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a b s t r a c t

In this paper, a sparse machine learning technique is applied to predict the next-hour wind power. The
hourly wind power prediction values within a few future hours can be obtained by meteorological/
physical methods, and such values are often broadcast and available for many wind generators. Our
model takes into consideration those available forecast values, together with the real-time observations
of the past hours, as well as the values in all the power generators in nearby locations. Such a model is
consisted of features of high dimensions, and is solved by the sparse technique. We demonstrate our
method using the realistic wind power data that belongs to the IEEE 118-bus test system named NREL-
118. The modeling result shows that our approach leads to better prediction accuracy comparing to
several other competing methods, and our results improves from the broadcast values obtained by
meteorological/physical methods. Apart from that, we apply a novel nonparametric density estimation
approach to give the probabilistic band of prediction, which is demonstrated by the 25% and 75% con-
fidence interval of the prediction. The coverage rate is compared with that yielded from quantile
regression.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy generation, especially wind power, are being
increasingly integrated into the power systems worldwide [1].
Despite the environmental friendliness and sustainability proper-
ties, wind power challenges the economic operation, stability, and
reliability of power systems with its intermittence and randomness
[2,3]. Therefore, improving the accuracy of short-term (e.g., day-
ahead or two-days ahead) and very short-term (i.e., up to several-
hours ahead) wind power forecasts has become a paramount
issue [4]. We focus in this paper on the algorithms of predicting the
next-hour wind power, hence the very short-term wind power
prediction.

According to Ref. [4], very short-termwind power forecasts rely
much less on the numerical weather prediction (NWP) or meteo-
rological/physical methods. For this time horizon, NWP-based
methods do not obtain performance improvements with respect
heng).
to persistence methods, and statistical models should outperform
physical models in general [5].

For statistical learning methods, one crucial issue is to select
factors that are correlated with the wind power, and avoid the
“over-fitting” caused by accounting for those irrelevant elements in
the learning process. In this context, lots of work has been done to
select key factors. For example, in Ref. [6], appropriate factors are
selected according to correlation and importance measures, and
then employed to a nonparametric learning machine, i.e., a random
forest predictor, to forecast the 1-h ahead wind power. The pre-
dictor is immune to irrelevant inputs. Authors in Ref. [7] use the
stacked denoising auto-encoders (SDAE) with batch normalization
to extract the deep features of wind speed data. In Ref. [8], after
performing feature selection with the mutual information, the
authors propose using an SDAE and long short term memory
(LSTM) network to predict the 10-min aheadwind speed. In Ref. [9],
a dilation and erosion clustering algorithm based on mathematical
morphology is proposed to select the days with similar prediction
information, which is shown to improve the accuracy of day-ahead
wind power prediction. Regarding linear regression models, the
Lasso (least absolute shrinkage and selection operator) is an
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effective approach to feature selection. For instance, the Lasso is
used in Ref. [10] to predict the long-termwind energy, which takes
as input the meteorological variables, including the wind speed,
temperature, and pressure. The authors in Ref. [11] use the Lasso to
explore a set of different sparse structures for the vector autore-
gression (VAR) model. The forecast skill is improved against con-
ventional autoregressive and vector autoregressive models, and the
method is applicable to large-scale systems. Recently [12], extends
the Lasso-based VAR model proposed in Ref. [11] by accounting for
changes in the spatio-temporal wind power dynamics and pro-
posing a novel coordinate descent algorithm for solving the Lasso
estimator. The Lasso is adopted in Ref. [13] for solar power gener-
ation forecast. Later in Ref. [14], and with an application to the
short-term prediction of solar intensity, the authors incorporate the
Lasso with LSTM to capture both the linear and nonlinear re-
lationships within the data.

Point forecasts can be regarded as the degenerated versions of
probabilistic forecasts, since they yield merely the conditional
expectation of the wind power for each look-ahead time [15].
Probabilistic forecasts provide more information on the random
wind power, and thus they are more applicable in power system
operations [16]: with the interval estimation of wind power, the
voltage can be maintained within safe bounds with a desired
probability [17]; by employing wind power forecasts in the form of
polyhedra with certain probabilistic guarantees, the robust gener-
ation scheduling process can be carried out in a less-conservative
manner [18], just to name a few.

It is shown in Ref. [19] that the probability distribution of wind
power forecast error is fat-tailed. Therefore, it cannot be modeled
by the Gaussian distribution; the Beta distribution cannot always
perfectly models the errors as well. In Refs. [20,21], a mixture of
generalized logit-normal distributions and probability masses at
the bounds is developed to describe the distribution of very short-
term wind power. In Ref. [22], an empirical wavelet transform is
used to extract vital modes from the original data, and then a
Gaussian process regression model with Student-t likelihood is
adopted to forecast both the half-hour ahead and hour-ahead wind
power values and distributions. Another feasible approach is the
multi-distribution ensemble model. In Ref. [23], for example, an
ensemble predictor built upon Gaussian, Gamma, and Laplace
predictive distributions is developed for probabilistic wind power
forecast. However, as has been recognized [15], the assumption that
wind power and its forecast errors follow a known parametric
family of distributions is quite strong. Thus, we believe that
nonparametric methods, which make no assumptions on the dis-
tribution form of wind power (or errors), should be much more
flexible.

Nonparametric methods have been widely investigated in
recent literatures, either for distribution or interval forecasts. In
order to capture the nonparametric nature of error densities
observed in real-world wind power data, the epi-spline basis
functions are applied in Ref. [24], and it can generate wind power
scenarios that closely resemble the behavior of actual wind power
observations. A nonparametric method based on the empirical
dynamic modeling of wind power is proposed for very short-term
probabilistic forecast by Ref. [25] recently. To quantify the uncer-
tainty of wind speed forecast, kernel density estimation is utilized
in Ref. [26] to fit the probability distribution of the Lorenz Distur-
bance Sequence that describes the behavior of wind speed. How-
ever, it should be noted that the density estimator employed by
Ref. [26] is a univariate one. The sparse probabilistic learning
method, relevance vector machine (RVM), is applied in Ref. [27] for
very short-term wind power forecast. In Ref. [27], a grouping
mechanism and a sampling selection method are proposed by the
authors to improve the forecast efficiency and accuracy,
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respectively. Authors in Ref. [28] develops an ensemble of neural
networks for wind power forecast, whereas RVM is adopted as a
robust auxiliary predictor. In Ref. [29], a two-layer ensemble ma-
chine learning technique is proposed to predict the hour-ahead
wind power, in which the first layer is designed for feature selec-
tion, and the second layer contains a blending algorithm that
generates both deterministic and probabilistic forecasts. In
Ref. [30], a self-adaptive evolutionary extreme learning machine is
developed to directly model the prediction intervals of wind power
generation with different confidence levels. In Ref. [31], an
instance-based transfer learning embedded gradient boosting de-
cision trees model is proposed to derive multiple qualtiles for wind
power forecast. In Ref. [32], a multi-kernel ridge regressionmethod
is proposed to directly construct the prediction intervals for short-
term forecast of wind power. To increase the accuracy, the original
time series data of wind power are decomposed into a number of
modes via mode-decomposition based methods. Within the broad
category of predictors specifically devised for interval forecasts,
quantile regression should be one of the most straightforward and
efficient methods [33]. For example [26], uses quantile regression
to derive the prediction interval of wind speed. A novel joint
quantile model is developed in Ref. [34] to facilitate the simulta-
neously evaluation of uncertainties. Recently [35], proposes a novel
quantile regression model that is equipped with a novel nearest
neighbors quantile filter. By leveraging a modified training data set,
computational superiority is gained.

For probabilistic forecasts, it is also vital to address the dimen-
sionality issues [36]. The multivariate distribution of wind power
would allow one to capture the spatio-temporal correlation, and
derive a joint probability of wind power quantile for further ap-
plications like optimal power dispatch and strategic bidding. This
may, however, rely heavily on a huge dataset (which maybe not
available in practice), and moreover, lead to numerical difficulties
[36]. To address the probabilistic forecast problem of multiple
correlated wind generators, in Ref. [37], kernel density estimator is
adopted to draw out the marginal power distribution of each wind
generator, whereas the dependence structure between wind gen-
erators is captured by the regular vine copula. A sparse vector
autoregressive process is employed in Ref. [21] to model the loca-
tion parameters of multiple wind generators, from which a logit-
normal distribution can be recovered for each wind generator. As
such, the dimensionality issue can be well addressed. However, the
scale parameter (as a measure of spread) is approximated site-by-
site, and the method can only provide univariate distributions [21].

Another important fact is that the forecast errors are conditional
on many other forecast regimes like the wind power generation
levels [15,38,39], e.g., the magnitude and distribution of errors near
the bounds may distinct a lot with those within the medium range.
In Ref. [53], conditional kernel density estimation is used to draw
out the wind power distribution, and by optimizing the approach
towards estimation of the desired quantile, accurate wind power
quantile forecasts could be achieved. It should be noting that,
therein, the wind power distribution to be forecast is conditioned
on the wind velocity, instead of a point forecast of wind power as in
our method presented later. In Ref. [40], the authors divide the
wind power dataset into multiple generation levels; based on the
observation that prediction errors depend on the wind power level,
then, conditional distribution of prediction errors is calculated via a
kernel density estimator. Further, in Ref. [41], a diffusion-based
kernel density estimator is proposed for probabilistic wind power
forecast, and the cumulative distribution functions yielded are then
used to calculate the lower/upper bounds for a desired confidence
level.

To summarize, a skilled predictor is expected to iÞ select
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correlated features from historical data, iiÞ generate probabilistic
information for the operation/dispatching use, iiiÞ be compatible
with the nonparametric characteristic of wind power, and ivÞ
address the dimensionality issuewithout losing toomuch accuracy.

The objective of this paper is to develop such a predictor in the
context of very short-term wind power prediction. The contribu-
tions made in this paper include:

1. Predict the next-hour wind power based on a large number of
features including: iÞ the previous real-time observations at the
wind generator of modeling interest; iiÞ the previous and future
power values forecast throughmeteorological/physical methods
which have been broadcast to the public; and iiiÞ the afore-
mentioned data in all nearby wind generators. To the best of our
knowledge, no research in the field so far has incorporated the
features in Part iiÞ, while only a few work has included the Part
iiiÞ features.

2. Use sparse machine learning algorithms to model and predict
the next-hour wind power. The L1 design enables the automatic
feature selection from more than hundreds of dimensions of
candidate features. The final models after learning only consist
of a small number of features among the complete set of
candidate features.

3. We compare our prediction accuracy with other competing
approaches. These methods include: iÞ classical linear regres-
sion, and ridge regression. iiÞ our modeling approach without
consideration of the candidate features obtained from the
meteorological/physical methods. iiiÞ the predicted values from
the meteorological/physical approach. Apart from that, we also
compare our approach with ivÞ support vector regression, rele-
vance vector machine, decision trees method, time-series
model, and long short-term memory method.

4. We examine the joint density of our prediction error term and
the prediction value term. A nonparametric technique called the
bivariate kernel density estimator is used. By formulation of the
conditional density, we can obtain a confidence interval for our
prediction. We would like to highlight the novel idea of condi-
tioning the distribution of forecast error on the point forecast via
bivariate density estimation, and that the examination of these
two variables to build prediction intervals has not been applied
in the field yet for probabilistic forecast.
2. Machine learning methods for sparse modeling

In this section, we give a brief description on the machine
learning algorithms in the wind power forecast problem. In system
modeling, data of the form

Dn ¼ fðX1; Y1Þ; ðX2; Y2Þ;…; ðXn; YnÞg

are available, where Xi2Rp, i 2{1, …, n} is a p-dimensional vector
representing the input observations, and Yi2R1, i2{1,…, n} is a 1-
dimensional variable representing the output response. The aim of
system modeling is to learn the mapping between them, such that
for the future observations, the predicted output and the true
response can be as close as possible.

In our wind power modeling problem, the output variable Yi
corresponds to the next-hour wind power value at a particular
station of interest. The system input Xi includes the current and
previous real-time values that have been observed, together with
the current, previous, and future forecast values that have been
published. It is worth noting that the input variable includes not
only the features in the station of interest, but also all the wind
generators nearby, and this is known as the spatial correlation of
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wind power. In order to model the relationship between the input
and output variables, various structures can be assumed for the
model. However, it is always useful to start from assuming a linear
structure

Yi ¼ b0 þ
Xp
j¼1

bjXij þ ei; (1)

where ei is the noise process, {b0,…, bp} are theweights that need to
be identified. It is worth to mention that statisticians often express
data in the following design matrix form:

Y ¼
2
4Y1

«
Yn

3
5; X ¼

2
41 X11 / X1p
« « 1 «
1 Xn1 / Xnp

3
5;

b ¼ �
b0; b1;…;bp

�u
; e ¼ ½ e1;…; en �u;

then the linear model (1) can be expressed by

Y ¼ Xbþ e: (2)

The most classical way to solve the linear model is through the
minimization of the mean square error, i.e.,

b̂LS ¼ arg minb
1
n
kY �Xbk22; (3)

where 1
nkY �Xbk22 is equivalent to 1

n
Pn

i¼1ðYi � b0 �
Pp

j¼1bjXijÞ2, and
the solution has the following analytical form [42].

b̂LS ¼ ðXTXÞ�1ðXTYÞ: (4)

The classical linear regression provides a simple yet straight-
forward solution to the linear model in (1). However, the least
square approach in (4) naturally has several inherent drawbacks
that make it unfeasible by modern statistical researchers. One of
these drawbacks is the numerical instability, i.e., a small change in
the data, such as when new observations come to be available, may

result in a large variation of the estimate b̂. Also, the matrix XTX
might not be full rank, rendering a problem in the matrix inverse
process.

In order to overcome the defects in the classical LS approach, the
so-called ridge regression was developed in the 1970s [43]. It is to
minimize the least square criterion together with a penalty term on
the weights. Namely,

b̂ridge ¼ arg minb

0
@1
n

������Y �Xbk22 þ l
Xp
j¼1

b2j

1
A; (5)

where l is a regularization parameter that needs to be specified. It
controls the amount of shrinkage in the minimization criterion. In
practice, one can select l according to some re-sampling methods,
e.g., cross validation.

It is worth to mention that the ridge regression also has close-
form solution as follows,

b̂ridge ¼ ðXuX þ nlIpÞ�1ðXuYÞ; (6)

where Ip is a p � p identity matrix.
The ridge regression method processes the numerical stability

in the solution, and has been widely applied in engineering and
applied science. For instance, the so-called kernel ridge regression,
as a variant form of the classical ridge regression has been applied



Fig. 1. The comparison between ridge regression and the Lasso.
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in power engineering [32,44].
In the late 1990s, the so-called “least absolute shrinkage and

selection operator” (Lasso) was developed [45]. It is also based on
minimization of the least square criterion together with a penalty
term. However, the penalty term is the L1 norm of the weights,
rather than the L2 norm case as in the ridge regression case. Spe-
cifically, the Lasso has the following form,

b̂Lasso ¼ arg min
b

0
@1
n

������Y �Xbk22 þ l
Xp
j¼1

jbjj
1
A; (7)

where l is the regularization term that needs to be specified.
It is worth mentioning that according to the dual optimization

theory, the ridge regression and the Lasso also have the following
equivalent primal forms,

b̂ridge;primal ¼ arg min
b;kbk2 < s

�
1
n

����Y �Xbk22
�
; (8)

b̂Lasso;primal ¼ arg min
b;kbk1 < s

�
1
n

����Y �Xbk22
�
; (9)

where k ,k2 and k ,k1 denote the L2 norm and the L1 norm. Spe-

cifically, kbk2 ¼ ðPp
j¼1b

2
j Þ

1=2
and kbk1 ¼ Pp

j¼1jbjj. Furthermore, s is

a term that can be expressed alternatively in terms of l.
The difference between Lasso and ridge regression can be

shown in the illustrative Fig. 1.
In Fig. 1, it shows an example of a bi-variate case. The sum of

squares are shown. Also, the shaded area correspond to the weight
constants. The left panel corresponds to the L2 case, and the shaded
area is a circular shape. In higher dimensional cases, it would be a
hyper-ball. The right panel corresponds to the L1 case since, and the
shaded area is a rectangular shape. It can be seen that sometimes
the optimal solution can happen at the corner points in the Lasso
case, meaning part of all the features can be set to zeroweight. Such
scenario can almost never happen in the ridge case, meaning that
ridge regression can never render a sparse solution. In high
dimensional problems, it is known that the proper sparse solution
can greatly enhance the model prediction accuracy due to the well
known “curse of dimensionality” [46] in data science. As a conse-
quence, it is expected that in our wind power forecast problem, the
implementation of Lasso algorithm can greatly increase the model
prediction performance.

Unfortunately, the solution of Lasso does not have close-form
formula as the LS case (4) or the ridge case (6). In practice, after
specification of regularization parameter l, people use coordinate
optimization method to calculate the solution for Lasso. This al-
gorithm is shown in Algorithm 1, and it is also called the “shooting
algorithm” for the Lasso.
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Algorithm 1. Coordinate descent algorithm for computing the
Lasso

Note that in Algorithm 1, (c)þ equals to c if c > 0, and equals to
0 otherwise. Besides the bj, j¼ 1,…, p, b0 can be estimated by taking
the empirical mean of the sample {Y1, …, Yn}. It is also worth
mentioning, in order for each feature to have equal strength, the
user should standardize the data so that each co-variate of X
(except for the first column) should have zero mean and standard
deviation. This can be done by pre-processing data when the user
subtracts the mean, and then divides by the standard deviation for
each feature. It is worth mentioning that it is standard practice for
statistical researchers to pre-process data in such a way, before
applying the machine learning/system identification methods.

In practice, the specification of the regularization parameter l

plays a critical role. It can be seen that larger l will shrink more
weights to zero. In practice, one can use cross-validation methods
to select l. Namely, on a grid of candidate l values, estimate the
model according to Algorithm 1, find the cross validation errors,
and specify in the final modeling the value of l according to the one
leads to the smallest cross validation error.

3. Probabilistic forecast methods for the wind power
predictor

3.1. Probabilistic approach for forming the prediction band

In the short-time wind power forecast problem, the sparse
regression methods introduced in Section 2 allows a large number
of features to be the candidate factors for the prediction model.
Therefore it is possible to use a large number of features including
the observed wind power of the previous hours, together with the
broadcast wind power of the current and the past hours obtained
from meteorological/physical methods. Furthermore, one can
include into the model not only the observation features belong to
the station of prediction interest, but also the observations belong
to all the nearby stations. Namely, the model has the following
expression:

P½l�t ¼ gðX ½1�ðtÞ;…;X½m�
t�1ðtÞÞ; (10)

in which

X½k�ðtÞ ¼ ½P½k�t�1; P
½k�
t�2;…; P½k�t�r;

~P
½k�
t ; ~P

½k�
t�1;…; ~P

½k�
t�r�; (11)

where P½k�t is the power output at the hour indexed by t and at the k-
th station, 1 � k � m, and m denotes the total number of all the
stations nearby, and l indicates the index of the particular station

one wants to apply the prediction model. ~P
½k�
t is the wind power

based on some kind of pilot physical forecast methods at the t-th
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hour and the k-th station. Usually, everyday before at least 4 p.m.,

the future 24-h values of ~P
½k�
t have already been broadcast, for

example, to be used in the clearance of day-ahead energy markets
or the reliability unit commitment [4]. The index r denotes only the
observations up to the previous r-th hours have been considered in
the model. The model in (10) shows the mechanisms of our hour-
ahead prediction formulation, if the index t corresponds to the
future hour to come, and t � 1 indicates the most recent past hour.

In many research works recently published in the field of very
short-term wind power forecast [6,21,32,47], only the intra-day
observations are considered in the model, i.e., they made use of

only P½k�t�1; P
½k�
t�2;…; P½k�t�r but not ~P

½k�
t ; ~P

½k�
t�1;…; ~P

½k�
t�r .

Let P̂
½l�
t ¼ ĝðX ½1�ðtÞ;…;X ½m�

t�1ðtÞÞ denotes the estimate of P½l�t , where
ĝð,Þ corresponds to the obtained model trained by data using the

methodologies described in Section 2. Then let Z½l�t ¼ P½l�t � P̂
½l�
t rep-

resents the residual. By intuition, it can be seen that Z½l�t is depen-

dent on the value of P̂
½l�
t . If we obtain a prediction value P̂

½l�
t , how

close it is from the underlying true value can be guessed based on

conditional density of the term Z½l�t on P̂
½l�
t , which can be obtained

from the previously observed data. This lays the underlying
mechanisms for the probabilistic forecast.

Let the conditional distribution of Z½l�t on P̂
½l�
t be denoted by

fZjP̂ðZ
½l�
t jP̂

½l�
t Þ. When the user use our sparse modeling method and

obtain the hour-ahead prediction value, he/she can also at the same
time guess how close this prediction is close to the unseen future

value. For instance, if the user predicted P̂
½l�
t to be 0, then he may

guess there is a good probability that the true P½l�t turns out to be

also 0. Besides, for instance, if the user finds P̂
½l�
t ¼ p0, and he/she

somehow has the knowledge that fZjP̂ðZ
½l�
t jP̂

½l�
t Þ has a large density at

P̂
½l�
t ¼ p0, then he/she can speculate the prediction P̂

½l�
t at this hour

should turn out to be very close to the true value. And vice versa.
Therefore by studying the conditional distribution of the error
term, the user can obtain a prediction band rather than a mere point
value for the forecast.

Of course, one may argue that Z½l�t depends not only on P̂
½t�
t , but

also a number of other factors in the entire (2r þ 1)m-dimensional
vector defined in (11). However, as the problem becomes very high
dimensional, the so-called “curse of dimensionality” phenomenon
[46] becomes more imminent, which makes the entire problem

unsolvable. On the other hand, with no doubt P̂
½l�
t should be the

most informative feature among them. Therefore, we simplify the
problem into a bivariate conditional density problem.

In order to estimate the conditional distribution fZjP̂ðZ
½l�
t jP̂

½l�
t Þ, we

are to introduce the nonparametric density estimation methodol-
ogy in Section 3.2.

3.2. Nonparametric density estimation

With a little of abuse of notation, here suppose X2R1 is a 1-
dimensional random variable, and Dn ¼ {X1, …, Xn} is an observed
sample series of X. The density estimation refers to the recovery of
the distribution function fX(x) from the observation Dn. Here we use
continuous random variable as an example, and the discrete ones
can be derived by similar means. In classical statistical research, X is
usually assumed to follow certain class of distributions, e.g., with
prior information, researchers usually assume X to follow one
among Gaussian, Uniform, Laplace, Beta, Gaussian mixture model,
185
etc. Then the entire density estimation problem comes down to the
issue of estimating one or a few parameters only. For instance, if the
observations are assumed to be N(m, s2), then parametric density
estimation aims to recover the parameter set (m, s).

However, in many cases, the random variable does not under-
lyingly follow any existing class of distributions. Then the afore-
mentioned parametric estimation processes very large Bayesian
error. In other words, no matter how many observations are
available to the user, there exists an irreducible discrepancy be-
tween the estimated density curve and the underlying true density.
This discrepancy is actually the so-called the “modeling error”
referring to the difference between the best possible model within
the parametric class and the true characteristics which is outside
the assumed parametric space.

In order to tackle the aforementioned drawback inherent to the
usual parametric density estimation approach, we need to use the
so-called nonparametric estimation methodology [48]. Nonpara-
metric estimation and nonparametric regression are modern sta-
tistics techniques that are developed in the middle and late 20th
century. They have only been more frequently applied in engi-
neering fields recently. In general, nonparametric density estima-
tion includes a group of techniques which do not pre-assume the
class of the unknown distribution, and use local methods to recover
it. kernel methods, k-nearest neighbors (KNN), orthogonal series
estimators, are examples of the nonparametric approach. We refer
to Ref. [46] for the detailed description of these techniques.

In this paper, we use the kernel method for density estimation.
For a univariate randomvariable X, the kernel density estimator has
the following form

f̂ X;nðxÞ ¼
1
nh

Xn
i¼1

K

�
x� Xi

h

�
; (12)

where f̂ X;nðxÞ denotes the estimate of the unknown density fX(x)
using observations of length n, Kð,Þ is called kernel function, and h
is a scaling parameter need to be chosen. The applicable kernel
function Kð,Þ should satisfy certain mathematical conditions [46].

One can use, e.g., the Gaussian kernel KðxÞ ¼ 1ffiffiffiffiffi
2p

p e�x2=2, the Epa-

nechnikov kernelKðxÞ ¼ 3
4 ð1 � x2ÞIðjxj � 1Þ, etc. Here Ið,Þ is a logic

indicator function, i.e., IðxÞ ¼ 1 if and only if x is true. We refer to
Refs. [36,46,48] for a list of applicable kernels that can be used. In
our simulation studies in Section 4, we use the aforementioned
Epanechnikov kernel.

The mechanisms of the kernel desnity estimation can be intui-
tively understood as follows. Take the Epanechnikov kernel for
example. For all the available observations {X1, …, Xn}, one aims to
estimate the density at X¼ x. The kernel function defines awindow
(x � h, x þ h) where only the observations within this window will
be counted. The bandwidth parameter h controls how many of the
local points are taken into consideration in the estimator in (12). A
large h will over-smooth the curve, while a small h will render
spikes and jumps in the estimated density curve. Therefore, h
should be carefully selected to reflect the balance.

Actually, the asymptotic statistics shows [48].

E½f̂ X;nðxÞ � fXðxÞ�2 ¼ Oðn�4=5Þ;

where O(,) is the “Big-O notation” in mathematics, if h is asymp-
totically optimally chosen as

h ¼ cn�1=5; (13)

where c is a constant. Equation (13) indicates how the optimal



Fig. 2. Framework of the proposed probabilistic wind power prediction method.
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parameter h should be selected. However, the constant c in (13)
depends on the unknown density fX(x). Therefore in practice,
statisticians use alternative methods that may not be optimal but
usually are good enough. For instance, a rule of thumb is the so-
called “Silverman's Rule” [48]. For the 1-dimensional density esti-
mation, it takes the following form,

h1d ¼ 1:06ŝn�1=5;

where ŝ is the standard deviation of the sample {X1, …, Xn}.
The aforementioned 1-dimensional kernel density estimator

(12) also has its multi-dimensional counterparts. For instance, if
one wants to estimate the joint density of two random variables (X,
W) at the point (X ¼ x, W ¼ w), one may use

f̂ XW;n ¼ 1
nh1h2

Xn
i¼1

K

�
x� Xi

h1

�
K

�
w�Wi

h2

�
; (14)

where h1, h2 are the bandwidth parameters for the two dimensions
individually. The Silverman's rule in this case becomes

h2d1 ¼ 1:06ŝXn
�1=6; h2d2 ¼ 1:06ŝWn�1=6;

where ŝX and ŝW are the sample standard deviation for X and W
respectively. Accordingly the asymptotic convergence rate is

E½f̂ XW;nðx;wÞ � fXW ðx;wÞ�2 ¼ Oðn�2=3Þ:
In Section 3.1, it was shown that in our probabilistic prediction

problem, we need to estimate the conditional distribution. In ac-

tuality, one just needs to estimate the joint distribution of ðZ½l�t ; P̂
½l�
t Þ

described in Section 3.2, together with the marginal distribution of

P̂
½l�
t . By dividing the two expressions, we obtain the conditional

distribution Z½l�t jP̂
½l�
t .

Then, with the statistical knowledge of the error term related to

each prediction P̂
½l�
t , one can construct a prediction band by plotting,

e.g., the 25% and 75% quantile of the error term on top of the point-
value prediction. The probabilistic forecast result using this
186
approach will be shown in Section 4.
4. Simulation studies

The data we used in our modeling studies are from a new
publicly available dataset of the IEEE 118-bus system, called the
NREL-118. This power network includes a region of wind power
generators which include 17 wind generators. Time-synchronous
hourly wind time series are available for over one year (366
days), together with the day-ahead forecast values obtained by
meteorological methods. The locations of wind generators are
chosen such that the correlation of meteorological conditions is
reserved [49]. We refer the readers to Ref. [49] and https://item.
bettergrids.org/handle/1001/120 for a more detailed description
of these data.

The structure of the proposed very short-term probabilistic
wind power predictor is revisited, and the input/output and pre-
diction process are summarized herein. As shown in Fig. 2, the
meteorological forecast values of the concerned wind generator
and all nearby wind generators, together with the historical real-
time observations of wind power are fed into the Lasso, which
makes a point forecast of the next-hour wind power; the historical
real-time observations and very short-term forecasts obtained from
the Lasso are taken as input by the bivariate KDE, which produces a
conditional distribution of wind power forecast error for the con-
cerned wind generator. The combination of the point forecast and
the conditional distribution then gives rise to a probabilistic pre-
dictor, which outputs the wind power forecast interval under a
certain confidence level.
4.1. Forecast result for wind farm #1

We build a model to predict the next-hour power output at
Wind Generator #1. The previous 72 h of all the 17 wind generators’
power output are used at the input to the model, together with the
current and previously broadcast meteorological forecast values
across these wind generators. In this way, the total number of
candidate features in the model is p ¼ 17 � (72 þ 73) ¼ 2465. The
366 days of total available data is equivalent to 8784 observations.

https://item.bettergrids.org/handle/1001/120
https://item.bettergrids.org/handle/1001/120


Table 1
Performance of various techniques to the next-hour wind power prediction problem
for Wind Generator #1.The RMSE and MAE are shown as the per unit error.

RMSE MAE F0 # Ffinal #

Lasso 0.08678 0.04977 2465 131
LR 0.11671 0.08365 2465 2465
Ridge 0.10173 0.06987 2465 2465
Lasso no Meteorological 0.09195 0.05412 1224 166
Only Meteorological 0.19522 0.13078 n/a n/a
Time-Series Model 0.10422 0.05238 n/a n/a
SVR 0.10652 0.07573 2465 2465
RVM 0.11116 0.06435 2465 26
Decision Tree 0.09457 0.05428 2465 2465
LSTM 0.09580 0.05083 n/a n/a
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We use the first n ¼ 6000 as the training dataset, and use the
remaining ones as the testing set. During our sparse modeling, we
use 5-fold cross-validation to select the regularization parameter l,
and in this way we choose l ¼ 0.00385033.

We examine our method with another two approaches to the
same sets of features, namely, the classical linear regression, and
the ridge regression. Apart from that, we also compare with our
modelingwithout the consideration ofmeteorological observations
as input features. We also show the prediction accuracy of just
using the meteorological broadcast, as a comparison. It is known in
wind forecast that for very short-term forecasts like the 1-h ahead
forecast, the time series model (e.g., autoregressive moving
average, ARMA) usually renders good performance [4,11,50],
therefore we also show the result of this approach as a comparison.
Moreover, we compare our approach with some other methods
recently applied in the field. These methods include multiple linear
regression, ridge regression [32], support vector regression (SVR)
[51], relevance vector machine (RVM) [27,28], decision tree method
[52], and the long short-term memory method (LSTM) [8,14]. The
prediction accuracy for these methods are shown in Table 1. We
show both the root mean square error (RMSE) and the mean ab-
solute error (MAE) for the prediction. It is worth noting that both
RMSE and MAE have been transferred into per unit level.

Table 1 shows that the Lasso outperforms all the competing
methods in terms of these two indexes. The RMSE of the Lasso
withoutmeteorological data is most close to that of the Lasso, while
the MAE of LSTM is just slightly higher than that of the Lasso.
Comparing the Lasso sparse modeling with the mere meteorolog-
ical prediction approach, one can also confirm that statistical
modeling really shows superiority comparing to physical/meteo-
rological approach in the short-term modeling.

Table 1 also shows the total number of candidate features in the
model, together with the number of features in the final model. We
can see that our Lasso approach for the sparse modeling has
eliminated 95% of the entire candidate features. By the automatic
dimension reduction, our approach has achieved improved accu-
racy comparing to the other methods. Among the modeling
Table 2
The first 17 dominant features in model solved by Lasso in forecast the next-hour wind

1 2 3

Weight 1.4028 �0.9408 0.2456
Feature P½1�t�1

~P
½1�
t P½7�t�1

7 8 9
Weight 0.1483 0.1321 0.1287
Feature P½12�t�1 P½11�t�1 P½6�t�1

13 14 15
Weight �0.0629 �0.0501 0.0316
Feature P½12�t�2

~P
½12�
t P½11�t�10
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methods examined in Table 1, the RVM is a sparse modeling based
on the Bayesian design. This method starts from the prior distri-
bution of parameters and makes use of empirical data to obtain the
posterior distribution of parameters which allows some features to
be removed from the model. Table 1 shows that the RVM reduces
the dimensionality from 2465 to 26, yet does not achieve the same
level of prediction accuracy as our Lasso approach.

Furthermore, if we examine the features that are selected by the
Lasso method, we obtain Table 2. Described in Section 2, each di-
mensions of data have been standardized in the pre-processing

stage of the data. Here we target to predict P½1�t � ~P
½1�
t rather than

P½1�t directly. It is worth mentioning that the meaning of these no-
tations in Table 2 follows the descriptions in Section 2. For instance,

the first dominant feature P½1�t�1 represents the observations of the
wind power at Generator #1 at 1-h before the prediction point; the

second dominant feature ~P
½1�
t represents the known

meteorologically-foretasted values of the wind power at Generator

#1 at the prediction hour; the third dominant feature P½7�t�1 repre-
sents the observations of the wind power at Generator #7 at 1-h
before the prediction point, etc. It is worth mentioning that those
17 features have covered 99.7% of the total strength of all the 131
features selected by the Lasso in Table 1.

From Table 2, we can see that the wind generators at nearby
locations also contribute to the accuracy of our model. The first 17
prominent features already include the observations at Generator
#7, Generator #2, Generator #12, Generator #11, Generator #6, and
Generator #16. These further confirms the usefulness of including a
large number of candidate features in the model, as well as the
reason for the success of the Lasso method in the wind power
prediction problem.

Further, if we aim to forecast P½1�t rather than P½1�t � ~P
½1�
t , we may

not get the weight of ~P
½1�
t as 1e0.9408. Rather, we would obtain

another combination of ~P
½1�
t and ~P

½1�
t�k similar to the fashion in

Table 2.
If we demonstrate weights of those features in Table 2 as well as

all the ones selected by the Lasso, we obtain Fig. 3. We also show
the weights selected by the ridge regression as a comparison. It is
worth mentioning that among the total 2465 features in Fig. 3, the
first 145 ones correspond to Generator #1, and the rest correspond
to the other 16 generators. Among the first 145 features, the

sequence follows P½1�t�1, P
½1�
t�2,/, P½1�t�72,

~P
½1�
t , ~P

½1�
t ,/, ~P

½72�
t . From Fig. 3 it

can be seen that the ridge regression can not eliminate any candi-
date features; while the Lasso can automatically set majority of
features to zero weight. The desired automatic dimension-
reduction property of the L1 design thus circumvent the “curse of
dimensionality” inherent in high-dimensional modeling problems,
and renders high prediction accuracy in the wind power prediction
problem using our framework.
power for Wind Generator #1.

4 5 6

�0.2307 �0.1814 �0.1620

P½1�t�2
~P
½1�
t�7 P½2�t�2

10 11 12
0.1278 �0.1244 �0.1043

P½2�t�1
~P
½12�
t�1 P½7�t�2

16 17 /

0.0312 �0.0280 /

P½16�t�10 P½7�t�6
/



Fig. 3. The weights of the features selected by Lasso compared with the weights selected by ridge regression. The upper panel shows the ridge regression case, and the lower panel
shows the Lasso case.

Fig. 4. The estimated density of the power observations in the Wind Farm #1. The
RMSE and MAE are shown as the per unit error.

Fig. 5. The estimated (a) conditional density and (b) its contour line of the power observation
modeling methodology.
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Following the discussions in Section 3.1, we thus use the 2-
dimensional nonparametric density estimation technique
described in Section 3.2 to examine the joint density of the pre-
diction error term and the meteorological observation value.
Similar to the notation in Section 3.1, let Pt denote the real-time
wind power observation at the wind generator of our interest, let

P̂t be its predicted value using our sparse modeling approach, the

joint density of Pt and P̂t is estimated and shown in Fig. 5 (a).
Alternatively, the contour line for the joint density is shown in Fig. 5
(b). It is worth noting that the univariate version of the kernel
density estimation formulates the density for the power observa-
tions, which is shown in Fig. 4.

The conditional density estimator of fPjP̂ðPt jP̂tÞ and its contour

line equivalence are presented in Fig. 6 (a) and Fig. 6 (b).
Fig. 4 shows that the density of power observations are mostly

concentrated around 0 p.u. and the maximum value 1 p.u. (the
capacity of the wind generator in this case is 6.1972 MW). Fig. 6 (a)

and Fig. 6 (b) illustrate that whenwe observe P̂t to be close to 0 or 1
p.u., then we can expect the truth is closer to the estimate rather

thanwhenwe observe P̂t to be around 0.5 p.u., for instance. In other
s Pt corresponding toWind Generator #1 and its predicted value P̂t based on our sparse



Fig. 6. The estimated (a) joint density and (b) its contour line of the power observations Pt corresponding to Wind Generator #1 and its predicted value P̂t based on our sparse
modeling methodology.
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words, the former case correspond to narrower prediction band.
Alternatively, if we plot the conditional density f

P
��P̂	Pt�P̂t

���P̂t




when different values of P̂t are observed, we obtain Fig. 7. This
shows the distribution of prediction error conditioned on the pre-
diction itself. It is worth noting that Fig. 7 can be viewed to reflect
the same information on different slices of the 3D plot in Fig. 6 (a).

For the first 200 values in the testing set, we plot our modeling
result with the prediction value and the 25%e75% confidence band,
Fig. 7. The probability density of Pt � P̂t corresponding to Wind Generator #1 when diffe
probability density, and the horizontal axis corresponds to the value of Pt � P̂t . The variabl
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compared with the true value. We also show the meteorological
forecast values as a comparison. The result is shown in Fig. 8.

From Fig. 8, we can see that our machine learning results are
relatively close to the underlying true values, while the meteoro-
logical forecast approach is significantly inferior in the 1-h pre-
diction. The prediction band also gives an indicator of the
confidence interval of our predictions.

For building the point-prediction model, it takes approximately
21.5 min in Matlab using our sparse methodology on an i7-7700HQ
rent values of P̂t have been observed. Note that the vertical axis corresponds to the
es here are shown in the per unit level.



Fig. 8. The probabilistic forecast result for the first 200 data in the testing set representing Wind Generator #1 using our Lasso method equipped with the kernel density
nonparametric estimation approach. The 25%e75% confidence interval of the prediction are shown.
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CPU computer. For the probabilistic forecast part, it takes only 80 s.
Once the model is built, it takes almost no time for make a new
forecast when new observations are available. Therefore the user
can make an hour-ahead forecast at the current moment
immediately.

According to Ref. [16], apart from our approach, the quantile
regression (robust estimate) is another way to extend existing point
estimators to probabilistic estimators. However, according to the
design of the Lasso, the high dimensional set-up makes the “robust
Lasso” (Lasso quantile regression) very difficult in the algorithms
level. Here, we also implement the quantile regression according to
the algorithms in Ref. [33] using the same set of features used in our
Lasso. This algorithms has already been developed as an R-language
package by the same group of mathematicians/statisticians. For the
first 200 values in the testing set, we also plot our probabilistic
forecast using this quantile approach, and the result is shown in
Fig. 9.

It takes 4.7 h for our computer to perform the quantile regres-
sion in R. It is worth to mention that R is a faster software compared
to Matlab. The reason is probably that working on those large
number of features is time-consuming for the majority of statistic
methods, except Lassowhich is designed to target the large number
of features. It is also worth to mention that the RMSE and MAE for
the quartile regression are 0.10032 p.u. and 0.06491 p.u.
Fig. 9. The probabilistic forecast result for the first 200 data in the testing set representing W
interval of the prediction is shown.
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respectively. The 25%e75% band for our Lasso probabilistic
modeling approach covers 57.7% of the true values in the testing set,
while this number is by contrast 39.7% for the quantile regression.
These further confirms the usefulness of the bivariate kernel den-
sity approach equipped with Lasso for the probabilistic forecast.

4.2. Robustness of the lasso forecast methodology

4.2.1. Forecast result for the other wind generators
In Section 4.1 we have studied the probabilistic forecast of one

wind generator using our approach. To show that our sparse
modeling methodology also works well for other wind generators,
we firstly examine the prediction of wind power inWind Generator
#2 using a manner similar to the work in Table 1. The result is
shown in Table 3.

Wind Generator #2 and Wind Generator #1 have different level
of wind powers. Nonetheless Table 3 shows our sparse modeling
approach demonstrate superior prediction performance.

Furthermore, if we conduct the modeling for all the 17 Wind
Generators in the power network, and if we set the performance of
our proposed method as unit error (for both RMSE and MSE cases),
then we obtain Table 4. Table 4 confirms the superiority of our
approach for all the 17 wind generators. While Table 4 only shows
the average performance, it is also worth mentioning that our
ind Generator #1 using the quantile regression as in Ref. [33]. The 25%e75% confidence
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sparse approach also beats all the other methods in all the indi-
vidual 17 wind generator power predictions. Since the 17 wind
generators are selected from several geographically dispersed wind
farms [49] instead of a single wind farm, the test results across
these wind generators have shown the robustness of the proposed
method against geographical diversity.
Table 5
Prediction accuracy across four trimesters. The RMSE and MAE are shown as the per
unit error.

Q1 Q2 Q3 Q4

Gen. #1 RMSE 0.10590 0.09486 0.07962 0.08098
MAE 0.06017 0.05553 0.04901 0.04359

Gen. #2 RMSE 0.10226 0.10725 0.10099 0.07849
MAE 0.05914 0.06786 0.06335 0.04081

« « « « «

All 17 Gens on average RMSE 0.09626 0.09251 0.08002 0.07835
MAE 0.05525 0.05839 0.04818 0.04189

Table 3
Performance of various techniques to the next-hour wind power prediction problem
for Wind Generator #2. The RMSE and MAE are shown as the per unit error.

RMSE MAE F0 # Ffinal #

Lasso 0.08810 0.04779 2465 116
LR 0.12407 0.08917 2465 2465
Ridge 0.10361 0.07205 2465 2465
Lasso no Meteorological 0.09370 0.05384 1224 101
Only Meteorological 0.17643 0.11297 n/a n/a
Time-Series Model 0.10536 0.05037 n/a n/a
SVR 0.11126 0.08033 2465 2465
RVM 0.10546 0.05953 2465 25
Decision Trees 0.09654 0.05403 2465 2465
LSTM 0.09985 0.05969 n/a n/a

Table 4
Performance of various techniques to the next-hour wind power prediction problem
for all the 17 wind generators on average. The RMSE and MAE are shown as the per
unit error.

RMSE MAE

Lasso 0.08346 0.04633
LR 0.11307 0.08056
Ridge 0.09770 0.06670
Lasso no Meteorological 0.08919 0.05147
Only Meteorological 0.17832 0.11486
Time-Series Model 0.10334 0.05166
SVR 0.10185 0.07093
RVM 0.10635 0.05969
Decision Trees 0.09471 0.05470
LSTM 0.09378 0.05406

Table 6
Prediction accuracy for the up to 4-h-ahead forecast using the Lasso methodology
framework. The RMSE and MAE are shown as the per unit error.

1-h ahead 2-h ahead 3-h ahead 4-h ahead

Gen. #1 RMSE 0.08678 0.10865 0.13975 0.16689
MAE 0.04977 0.07042 0.09253 0.11162

Gen. #2 RMSE 0.08810 0.10601 0.13712 0.16625
MAE 0.04779 0.06383 0.08480 0.10372

« « « « «

All 17 Gens on average RMSE 0.08346 0.10171 0.12975 0.15445
MAE 0.04633 0.06513 0.08596 0.10322
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4.2.2. Robustness of the forecast considering the season factor
It is known that the wind power can exhibit slight variations in

characteristics for different months/seasons of the year. If we train
the model using the Lasso methodology described above consid-
ering the whole years data, and examine the prediction accuracy
across the four quarters of the year, we obtain the results in Table 5.

From Table 5, we can see that our sparse modeling methodology
works best for the third and fourth trimester of the year. There are
slight increase of prediction errors for the other two trimesters.
4.2.3. Performance of the forecast for hours ahead
The aforementioned forecast framework has been focused on

the 1-h ahead wind power prediction. Since the meteorological
forecast usually makes available the future 4-h’ values [2], our Lasso
can be used to predict up to 4-h ahead for the wind power. Namely,
the prediction of wind power for the 4-h ahead considers the
meteorological values of the future 4 h all together with the fea-
tures used in the aforementioned set-up.

The performance of forecast using the Lasso for up to the 4-h
ahead prediction is shown in Table 6. From this table, we can see
that the forecast accuracy decay a little bit for predicting longer
number of hours in the future.
5. Concluding remarks

In this paper, we have used combined machine learning tech-
niques for the probabilistic forecast of the very short-term wind
power. We use a large number of candidate features to take into
account the spatio-temporal correlation of wind power, and use the
L1 sparse modeling approach to obtain a parsimonious model. The
prediction performance of such sparse modeling technique shows
superiority compared to several competitive techniques. We then
use the nonparametric conditional density estimation technique to
build a confidence band for the sparse modeling. The resulting
probabilistic forecast method shows advantages over quantile
regression in terms of computational efficiency and prediction
accuracy.
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