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ARTICLE INFO ABSTRACT

Action perception and execution are linked in the human motor system, and researchers have proposed that this
action-observation matching system underlies our ability to predict observed behavior. If the motor system is
indeed involved in the generation of action predictions, activation should be modulated by the degree of pre-
dictability of an observed action. This study used EEG and eye-tracking to investigate whether and how pre-
dictability of an observed action modulates motor system activation as well as behavioral predictions in the form
of anticipatory eye-movements. Participants were presented with object-directed actions (e.g., making a cup of
tea) consisting of three action steps which increased in their predictability. While the goal of the first step was
ambiguous (e.g., when making tea, one can first grab the teabag or the cup), the goals of the following steps
became predictable over the course of the action. Motor system activation was assessed by measuring at-
tenuation of sensorimotor mu- and beta-oscillations. We found that mu- and beta-power were attenuated during
observation, indicating general activation of the motor system. Importantly, predictive motor system activation,
indexed by beta-band attenuation, increased for each action step, showing strongest activation prior to the final
(i.e. most predictable) step. Sensorimotor activity was related to participants’ predictive eye-movements which
also showed a modulation by action step. Our results demonstrate that motor system activity and behavioral
predictions become stronger for more predictable action steps. The functional roles of sensorimotor oscillations
in predicting other's actions are discussed.
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1. Introduction

It is well established that actions and their observations are tightly
linked in the human motor system. Activation of the motor system can
be observed not only during action execution but also during action
observation (Cochin et al., 1999; Hari, 2006; Lepage and Théoret,
2006). Researchers have proposed that this action-observation
matching system facilitates our ability to predict observed behavior
(Kilner et al., 2007; Palmer et al., 2016a; Prinz, 2006; Schubotz, 2007).
It is argued that the outcome of an observed action can be inferred and
predicted through a mapping of observed actions onto own motor re-
presentations (Rizzolatti and Sinigaglia, 2016). In line with a predictive
function of the motor system, studies have shown that the knowledge of
an upcoming action elicits motor system activation already prior to the
action onset (Kilner et al., 2004; Southgate et al., 2009). Additional
support for a matching between observed actions and own motor

representations comes from studies using eye-tracking. Flanagan and
Johansson (2003) measured participants eye-movements during the
performance and observation of a block stacking task. They discovered
that participants preceded goal-directed hand movements with their
gaze in a highly similar manner during both the action execution and
action observation condition. Anticipatory eye-movements during ac-
tion observation have since been reported in multiple studies (Elsner
et al., 2012; Falck-Ytter et al., 2006; Gredebick and Falck-Ytter, 2015;
Hunnius and Bekkering, 2010) and it is argued that these behavioral
predictions are generated due to the activation of the corresponding
action plans in the observers’ motor system (Flanagan and Johansson,
2003). Elsner et al. (2013) recently used transcranial magnetic stimu-
lation (TMS) to directly test this hypothesis. They showed that stimu-
lation of the motor cortex slowed predictive eye-movements during an
action observation task, providing evidence that the motor system is
indeed involved in the generation of anticipatory eye-gaze.
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Many studies have made use of EEG and MEG recordings using at-
tenuation of central oscillatory power in the mu- and beta-frequency
range as a marker of motor system activation (McFarland et al., 2000;
Muthukumaraswamy and Johnson, 2004; Perry et al, 2010;
Pfurtscheller, 1981; Denis et al., 2016; Koelewijn et al., 2008;
McFarland et al., 2000; Meyer et al., 2015). In agreement with a pre-
dictive function of the motor system (Kilner et al., 2007), studies have
shown that sensorimotor oscillations are modulated during the ob-
servation of erroneous or unexpected actions (Koelewijn et al., 2008;
Meyer et al., 2015; Stapel et al., 2010). Stapel et al. (2010) found, for
instance, that 12-month-old infants demonstrated greater mu-attenua-
tion when observing unusual actions upon everyday objects (such as
bringing a cup to the ear rather than to the mouth) compared to actions
usually associated with these objects. The researchers argued that ob-
serving actions which deviate from the initially expected trajectory
requires the generation of additional predictions which is consecutively
reflected in enhanced activation of the motor system (Kilner et al.,
2007; Stapel et al., 2010). Similarly, in adults, observing erroneous
rather than correct actions has also been shown to elicit increased
motor system activation, in particular in the beta-frequency range
(Koelewijn et al., 2008; Meyer et al., 2015). Interestingly, several other
studies have recently also suggested a relationship between beta-oscil-
lations and predictive processing (Palmer et al., 2016b; Tan et al., 2016;
van Pelt et al., 2016). Tzagarakis et al. (2010), for example, showed
that beta-band desynchronization during motor preparation was
modulated by the uncertainty of movement direction in an instructed
delay-reaching task. More specifically, beta-power was found to be
lower when the target location was more predictable. Similarly, Tan
et al. (2016) modulated the uncertainty of the forward model para-
meters in a visuomotor adaptation task and showed that post-move-
ment beta synchronization was modulated by this uncertainty. Taken
together, these studies suggest that sensorimotor beta-oscillations may
be reflective of the motor systems’ predictive processing and in parti-
cular related to the precision of predictions (Palmer et al., 2016b).

Altogether, there is strong empirical support for the notion that the
motor system is involved in the generation of predictions about ob-
served actions (Elsner et al., 2013; Kilner et al., 2007, 2004; Southgate
et al., 2009). To date, however, most studies investigating action pre-
diction made use of simple one-step goal-directed actions, like moving a
ball into a bucket (Falck-Ytter et al., 2006) or bringing a cup to the
mouth (Hunnius and Bekkering, 2010). Actions we encounter during
everyday life, on the other hand, consist of multiple sub-actions that
depend on each other and need to be executed in a particular sequence
in order to achieve an overall action goal. For example, to make a cup of
tea, one first grabs a teabag, then puts it in a cup and in the last step,
fills the cup with hot water. In such a multi-step action, the distinct
action steps depend on each other and while the first step is often
ambiguous (one can first grab the teabag or the cup), the later steps
become more predictable over the course of the action (once the tea bag
has been put into the cup the only missing step in making tea is pouring
hot water into the cup). Although it has been established that the motor
system shows predictive activation during the observation of simple
one-step actions (Kilner et al., 2004; Southgate et al., 2009), it remains
unknown whether and in which way activity is also modulated by the
predictability of distinct action steps within a multi-step action se-
quence. A first indication that the predictability of an action step in-
fluences action prediction comes from a recent study by Poljac et al.
(2014). In their action observation paradigm, participants’ eye move-
ments were registered, while they watched object-directed actions
consisting of three distinct action steps which increased in predict-
ability (such as making a cup of tea). The researchers showed that over
the course of the different action steps, predictive eye-movements to-
wards the goal of the next action step became more frequent and rapid.
These findings were interpreted as evidence that the sub-actions are not
processed in isolation, but that the semantic information from the dis-
tinct action steps is accumulated, facilitating the generation of
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predictions about the later steps of the observed action. Since their
study focused on behavioral measures of predictions only, the role of
the motor system in the integration of semantic information in multi-
step actions remains to be investigated.

The present study examined neural markers of action prediction
during the observation of multi-step actions. We tested the hypothesis
that predictive motor system activation is modulated by the predict-
ability of the distinct steps in multi-step actions reflecting the integra-
tion of information as the action unfolds. In a combined EEG and eye-
tracking study, we measured motor system activation along with pre-
dictive eye-movements while participants were observing different
object-directed multi-step actions (similar to Poljac et al., 2014). For
each action, the goal of the first step was ambiguous whereas the later
steps became more predictable over the course of the action. Motor
system activation was assessed by examining attenuation of central mu-
and beta-frequency power. Based on the predictive role of the motor
system (Kilner et al., 2007, 2004; Southgate et al., 2009), we expected
to find a step-wise increase of motor system activation, indexed by at-
tenuation of sensorimotor oscillations -in particular in the beta-fre-
quency range-, mirroring the increased predictability of the distinct
action steps. Following Poljac et al. (2014), we hypothesized a similar
modulation of predictive eye-movements. Moreover, we expected a
relationship between the neural and behavioral measures of action
prediction, reflecting the tight link between the motor system and
predictive eye-movements that has previously been established (Elsner
et al., 2013).

2. Methods
2.1. Participants

In total, 31 participants (age: M = 23.32, SD = 3.06; 21 female)
took part in the study. From this set, 28 were included in the EEG data
analysis (age: M = 23.04, SD = 3.09; 19 female) and 22 participants
were included in the eye-tracking data analysis (age: M = 23.17, SD =
3.08; 14 female). Nineteen participants (age: M = 22.78, SD = 3.10; 12
female) contributed data to both the EEG and eye-tracking datasets and
were included in the correlation analysis of the two measures.
Participants were all healthy adults, who signed informed consent and
received course credits or monetary compensation for their participa-
tion. All but one participants were right handed and all participants had
normal or corrected to normal vision and hearing.

For the EEG analysis, two participants were excluded due to tech-
nical problems and one participant was excluded due insufficient
number of artifact-free trials. The relatively large number of partici-
pants excluded from the eye-tracking analysis was due to equipment
problems (n = 5) or an insufficient amount of valid trials for each of the
three conditions (n = 4). For one participant, behavioral data to con-
firm proper attention to the stimulus display (see below) was not col-
lected due to technical problems.

2.1.1. Stimulus material

For the purpose of the study, video recordings were created of a
female actor sitting at a table performing a three-step action using ev-
eryday objects (see Fig. 1). Each video lasted for approximately 15s
and started with the actor sitting in a neutral position with her hands
placed on the table. During each video, there were three objects si-
tuated on the table, one at both sides of the actor and one in the middle
in front of the actor. After approximately 2 s, the actor started moving
her hand towards the first object (Stepl). She then picked up the first
object and brought it towards the second object (Step2) where usually a
short action was performed. Then the actor continued to the last object
(Step3) to finalize the overall action. An example of such an action is
given in Fig. 1.

The actions were chosen such that the initial action step was am-
biguous, whereas the last step followed deterministically from the two
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Fig. 1. Stimulus Examples. Two example stimulus are displayed in part A. The actor in the upper example first grasps the spoon (Step1), brings it to the sugar pot (Step2), scoops sugar,
and finally brings the spoon to the coffee cup (Step3). In the lower example, the actor first gets the cheese slicer (Step1), brings it to the cheese (Step3), slices off a piece of cheese, and
finally brings the piece to her mouth (Step3). The corresponding Areas of Interest (Aols) of the three goal locations from the two example stimulus videos can be seen in part B.

previous steps of the sequence. Start, middle, and end locations of the
action steps were counterbalanced so that participants were unable to
predict the next step solely based on the object location. Also, the ac-
tor's eyes and a large part of her face were covered by the brim of a
black hat to ensure that participants were unable to predict the up-
coming action step based on the actor's gaze. Actions were similar to the
ones used by Poljac et al. (2014), but new material was recorded to
enlarge the stimulus set so that sufficient trials could be presented re-
quired for the EEG analysis. In line with the original stimulus set, about
half (13) of our final 28 videos ended at the mouth or face of the actor
and the other half (15) ended at an object on the table. In addition to
these experimental videos, eight catch videos were recorded in which
the last action step did not lead to the conclusion of the overall action
goal (see Supplementary Fig. 1 for an example). After the presentation
of a catch video, and after 16 pseudo-randomly selected experimental
videos, participants were asked to indicate whether the observed action
was performed correctly. Participant's answers were analyzed to ensure
that they were paying attention to the stimulus presentation.

2.1.2. Stimulus presentation

Stimulus presentations and communication with the EEG and eye-
tracking systems was realized using Presentation® software (Version
18.1.06.09.15, Neurobehavioral Systems Inc., Albany, CA, USA).

All participants saw each video (catch and experimental) twice
during the experiment, resulting in a total of 72 trials which were
presented in a pseudo-random order. There were four blocks during
which 18 trials were presented on a 24-in. monitor located in a shielded
experimental room. Each trial started with the presentation of a base-
line period in which a fixation cross was displayed for 1250 ms on
average (+/— 250 ms). Then an experimental video or a catch video
was presented. After each catch trial and after 16 pseudo-randomly
selected experimental trials, participants were asked to indicate whe-
ther the observed action was performed correctly. Responses were re-
corded using a button box. The entire experiment lasted for about half
an hour and after each of the four blocks participants were able to take
a short break and continue the experiment whenever they were ready.

46

2.1.3. EEG recordings

EEG was recorded using 64 Ag/AgCl active electrodes placed in
actiCaps (Brain Products, Munich, Germany) and arranged according to
the 10-20 system. Fifty-nine electrodes were used for scalp recordings,
four electrodes recorded vertical and horizontal EOG and one electrode
was placed on the left mastoid for potential additional reference. Data
was collected using BrainVisionRecorder (Brain Products, Munich,
Germany) with the right mastoid as online reference and a sampling
rate of 1000 Hz. Impedances were kept below 10 kOhm and data was
monitored throughout the session by the experimenter.

2.2. Eye-tracking recordings

Eye-movements were recorded using an SMI RED500 stand-alone
eye-tracker and the iView X™ SDK 3.0 software (SensoMotoric
Instruments GmbH, Teltow, Germany) with a sampling rate of 250 Hz.
The eye-tracker was calibrated using a 9-point calibration at the start of
the experiment. Eye- and head-position were monitored throughout
task by the experimenter.

2.3. Data analysis

2.3.1. EEG data analysis

EEG data was analyzed using MATLAB (2013b, The MathWorks
Inc., Natick, MA, 2000) and Fieldtrip (Oostenveld et al., 2011), an open
source toolbox for EEG data analysis.

2.3.1.1. Data segmentation. Data were read into Fieldtrip and segments
were created for the three action steps per video and for the baseline
period. Action step segments had a duration of 1200 ms but a variable
onset depending on the particular stimulus video. The timing of the
segments was defined for each stimulus video separately and was based
on the same segmentation as used in the eye-tracking analysis (see
Analysis of eye-movement data section). The moment when the actor's
hand first entered the Area of Interest surrounding the goal of that
action step represented the end of the EEG action step segment. The
beginning of the EEG action step segment was consecutively
determined as 1200 ms prior to the end point. Baseline period
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segments had a duration of 1000 ms and were locked to fixation cross
onset.

2.3.1.2. Preprocessing and artifact rejection using ICA. In a first step of
cleaning and preprocessing the data, extremely noisy or flat channels as
well as trials containing excessive artifacts were removed from the data
by visual inspection. For 18 participants, no channels were rejected. For
the remaining 10 participants, on average two channels were rejected
(ranging from one to four, see Supplementary Table 1) but this never
included channel Cz. In a following step, Independent Component
Analysis (ICA) was performed in order to extract artifacts caused by
eye-movements and eye-blinks. First, ICA components were correlated
with the data from the bipolar EOG channels. Consecutively, the spatial
distribution of each component was inspected visually and in a last step
the time course was visually assessed and components were manually
rejected. For all but one participants, at least two components were
rejected that correlated highly with the EOG data and showed a specific
spatial distribution and time course associated with ocular artifacts. For
the remaining participant only one component could be identified. In
addition, for five participants an additional component was rejected
which either also matched the criteria for ocular artifacts (n = 1) or
clearly reflected the heart rate throughout the experiment (n = 4).
After determination and removal of the ICA components, the data was
reconstructed and further analyzed. Previously excluded channels were
interpolated using a nearest neighbor approach and finally, the data
was re-referenced to the average of all electrodes. In a last step, each
segment was visually screened and segments containing remaining
artifacts were excluded manually from further analysis.

Trials for the fixation and the three action steps were then separated
for analysis of spectral power. For one participant the amount of arti-
fact-free baseline period segments was extremely low (n = 17) and this
participant was hence excluded from further analysis. On average the
included participants contributed 49.21 (SD = 3.73) trials to Stepl,
48.57 (SD = 4.09) trials to Step2, 49.43 (SD = 4.01) trials to Step3,
and 43.25 (SD = 5.88) trials to the baseline period.

2.3.1.3. Calculation of spectral power. To calculate the spectral power of
the signal, Fast Fourier Transform was applied to the segments using a
multitaper frequency transformation. In order to control for individual
differences, the resulting power values of the three action steps were
normalized for each individual participant using the power values from
the baseline period segments. This was achieved by dividing the power
from each action step by the power of the baseline period and taking
the log of this ratio. This is a common way of normalizing frequency
power data (see, for example, Cuevas et al., 2014; Meyer et al., 2015).

Based on previous literature, our measure for the activation of the
motor system activation during action observation was the attenuation
of the central mu- and beta-frequency power. EEG power was extracted
from Cz and mu- and beta-band ranges were set from 8 to 12 Hz (mu)
and 15-25 Hz (beta) (see: Brinkman et al., 2014; McFarland et al.,
2000; Meyer et al., 2015; Perry et al., 2010; Pfurtscheller, 1981; Pineda,
2005; Denis et al., 2016). All analyses were performed on the log
transformed normalized power values. To investigate whether the
power in the mu- and beta-frequency range was attenuated during ac-
tion observation with respect to baseline period, one-sample t-tests
were conducted for each of the action steps and frequency ranges. To
test for power differences between the three action steps a repeated
measures ANOVA with Step as a within-subject factor was conducted
for each of the two frequency ranges.

2.3.2. Analysis of eye-movement data

2.3.2.1. Determination of Areas of Interest (Aol). Raw eye-movement
data was read into BeGaze™ 3.0 analysis software (SensoMotoric
Instruments GmbH, Teltow, Germany) where fixations were extracted
based on the standard filter settings (minimum fixation duration of
50 ms and peak velocity threshold of 40°/s). For each experimental
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video three rectangular-shaped Areas of Interest (Aols) were defined
around each of the goal objects of the three action steps. Aol size varied
per video (M = 30698.07 pixels, SD = 24404.31), but the average Aol
size did not differ between the three action steps (F(2,81) = 1.431,p =
0.245). Finally, fixation data for the three Aols over all experimental
trials were extracted and further processed using MATLAB (2012b, The
MathWorks Inc., Natick, MA, 2000).

2.3.2.2. Determining Time Windows of Interest (TWol). For each
experimental video, a predictive (pTWol) and reactive time window
of interest (rTWol) was determined for each action step. The moment
when the actor's hand started to move towards the goal object was the
start of the pTWol. Conversely, the moment when the actor's hand first
entered the goal Aol was used as the end of the pTWol and the
beginning of the rTWol, respectively. Finally, the end of the rTWol was
selected such that the reactive and predictive window were of equal
length.

Due to the fact that natural stimuli were used, TWol size (M =
1306.65 ms, SD = 331.26) differed between stimulus videos (F(2,81)
= 18.96, p < 0.001) and window size was on average smaller for Stepl
compared to Step2 (t(27) = — 6.72,p < 0.001 ) and Steps3 (t(27) = —
5.35, p < 0.001), but equal for Step2 and Step3 (¢(27)=0.41, p =
0.685). To control for differences in TWol length, we used relative
measures for our eye-tracking analysis where possible: For the Looking
Time a percentage was used, and for the Count Ratio the number of
fixations during the pTWol were divided by the number of fixations
during the pTWol and rTWol combined (see below). The segments used
in the EEG analysis were always equally long (see EEG analysis) leaving
no bias for a particular action step.

2.3.2.3. Classification of predictive and reactive trials. In MATLAB, for
each action step, trials were classified as either being predictive (a goal
fixation was made during the pTWol), reactive (no predictive fixation
was made, but a goal fixation was made during the rTWol) or invalid
(no goal fixation was made during either TWol). Participants with less
than 15 valid trials per action step were excluded from the analysis.
This concerned four individuals from the initial 31 participants who
took part in the experiment. On average, the included participants
contributed 29.91 (SD = 9.42) trials to Stepl, 37.77 (SD = 9.01) trials
to Step2, and 27.14 (SD = 7.55) trials to Step3.

2.3.2.4. Calculation of the dependent measures. Similar to Poljac et al.
(2014), three measures of interest were calculated separately for each
action step: Predictive Looking Time, Predictive Gaze Onset, and
Predictive Count Ratio. Predictive Looking Time was calculated by
extracting the duration of fixations to the Aol during the pTWol.
Looking times were then standardized as a percentage with respect to
the length of the respective pTWol and then averaged over trials for
each participant. Predictive Gaze Onset was defined as the onset of the
first fixation to the Aol relative to the end point of the pTWol. A larger
value hence reflects an earlier onset of the predictive fixation. Finally,
the Predictive Count Ratio was determined by dividing the number of
predictive trials by the total number of trials for each action step. To
assess differences in predictive eye-movements for the three action
steps, we performed a Repeated measures ANOVA for each of the three
dependent measures with Step as a within-subject factor.

2.3.3. Correlation of EEG and eye-tracking measures

To assess the relationship of predictive cortical motor system acti-
vation and predictive eye-movements, we performed a correlation
analysis. For this purpose, difference scores were derived for all de-
pendent measures reflecting the difference in prediction between two
neighboring action steps. More specifically, we subtracted Stepl from
Step2, and Step2 from Step3. A more negative difference score in the
EEG measure thus reflected less power- and hence more motor system
activation- for the later compared to earlier action steps. For the eye-



R. Braukmann et al.

tracking data, conversely, a larger difference score would reflect en-
hanced prediction in later compared to earlier action steps. Correlations
between EEG-power in the mu- and beta-band with the three eye-
tracking measures were calculated separately for each of the two action
step contrasts.

3. Results
3.1. Attention to stimulus presentation

Participants answered the questions presented after catch and se-
lected experimental trials correctly 94.48% of the time (SD = 0.05),
with no differences in performance for catch compared to experimental
trials (t(29) = 0.09, p = 0.929). This confirmed that participants were
paying attention during stimulus presentation.

3.2. EEG results

To assess whether the power in the mu- and beta-frequency range
was attenuated during action observation, we conducted a one-sample
t-test for each of the action steps separately. As expected, the averaged
log ratio of the power was negative in all cases and significantly dif-
ferent from zero for all action steps for the mu-frequency range and the
second and third action step for the beta-frequency range (ts(27) < —
3.29, ps < 0.004 for all five contrasts, see Supplementary Table 2 for an
overview of the exact test statistics and effect sizes). In addition, the
first action step for the beta-frequency range reached marginal sig-
nificance (t(27) = — 2.02, p = 0.054). These results showed that for
both the mu- and the beta-frequency range, power was attenuated
during the action observation periods compared to the baseline period.
Next, we assessed differences between the three action steps using a
repeated measures ANOVA. No effect of Step was found for the mu-
frequency band (F(2,54) = 1.92, p = 0.156, see Supplementary Fig. 2
for a visualization of mu-power over the three action steps). For the
beta-frequency band, on the other hand, there was a significant main
effect of Step (F(2,54) = 19.54, p < 0.001, np = 0.42). Fig. 2A shows
the averaged relative beta-power for the three Steps at Cz, and Fig. 2B
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illustrates the topographic distribution of the effect. To further in-
vestigate the main effect, we conducted paired-sample t-tests which
showed that relative power was larger for Stepl compared to Step2 (M
= 0.10, SD = 0.16, t(27) = 3.33,p = 0.003, d = 0.61) and Step3 (M
= 0.17, SD = 0.16, t(27) = 5.71, p < 0.001, d = 1.00), and larger for
Step2 compared to Step3 (M = 0.07, SD = 0.11, t(27) = 3.30,
p < 0.003, d = 0.49). A decrease of beta-power is seen as a reflection of
increased motor system activity (Perry and Bentin, 2009; Pfurtscheller,
1981; Pineda, 2005) and these results hence suggest that participants
showed increased motor system activation for the later compared to the
earlier action steps.

3.2.1. Beta frequency power during catch trials

In our design, predictability always increased gradually during
video presentation: the first step was least predictable and the last step
was most predictable. It could be argued that our findings of stronger
beta-attenuation for later action steps described above are therefore not
due to an increase in predictability of the action steps, but due to sti-
mulus duration, reflecting a build-up of motor system activation during
the observation of a complex action. To assess this potential alternative
explanation, we performed an additional analysis of beta-frequency
attenuation during the catch trials. In the catch trials, participants were
also presented with a complex multi-step actions similar to the actions
used in the main experiment (see Supplementary Fig. 1 for an example).
Yet for the catch trials, the presented action steps never lead to the
conclusion of the overall action goal, and predictability hence did not
increase over the course of the action. If our results were due to a build-
up of motor system activity during the continuous observation of
complex human actions, rather than due to predictability of the dif-
ferent action steps, a build-up of beta-attenuation should also be visible
during the catch trials as well.

Catch trial were analyzed following the same procedures as used in
the main analysis and a full description of the analysis can be found in
the Supplementary materials. Importantly, a repeated measures
ANOVA on the relative beta-frequency power showed no effect of Step
on beta-power attenuation during the catch trials (F(2,54) = 2.15,p =
0.127, see Supplementary Fig. 1B for a visualization). There was thus
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Fig. 3. Eye-tracking results. Error bars +/— 2SE; significant differences (p < 0.05) be-
tween the action steps are marked by the asterisk.

no gradual decrease of beta-power during the observation of the catch
trials which suggests that stimulus duration cannot explain the main
findings of stronger beta-attenuation for later, more predictable action
steps.

3.3. Eye-tracking results

An overview of the eye-tracking results can be found in Fig. 3. A
significant main effect of Step was found for all three dependent mea-
sures (Predictive Looking Time: F(2,42) = 21.45,p < 0.001, zp = 0.51;
Predictive Gaze Onset: F(2,42) = 58.21, p < 0.001, np = 0.74; Pre-
dictive Count Ratio: F(2,42) = 15.89, p < 0.001, np = 0.43). To further
assess differences between the three Steps, paired-sample t-tests were
performed. Results were similar for all three measures, showing a dif-
ference between Stepl and Step2 (Predictive Looking Time: t(21) = —
5.90, p < 0.001,d = — 1.20; Predictive Gaze Onset: t(21) = — 10.82,
p<0.001, d = — 2.83; Predictive Count Ratio: t(21) = — 4.92,
p <0.001,d = — 0.97) as well as Stepl and Step3 (Predictive Looking
Time: t(21) = — 5.24,p < 0.001,d = — 1.11; Predictive Gaze Onset: t
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(21) = — 8.30,p < 0.001, d = — 2.27; Predictive Count Ratio: t(21)
= — 3.79,p = 0.001,d = — 0.82). There was, however, no difference
between Step2 and Step3 (Predictive Looking Time: t(21) = 0.51 p =
0.616; Predictive Gaze Onset: t(21) = 1.51, p = 0.147; Predictive
Count Ratio: t(21) = 1.38, p = 0.182). This indicates that participants
showed more, as well as, longer and faster predictions during the last
two action steps compared to the first one.

3.4. Correlation analysis

To examine the relationship between predictive motor system ac-
tivity and predictive eye-movements, we derived the difference in
prediction between the action steps for each of our dependent measures
and assessed whether eye-tracking and EEG measures were correlated
with each other. An overview of all correlation coefficients, test-sta-
tistics and correlation plots can be found in Supplementary Table 3 and
Supplementary Figs. 3 and 4. We also assessed the correlations between
the three different eye-tracking measures which can be found in
Supplementary Table 4. Differential beta-power was significantly cor-
related with Predictive Gaze Onset when contrasting Step 1 and Step 2
(r = — 0.54, p = 0.018, see Fig. 4, upper left panel). Stronger beha-
vioral predictions, indicated by an earlier gaze onset for the later step,
were related to a larger decrease in beta-power from Stepl to Step2.
Similarly, we also found a marginally significant correlation between
Predictive Looking Time and beta-power for the difference score con-
trasting Step2 and Step3 (r = — 0.41, p = 0.083, see Fig. 4 upper right
panel). Again, stronger behavioral predictions, indicated by a longer
looking times for the later step, were correlated with a larger decrease
in beta-power from Step2 to Step3.

We also found significant correlations between the same two eye-
tracking measures and mu-power, although in opposing directions. For
the contrast comparing Step 2 and Step 3, mu power - like beta-power —
was negatively correlated with Predictive Looking Time (r = — 0.46, p
= 0.046, see Fig. 4 lower left panel). For the contrast comparing Stepl
and Step2, however, we found a positive relationship between mu-
power and Predictive Gaze Onset r = 0.46, p = 0.048, see Fig. 4 lower
right panel): An earlier gaze onset for the later step was related to a
smaller decrease in mu-power from Stepl to Step2.

4. Discussion

Previous research on the role of the motor system in action pre-
diction has primarily focused on simple one-step goal-directed actions
(Elsner et al., 2013; Kilner et al., 2004; Koelewijn et al., 2008). The
present study investigated the role of the motor system in the integra-
tion and prediction of distinct action steps within a multi-step action
sequence. Using EEG and eye-tracking, we assessed participants’ motor
system activation and predictive eye-movements during an action ob-
servation task. We found significant attenuation of both mu- and beta-
power during action observation compared to baseline. This is in line
with previous research, linking attenuation in these frequency ranges to
motor system activation (Brinkman et al., 2014; McFarland et al., 2000;
Meyer et al., 2015; Perry et al., 2010; Pfurtscheller, 1981; Pineda, 2005;
Denis et al., 2016). More importantly, and confirming our hypothesis,
we found an increase in motor system activity depending on the action
step predictability: Sensorimotor beta-power decreased over the course
of the action showing the least attenuation prior to the first (least
predictable) action step and most attenuation prior to the last (most
predictable) action step. Importantly, no such decrease in beta-power
was evident for the catch trials, supporting the interpretation that the
observed activity was related to the action's predictability rather than
simply being the result of build-up of activation elicited by the ob-
servation of a complex multi-step action. Furthermore, our results
showed that participants’ anticipatory eye-movements were also
modulated by predictability, and we found a relationship between
neural and behavioral measures: Participants who showed a larger
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Figs. 3 and 4.

attenuation of beta-power for later compared to earlier action steps,
also showed a larger increase in duration and onset of behavioral an-
ticipations. Although this relationship was not significant for all of the
eye-tracking measures we assessed and needs to be interpreted with
caution, a link between neural and behavioral markers of prediction is
in accordance with previous findings showing that the motor system is
involved in the generation of predictive eye-movements (Elsner et al.,
2013). Notably, we also found correlations between the eye-tracking
measures and mu-attenuation. However, as will be discussed below in
more detail, the pattern of the relationship was inconsistent across
action steps (see Supplementary Figs. 3 and 4) and one needs to be
cautious in interpreting these findings because of the absence of a main
effect of Step for the mu-frequency band in our main analysis.

4.1. Predictions in the motor system: the role of sensorimotor oscillations

The results of current study suggest that motor system activation,
reflected by attenuation of beta-power, increased based on the pre-
dictability of observed action steps. These findings are in line with the
suggested role of the motor system in the generation of action predic-
tions (Elsner et al., 2013; Kilner et al., 2007; Prinz, 2006; Schubotz,
2007). Moreover, our findings complement recent fMRI research sug-
gesting that brain regions involved in action perception (i.e. premotor,
parietal and occipitotemporal areas, often referred to as the action
observation network (AON), see Cross et al., 2012; Cross et al., 2009;
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Gazzola and Keysers, 2009; Schubotz, 2007) are modulated by action
predictability (Plata Bello et al., 2015; Wurm et al., 2014). Wurm et al.
(2014), for instance, assessed the processing of multi-step actions which
were either characterized by the presence of an overarching action goal
or not (see also Hrkac et al., 2014). Using this paradigm, the researchers
investigated, among other things, the effect of goal predictability on
brain activation. In the goal-coherent action observation condition, the
overall action goal became more predictable towards the end of the
action sequence. Wurm et al. (2014) showed that activity in several
regions of the AON - in particular in the inferior frontal gyrus and
occipitotemporal cortex — decreased as a function of goal predictability.
These findings support the notion that the action observation network is
modulated by action predictability (see also Plata Bello et al., 2015).
Our study focused on activation of the neural motor system during
action observation and aimed to assess whether and in what way neural
oscillations associated with the processing of own and other's actions
are also modulated by action predictability. Using EEG, we found that
attenuation of central sensorimotor beta-power became stronger over
the course of the observed actions when the distinct action steps be-
came more predictable. Importantly, beta-attenuation did not differ
over time during the observation of catch trials, which displayed similar
complex multi-step actions but without the increase in predictability
towards the last action step. These results suggest that the observed
activity during the experimental trials cannot simply be explained by
the continued presentation of a complex action sequence. Rather, the
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findings suggest a modulation of motor system activity by action pre-
dictability and an involvement of beta-oscillations in the predictive
processing of the motor system.

As naturalistic stimuli of everyday action sequences were used, the
presented action steps differed in the movement complexity. The action
sequence usually started with the actor reaching towards one of the
objects, followed by a manipulation of the object, and finally con-
tinuing with another reaching action. Performed movements during the
middle action step were hence more complex, whereas the first and last
action step consisted of simple reaching actions. Differences in move-
ment complexity, however, cannot explain our current results. If
movement complexity modulated motor system activation, one would
expect to find a peak of activation at Step2 and no differences between
Stepl and Step3, rather than an increase of activity over the course of
the action. Our study yielded a significant difference between Stepl and
Step3 for the eye-tracking measures as well as an overall decrease of
beta-band attenuation between all action steps. This supports our in-
terpretation that the current findings reflect a modulation by predict-
ability, rather than reflecting other stimulus features such as movement
complexity.

Interestingly, we found a modulation by predictability for the beta-
frequency range, but no effect was present for mu-oscillations.
Although both oscillations are typically associated with motor system
activation (McFarland et al., 2000; Muthukumaraswamy and Johnson,
2004; Perry et al., 2010; Pfurtscheller, 1981), research on mental si-
mulation of goal-directed actions has also suggested that mu- and beta-
oscillations serve distinct functions (Brinkman et al., 2014). In addition,
neuroimaging studies have reported differences in the origin of the two
sensorimotor rhythms (Ritter et al., 2009; Salmelin and Hari, 1994).
Two studies that investigated the processing of errors in the motor
system have shown that beta-power is modulated by observing erro-
neous compared to correct actions (Koelewijn et al., 2008; Meyer et al.,
2015). One of those studies also assessed mu-power and showed no
modulation by action correctness in adults (Meyer et al., 2015). This
specificity of beta-power being modulated by erroneous — or un-
predicted- events is in agreement with our current findings, suggesting
that oscillations in the beta-frequency range may be associated with
predictive processing in the motor system. Moreover, a recent study by
Tzagarakis et al. (2010) has linked beta-oscillations to response un-
certainty, showing that beta-power prior to the execution of a move-
ment was lowest when the movement direction was most predictable.
Similarly, Tan et al. (2016) also showed a relationship between post-
movement beta-power and model uncertainty which was modulated
during a visuomotor adaptation task. Using MEG, van Pelt et al. (2016)
studied beta- and gamma-oscillatory in an action observation paradigm
in which the probability of kinematic aspects and action outcomes were
manipulated, leading to different probabilities for the different kine-
matic-outcome combinations. The researchers found an increase in
beta-band power in the temporoparietal junction along with the kine-
matics-outcome predictability. Although their study did not focus on
motor system activation and utilized a different paradigm, the link
between beta-oscillations and predictability is in keeping with our
findings.

Sensorimotor mu-oscillations, on the other hand, were attenuated
during action observation but did not show a modulation by predict-
ability in the current study. These findings suggest that mu-oscillations
may reflect a general non-specific mechanism of motor system activa-
tion. This interpretation is in agreement with findings by Meyer et al.
(2011) who investigated motor system activation in toddlers during the
observation of a joint action partner. The authors reported that activity
in the beta-frequency range was related specifically to the timing of the
other person's action, while power in the mu-frequency range was
persistent throughout the whole observation window that was in-
vestigated.
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4.2. Motor system activity and predictive eye-movements

In this study, we examined three measures of predictive eye-
movements which all showed significant differences between the first
and the last two action steps. These findings are consistent with work by
Poljac et al. (2014), showing that during the observation of an un-
folding action sequence, stronger behavioral predictions can be ob-
served for later, more predictable, action steps. Slight differences be-
tween the results of the two studies' are likely to be caused by
differences in stimulus material as well as the resulting time windows
and Aols used in the analysis.

The current study extended the previous findings by examining the
neural underpinnings of predictions during action observation as well
as the relationship between neural and behavioral markers of predic-
tions. Recent work showed that the motor system is directly involved in
the generation of predictive eye-movements (Elsner et al., 2013). In
accordance with this, we found a significant correlation between the
two measures of prediction: Participants who showed a stronger beta-
attenuation from the first to the second action step, also showed a
greater increase in Predictive Gaze Onset. Although only marginally
significant, we found a similar relationship between beta-attenuation
from the second to the third action step and Predictive Looking Time.
While these findings support the tight link between motor system ac-
tivation and behavioral action predictions, it needs to be noted that the
remaining correlations between beta-power and predictive eye-move-
ments did not reach significance and the findings thus need to be in-
terpreted with caution. Interestingly, while mu-power was not modu-
lated by predictability, we did find significant correlations between eye-
tracking measures and mu-attenuation. However, while the relationship
between beta-power and predictive eye-movements was consistent
(with more motor activity being related to stronger predictions, see also
Supplementary Fig. 3), the relationship between mu-power and pre-
dictive eye-movements was inconsistent: A stronger mu-attenuation
was associated with weaker predictions for Stepl compared to Step 2,
whereas it was associated with stronger predictions for Step2 compared
to Step3. Given that we found no main effect of action step in our main
analysis, the results of the correlational analysis are difficult to inter-
pret. The rational of this analysis was to see whether increased neural
activity for later action steps was related to increased behavioral pre-
dictions. However, for the mu-frequency, we did not find any increased
activity for later action steps as the main effect of Step was not sig-
nificant. This absence of a main effect may have resulted in the ob-
served inconsistent relationship between mu-power and behavioral
predictions. Overall, we showed that both mu- and beta-power were
related to behavioral predictions, but that only for beta-power there
was a consistent relationship with stronger attenuation being related to
stronger predictions. These findings are in line with our interpretation
of the main analysis, suggesting that beta-oscillations in particular are
related to predictions in the motor system.

As participants were performing eye-movements during the task,
one could argue that the relationship between the EEG and eye-tracking
measures is a mere artifact of eye-movements in the EEG data rather
than reflecting a true connection between two distinct measures of
action prediction. However, we consider this explanation to be unlikely
for multiple reasons: First, ICA was applied to detect and remove
components from the EEG data that reflected overt eye-movements.
Several studies suggest that ICA is a powerful method to correct for eye-
artifacts in the EEG data due to the distinct temporal and spatial acti-
vation pattern of the eye-movement components (Jung et al., 1998;

1 1n their action observation paradigm, Poljac et al. (2014) found an identical pattern of
results (i.e. significant differences between the first and the last two action steps) for the
Predictive Looking Time measure only. For Predictive Gaze Onset and Predictive Count
Ratio, on the other hand, they reported a difference between the third and the first two
action steps, whereas the present study found a difference between the first and last two
steps for all three measures.
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Plochl et al., 2012). Second, eye-movement artifacts in the EEG data
have been shown to affect mostly higher frequency ranges such as
gamma rather than the lower frequency ranges we investigated (Reva
and Aftanas, 2004; Yuval-Greenberg et al., 2008). Third, the topo-
graphic plots in Fig. 2b show that the difference between the action
steps was densely localized around central electrodes making a con-
tamination by eye movement artifacts unlikely. Finally, additional
analyses assessing beta-attenuation during the catch trials suggested
that beta-power was not different for the distinct action steps in the
catch trials. During the catch trials, one would expect similar eye-
movements as the catch trials also contained complex goal-directed
multi-step actions. If the reported beta-attenuation was merely re-
flecting eye-movement artifacts, we would thus expect a similar pattern
of activation during the catch trials. We therefore would argue that our
main results are not confounded by eye-movement artifacts and that
correlation analysis reflects a true link between neural motor system
activation and predictive eye-movements (see also Elsner et al., 2013).

In summary, the present study demonstrated that attenuation of
beta-power, reflecting activity in the motor system, and behavioral
predictions become stronger for more predictable sub-steps within a
multi-step action. Our findings are in accordance with recent empirical
work suggesting distinct functional roles for the sensorimotor mu- and
beta-rhythms (Brinkman et al., 2014; Meyer et al., 2011) and linking
beta-oscillations to predictions in the motor system (Palmer et al.,
2016b).
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