of acid gases (NOx and SO2) as well as inputs from fossil energy sources in Jatropha 394 

farming and oil conversion processes. Therefore, a small input system can be adopted and this ensures a 20-34% 395 

reduction in terrestrial acidification for direct fuel substitution in the different engine cases.  396 

3.2. Sensitivity Analysis 397 

The environmental benefits highlighted in this study are based on a number of model scenarios and point estimates 398 

with underlying uncertainties that can make the results more sensitive to one or more parameters. Sensitivity 399 

analysis was conducted on varying seed yield levels and based on the increasing use of fossil fuels, fertilizer and 400 

chemicals to ascertain their effects on the different environment impact categories. The outcomes are presented in 401 

Figure 4a-d. Figure 4a show the radar chart of the sensitivity analysis conducted based on seed yields of 3.5 and 7 402 

tonnes ha-1 yr-1. The sensitivity analysis therefore shows that an increased seed yield of 3.5 tonnes ha-1 yr-1 can 403 

reduce the environmental burdens by 16-29% while a seed yield of 7 tonnes ha-1 yr-1 can ensure a reduction of 40-404 

63% across the different environmental impact categories. The impact categories, CC and POF, were the most 405 

sensitive to seed yield while the rest had similar environmental performance as the base-case scenario. A 406 

conservative seed yield of 2.5 tonnes ha-1 yr-1 was adopted in this study; however, a range of 0.4-12 tonnes ha-1 yr-1 407 

is reported in literature [48] that differs with agricultural inputs as well as climatic and abiotic conditions [50]. 408 

Lower seed yield beyond 2.5 tonnes ha-1 yr-1 was however not considered due to the minimum seed yield 409 

recommendations of 1-2 tonnes ha-1 yr-1 for sustainable farming of Jatropha curcas [48,51], yields that are typical 410 

for farming activities on waste and degraded lands.  411 
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For sensitivity analysis based on a 50% increased use of fossil fuels and electricity, as shown in Figure 4b, there was 412 

a 0-10% increase in the different environmental impact categories. The increased use of fossil fuels accounts mainly 413 

for diesel fuel consumption in farm equipment and machineries while electricity covers the energy generation from 414 

fossil fuel sources.  For diesel fuel consumption, POF had the highest variation with nearly 10% increase while CC, 415 

ME and IR had ~6% variation, and TA and FD had ~4% variation. OD and MD had the least variations with values 416 

less than 2%. Similar experiments for electricity use show an increase of 10% in the environmental burdens for CC 417 

while the environmental impact categories, POF, PMF, TA and FD increased by ~8%. The rest were less than 4%. 418 

Figure 4c show the sensitivity analysis conducted based on a 50% reduction in the use of fertilizer and chemicals. A 419 

50% increase in use of fertilizer and chemicals brought about ~20% increase in the environmental contributions to 420 

OD, TA, FD, POF, PMF, MD and CC. The most sensitive impact categories for increased fertilizer application 421 

include FE (45%), ME (45%) and ET (23%) while IR (45%) for increased chemical use including the consumption 422 

of methanol and sulphuric acid.  The sensitivity analysis on transportation, as shown in Figure 4d show that a 50% 423 

increase in the distance covered for the transportation of seeds, oil and biodiesel fuel can bring about a 14% 424 

deviation in POF and 8% for ME and PMF. Other environmental mechanisms such as CC, TA and FD have 425 

deviations of ~6%.  426 

Figure 4a-d: Radar chart of the sensitivity analysis: a) seed yield, b) fossil fuel use and electricity, c) fertilizer 427 

application and chemical use and d) transportation of Jatropha seeds, oil and biodiesel fuel. 428 

4. DISCUSSION  429 

Nigeria is considered as one of the least contributor to GHG emissions globally with annual CO2 emissions of 0.54 430 

tonnes CO2-eq. per capita [52-53], according to the 2011 World Development Indicators. This ranked the country as 431 

the 159th emitter of CO2 based on emissions per capita, but 39th emitter of CO2 out of 196 countries based on total 432 

CO2 produced —88 megatonnes in 2011. The country-level rankings were based on the total CO2 emissions from 433 

burning of primary solid, liquid and gaseous fossil fuels including emissions from gas flaring and cement 434 

production, but there are no indications that it included emissions from self-generated electricity. To account for 435 

SGE, this study estimates a value of 389 million tonnes CO2 eq. on total CO2 produced, which corresponds to 2.07 436 

tonnes CO2-eq. per capita at 2011 estimated population [53]. Thus, in addition to the country-level rankings, Nigeria 437 

positions as 112 emitters of CO2 among the global CO2 emissions per capita index, and 16th position based on total 438 

CO2 produced. By 2050, Nigeria’s population is expected to exceed 400 million [2] and the country can be operating 439 

up to a projected 150 million electric generators, if the current practice of SGE persists. This can cause annual GHG 440 

emissions of 847 million tonnes CO2 eq. that places the country potentially as one of the top ten emitters of CO2. 441 
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The LCA results obtained in this study are therefore useful for estimating the annual emission contributions from all 442 

the midpoint ReCiPE impact categories selected. They are also important for comparing the alternative power 443 

generation options. 444 

The above estimation for annual GHG emission have assumed that 68% of privately-owned 60 million electric 445 

generators in Nigeria are diesel operated for 7 hours per day and have engine capacity of 5 kVA capacity or less 446 

with power factor of 0.8 [3-8, 54]. Engine availability was assumed to be low as 50% due to poor maintenance 447 

culture that increases the downtime of engines and the report on the operating hours of generators per household 448 

[54]. While these assumptions provide an estimate, parameters such as engine performance and efficiency varies 449 

with time and ambient conditions. Others such as engine capacity, duration of run, fuel choice etc. depends on user 450 

behavior as well as socio-economic factors. For policy development and implementation, a detailed LCA informed 451 

by real data or accompanied by a thorough survey would be required. This is because of the uncertainties associated 452 

with generic data. For Nigeria and similar developing countries, there is often limited environmental information on 453 

the contributions, nature and consequences of direct and indirect emissions, as such attention should be directed to 454 

obtaining robust data.  455 

We have considered climate change as the most relevant local environmental indicator, although all the 456 

environmental impact categories are equally important. This is based on the country’s recent commitment to 457 

mitigate greenhouse gas emissions on the Paris Treaty on Climate Change. We propose that addressing the country’s 458 

shortfalls in electricity supply should not only be the priority, environmental sustainability amongst other factors 459 

should be at the forefront. As a party to the United Nations Framework Convention on Climate Change (UNFCCC) 460 

and Kyoto Protocol, Nigeria can demonstrate a strong commitment to sustainable development by providing 461 

renewable alternatives to private-operated small generating sets. Measureable goals can be achieved by quantifying 462 

the environmental impact of current energy capacities with comparative assessment of sustainable alternatives, as 463 

presented in the study for Jatropha biodiesel fuel substitution. This can then be supported with targets and 464 

monitoring to ensure environmental protection. 465 

This study has explored the egalitarian perspective, a choice that assumes the longest time-frame for emission 466 

impact in the various environmental mechanisms, as opposed to the short-time frame for the individualist 467 

perspective or the dependence on a commonly accepted guidelines for the hierarchist perspective. All the LCA 468 

results obtained are thereby worst-case scenarios and exerts prevention as the mitigation strategy or precautionary 469 

principle. We have selected the midpoint ReCiPE methodology for characterisation due to the low uncertainties 470 

associated with this approach, even in the absence of regional data. Unlike the endpoint approach, this method 471 
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provides direct and individual environmental contributions without further damage level assessments. With 472 

additional and well-structured regional information on the fate and exposure of chemical compounds in the 473 

environment, further damage level assessments can be conducted with the mid-point indicators to achieve three end-474 

point indicators (damage to ecosystems, human health and resource availability). The disadvantage of the midpoint 475 

approach; however, is that the results are less accessible and difficult to interpret by non-technical audience but the 476 

end-point estimations are best suited for well-developed and understood systems and results can be accompanied 477 

with large uncertainties.  478 

The study also showed that emission reductions can be achieved with the use of more energy efficient plants with or 479 

without fuel substitution. The deployment of heavy duty engines for embedded power generation without fuel 480 

substitution can ensure reductions of 56-72% in all the environmental impact categories. By substituting the diesel 481 

fuel with as a less carbon intensive option, Jatropha biodiesel, overall reductions can vary from 27% to 98% in the 482 

impact categories: CC, OD, POF, PMF, ET, IR and FD, depending on the farming methods. Similar results are 483 

presented in [31, 35, 55-56] where previous studies show that the life cycle production of Jatropha biodiesel have a 484 

positive environmental balance, and magnitude of benefits depends on system inputs and product allocation. Ndong 485 

et al. [57] showed that the use of Jatropha biodiesel in West Africa reduced GHG emissions by 72% while Achten et 486 

al. [19] presented these GHG reductions as 55±16% to the reference system. There are however negative 487 

environmental contributions such as terrestrial acidification, fresh and marine eutrophication and metal depletion 488 

that results from the use of Jatropha biodiesel and the contributions exceeds the diesel reference system. 489 

These negative contributions in the Jatropha biodiesel system are resulting from the production and application of 490 

synthetic fertilizers, and emissions associated with the use chemicals and fossil fuels in farm equipment and 491 

industrial plants. Analysis of the Jatropha biodiesel LFS shows that Jatropha farming is the main cause of emissions 492 

in the seven categories including eutrophication, particulate matter formation and terrestrial acidification while oil 493 

conversion processes contributed mainly to metal depletion, fossil depletion, photochemical oxidant formation and 494 

ecotoxicity.  Studies by [19-20,58] attribute the use of nitrogen and phosphate fertilizers and the consumption of 495 

fossil derived fuels for the agricultural farming of Jatropha curcas has the main contributions to environmental 496 

burdens. These fertilizers tend to leak into nearby rivers and streams, and can be released accidentally into the air 497 

during application, depending on the soil’s properties and environmental conditions. Eshton et al. [20] showed a net 498 

GHG contribution of 848 kg t-1 from the farming and end-use of Jatropha biodiesel in Tanzania and these were 499 

mainly from fertilizer application. From the above studies, Jatropha biodiesel is established as a low-burden and not 500 

a burden-free system, due to the inputs of nitrogen and phosphorus fertilizers, and fossil fuels. The use of chemicals 501 
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such as methanol and sulphuric acid also contributes. Thus, to minimize the negative contributions associated with 502 

large-scale system, small-scale farming system can be adopted. While the life cycle impact towards TA, ME and 503 

PMF can be minimized beyond those of the reference diesel fuel cases in the SFS, the impact towards FE, MD and 504 

ET cannot be minimized. Overall, the magnitude of benefits of the Jatropha biofuel system will largely depend on 505 

material inputs, seed yield as well as the environmental status of the reference fuel. Previous studies [59-61] that 506 

have examined the LCA of the European standard fuel report GHG emissions in the range of 4.9-24 g CO2-eq./MJ 507 

(well-to-tank analysis), corresponding to 0.34-1.02 kg CO2-eq./kg. This is less than a third of the value obtained in 508 

this study, as such the Jatropha biodiesel system does not have a favorable outcome with a European standard fuel. 509 

For drastic reduction measures as shown in the sensitivity analysis results for fertiliser application and seed yield, 510 

minimal use of fertilizers and chemicals will be important. Seed and oil yield can be improved with the use of 511 

superior genetic seed strains, agricultural practices and soil conditions [19,48]. Rathbauer et al. [62] showed that 512 

harvesting and storage conditions are key aspects for oil quality. Jatropha was originally recommended to be grown 513 

on degraded or wastelands with minimal agricultural inputs [63] due to the crop’s resilient abilities to adapt to poor 514 

soil and adverse climatic conditions. However, studies by Achten et al. [20], Ariza-Montobbio et al. [64] and 515 

Axelsson et al. [65] showed that there are significant costs on seed and oil yield. For energy and environmental 516 

balance, a seed yield of at least 1-2 tonnes per hectare (ha) per year is recommended [48, 51]. Other key measures to 517 

limit negative environmental contributions include minimised use or part-replacement of fossil fuel sources for 518 

powering farm equipment, and industrial machines for oil conversion. Wang et al. [51] and Brittaine, and Lutaladio, 519 

[66] showed that there could be a significant reduction in the life cycle impact of Jatropha biodiesel by co-product 520 

allocation; however, this depends on a number of factors including seed yield, energy and material inputs that are 521 

often site-specific. Site-specific LCA informed by practical farming can therefore better inform minimization 522 

strategies. The study has considered human energy expenditure in the Jatropha farming system [67], since farming 523 

in Africa is heavily dependent on manual processes. However, the results show that human energy input is relatively 524 

small to the overall system and has no added influence on the environment impact. In this regard, a socio-economic 525 

LCA can provide the impact of human energy input, particularly relating to quality of life and costs associated and 526 

especially for the small-scale farming system. 527 

This study did not associate increased seed yield with increased use of irrigation, fertilizer etc, although seed yield 528 

can be linked to improved farming method and inputs. This is because Jatropha farming is yet to be practiced 529 

commercially in Nigeria and there is known to what extent that fertilizer use will improve Jatropha seed production. 530 

It is also of worth to mention that the scope of the study did not cover social and economic assessment of Jatropha 531 
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biodiesel production. Land use changes and carbon stock associated with commercial production of the fuel as well 532 

as infrastructure development were not considered due to limited local information. The study has only taken into 533 

account the main non-CO2 exhaust emissions (NOx, SOx and CO) which excludes short-lived climate pollutants 534 

(SLCPs) such as black carbon (BC), hydrofluorocarbons, volatile organic compounds (VOCs) that are shown in 535 

recent times to negatively affect climate change and associated with a number of human respiratory and 536 

cardiovascular problems. These SLCPs have a short lifespan of a few days to weeks and varies widely with local 537 

conditions. For instance, BC are formed from incomplete combustion of fuels including diesel and biodiesel fuels 538 

and from open burning of agricultural waste and wood in cook stoves. Therefore, the inclusion of SLCPs, 539 

particularly BC can increase the CC impact of the fuels used in the study. Further work can elaborate on the impact 540 

of these compounds. Other aspects that can be investigated which are out of scope of this work is the cost 541 

implication of the use of these fuel in diesel engines.  Previous studies by the authors [68] showed that the use of the 542 

fuels in large industrial gas turbines requires a form of financial instrument to ensure economic viability; hence 543 

economic performance analysis will be vital in the light of this environmental assessment. The study has considered 544 

the direct substitution of fuels in engines based on the close characteristics of diesel and biodiesel fuels. Since, these 545 

fuels have a relatively high biodegradability rate [69], there are possibility for increased maintenance of engines. 546 

Such additional environmental impacts and maintenance requirements were not included in the study. For overall 547 

life cycle outlook of the Jatropha biodiesel system, further work will aim at expanding the study with socio-548 

economic impact assessment.  549 

5. CONCLUSION  550 

This environmental impacts associated with self-generated electricity and proposed embedded power plants in 551 

Nigeria were assessed based on a life cycle perspective. The use of privately-owned diesel powered generators of 552 

5kVA or less can result in annual life cycle GHG emissions of 389 million tonnes CO2 eq., a value corresponding to 553 

2.07 tonnes CO2-eq. per capita. This can position the country as the 112 emitters of CO2 among the global emissions 554 

per capita index, and 16th position based on total CO2 produced. By 2050, the country could be one of the ten 555 

emitters of CO2 if current self-generation activities persist. To satisfy Nigeria’s energy demand, there should be a 556 

diversification in the energy mix for power generation and a reduction in GHG emissions concurrently. This can be 557 

achieved with embedded power plants with Jatropha biodiesel, as the alternative fuel. By substituting the diesel fuel 558 

with Jatropha biodiesel, 352 kg CO2 eq./MWh can be avoided, a 22% reduction. Further reductions in CC of up to 559 

76% can be achieved with embedded power generation. Such projects can significantly reduce the environmental 560 

impact of self-generated electricity across most impact categories, however at a cost on terrestrial acidification, 561 
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metal depletion, freshwater- and marine-eutrophication. These contributions are resulting from the production and 562 

application of synthetic fertilizers, and emissions associated with the use chemicals and fossil fuels in farm 563 

equipment and industrial plants. An adoption of a small-scale farming approach, the reduction of fertilizer and 564 

chemicals at the cost of yield and the replacement of fossil fuels with renewable options can further reduce the 565 

contributions from the Jatropha biodiesel system.  566 

  567 
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Table 1–Transportation Distance & Related Parameters 

Sea distance (Forcados Terminal to Gulf Port)  km 12434 

Forcados Terminal to Port, Abidjan km 1048 

Forcados Terminal to local refinery km 920 

Gulfport to Chicago Refinery km 1447 

Crude Transfer to SIR refinery km 100 

Crude Transfer to Saudi Arabia refinery km 100 

(Jubail Port, Saudi Arabia to Forcados Terminal)  km 15662 

Gulfport to Nigerian Port km 12434 

Abidjan Port to Nigerian Port km 1048 

Local refinery to local depots km 5000 

Chicago Refinery to Gulfport  km 1447 

Crude Transfer from SIR refinery to local refinery km 300 

Crude Transfer from Saudi Arabia refinery to local refinery km 300 
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Table 2– Inputs of non-CO2 exhaust emissions from different power plants [28, 39-40] 

Engine/Fuel Type Diesel Engine   Gas Turbine  

Emissions Diesel Jatropha Biodiesel  Diesel Jatropha Biodiesel 

CO  3.69E-03 1.76E-05  7.92E-06 4.40E-06 
NOx  1.58E-05 7.92E-04  3.52E-04 5.28E-04 
SOx 2.67E-02 -  2.12E-03 - 
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Table 3-Inventory for Jatropha biodiesel System 

SUB-PROCESSES SMALL-SCALE  
FARMING  

LARGE-SCALE  
FARMING  

PRE-NURSERY   
Seeds for Nursery 0.769 g seed-1 0.769 g seed-1 
Water for Nursery  0.2 L seed-1day-1/60 days 0.2 L seed-1day-1/60 days 
Polyethylene Bags (Nursery) 2 g bag-1 2 g bag-1 
Human Labour 1 man day-1/60 days 1 man day-1/60 days 

 
FIELD PREPARATION  
Tractor Use for Land Preparation 5 men ha-1 day-1/5 days 45 L diesel ha-1run-1 
Weeding/Fertilizer Application 5 men ha-1 day-1 12.5 L diesel ha-1run-1 
Harvesting 50 kg dry seed man-1day-1 50 kg dry seed man-1day-1 
Fertilizer, N - 121.48 kg ha-1yr-1 
Fertilizer, P2O5 - 46.49 kg ha-1yr-1 
Fertilizer, K2O - 133.47 kg ha-1yr-1 
Compost 0.5 kg pit-1yr-1 - 
Glyphosphate (Herbicide) 3 L ha-1yr-1 3 L ha-1yr-1 
Paraquat (Herbicide) 2 L ha-1yr-1 2 L ha-1yr-1 
Insecticide 0.04 g plant-1yr-1 0.04 g plant-1yr-1 
Gasoline Use (Extra) 40 L ha-1yr-1 40 L ha-1yr-1 
Diesel Use (Extra) 60 L ha-1yr- 60 L ha-1yr- 
Transportation (To Crushing Site) 50 km @20mpg 50 km @20mpg 
Water for Insecticide Application 100 L 100 L 
Diesel for Irrigation - 60 L ha-1 
Irrigation  - 8 L plant-1week-1 
Transport for Irrigation - 43 km @20 mpg 

 
OIL EXTRACTION  
Cracking Machine  2hp@100 kg hr-1 2hp@100 kg hr-1 
Expeller  37.5hp@ 0.75 ton hr-1 37.5hp@ 0.75 ton hr-1 
Filtering Machine  2hp@160L hr-1 2hp@160L hr-1 
Transportation (Crushing Site to Biodiesel 
Plant) 40 km@ 20 mpg 40 km@ 20 mpg 

 
OIL CONVERSION  
Electricity for Biodiesel Plant Use 80L/batch @4kWh/batch 80L/batch @4kWh/batch 
Electricity for Pre-treatment 14kwh/t 14kwh/t 
Sulphuric acid  14kg/t 14kg/t 
Methanol 110kg/t 110kg/t 
KOH 18kg/t 18kg/t 
Steam  660kg/t 660kg/t 

Transportation (Biodiesel Plant to Local Site) 50 km @20mpg 50 km @20mpg 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

Fig. 1: Description/System Boundary for the Reference Diesel System 
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Fig. 2: Description/System Boundary for the Jatropha biodiesel System  
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Figure 3a-k:  Environmental Contributions as a Function of fuel types, farming systems and engine application: a) Climate 
Change, b) Ozone Depletion, c) Freshwater Eutrophication, d) Marine Eutrophication, e) Fossil Depletion, f) Metal 

Depletion, g) Ionising Radiation, h) Photochemical Oxidant Formation, i) Particulate Matter Formation, j) Ecotoxicity and 
k) Terrestrial Acidification 

SFS – small-scale farming system; LFS – large-scale farming system; SGE – self-generated electricity; EPG – embedded power generation 
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i) Particulate Matter Formation (PMF)
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j) Ecotoxicity (EC)
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k) Terrestial Acidification (TA)
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Figure 4a-d: Radar chart of the sensitivity analysis: a) seed yield, b) fossil fuel use and electricity, c) fertilizer application and chemical use and d) transportation of 
Jatropha seeds, oil and biodiesel fuel.  
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Highlights 

• Self-generated electricity (SGE) contributes of 1625 kg CO2 eq./MWh of electricity 

• SGE in Nigeria contributes 389 million tonnes CO2 eq. annually to climate change  

• This can rank Nigeria in the top 20 on the global CO2 emission index 

• Jatropha biodiesel in embedded power plants can reduce CO2 emissions by 22-76% 

• Magnitude of benefits depends on plant yield, farming system and engine efficiency 

 


