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Abstract 

There is a great need for objective measures of perception and cognition that are reliable at the level of 

the individual subject. Although traditional electroencephalography (EEG) techniques can act as valid bio-

markers of cognition, they typically involve long recording times and the computation of group averages. 

To overcome these well-known limitations of EEG, vision scientists have recently introduced a steady state 

method known as fast periodic visual stimulation (FPVS). This method allows them to study visual 

discrimination at the individual level. Inspired by their work, we examined whether FPVS could be used 

equally effectively to capture abstract conceptual processes. Twenty subjects (20.9 (±2.1) yrs, 6 male) were 

asked to complete a FPVS-oddball paradigm that assessed their spontaneous ability to differentiate 

between rapidly presented images on the basis of semantic, rather than perceptual, properties. At the 



group level, this approach returned a reliable oddball detection response after only 50s of stimulus 

presentation time. Moreover, a stable oddball response was found for each participating individual within 

100s. As such, the FPVS-oddball paradigm returned an objective, non-verbal marker of semantic 

categorisation in single subjects in under two minutes. This finding establishes the FPVS-oddball paradigm 

as a powerful new tool in cognitive neuroscience. 

 

Keywords: Semantic Categorisation; Oddball; Steady-state; EEG; Implicit; Visual Evoked 
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1 Introduction 

 Physicians and psychologists have a long history of measuring people’s ability to notice variation. 

Their interest in doing so frequently arises from the fact that deficits in this ability can signal severe neural 

impairments. To diagnose colour blindness, for example, physicians typically ask patients to distinguish red 

from green figures (e.g., using the Ishihara Plate Test, Birch, 1997). Similarly, to detect face blindness, 

psychologists often require their clients to recognize faces of different individuals (e.g., via the Cambridge 

Face Memory Test, Bowles et al., 2009). In both cases (as in many other behavioural tests), however, 

assessing people’s ability to distinguish between certain entities requires that they provide active and 

truthful replies. Yet, some individuals may simply not be able (e.g., children, stroke patients) or willing 

(e.g., eye witness) to give such replies. Hence, physicians and psychologists are frequently interested in 

developing tests that can be reliably administered without requiring test-takers’ overt replies.  

These alternative measures include standard brain imaging techniques, such as 

electroencephalography (EEG; Chennu et al., 2013) and functional magnetic resonance imaging (fMRI; cf 

Monti et al., 2010). One popular EEG marker of people’s ability to detect variation is known as Mismatch 

Negativity (MMN). This marker is typically derived by subtracting a person’s neural response to a 

frequently presented standard stimulus from that of a rare oddball stimulus in a so-called oddball 



paradigm, and can be elicited both with and without the subject’s explicit attention (Czigler, 2014; Kimura, 

2012; Näätänen, Gaillard, & Mäntysalo, 1978; Näätänen & Michie, 1979). In recent years, there has been 

growing interest  in using the MMN as an early marker of attentional deficits in the pre-symptomatic 

stages of clinical disorders, such as schizophrenia (see Näätänen et al., 2011 for a review). Meta-analyses 

have repeatedly demonstrated clear MMN deficits in schizophrenia (Bodatsch, Brockhaus-Dumke, 

Klosterkötter, & Ruhrmann, 2015; Erickson, Ruffle, & Gold, 2016; Umbricht & Krljes, 2005) however despite 

decades of converging findings, viable clinical tools for assessing these deficits in a reliable manner are still 

lacking. The great challenge in the translation of experimental EEG findings into viable clinical tools lies in 

finding measures that are reliable not only at the group level, but at the level of the individual.  

This is not just a challenge with MMN, but with EEG measures more broadly (Duncan et al., 2009). 

To obtain sufficient Signal to Noise Ratio (SNR) using traditional Event Related Potential (ERP) techniques, 

for example, subjects must typically complete hundreds or thousands of experimental trials, resulting in 

long recording times. This problem is compounded in oddball paradigms in which a minimum number of 

standard stimuli are required between oddball stimuli in order to ensure their “rareness”. An alternative to 

ERPs is the Steady State Visual Evoked Potential (SSVEP), in which periodic visual stimulation elicits a 

periodic neural response at an equivalent frequency (see Norcia, Appelbaum, Ales, Cottereau, & Rossion, 

2015 for a review). Recently a new technique combining oddball paradigms with SSVEPs has shown 

considerable potential for solving the issues of SNR that have hampered traditional ERP approaches.  

First demonstrated by Heinrich et al. (2009a) and developed extensively by Rossion et al. (e.g. Alp, 

Kogo, Van Belle, Wagemans, & Rossion, 2016; Liu-Shuang, Torfs, & Rossion, 2016; Rossion, Torfs, Jacques, 

& Liu-Shuang, 2015) the Fast Periodic Visual Stimulation (FPVS) technique involves frequency tagging 

standard and oddball stimuli. Standard stimuli are presented at a fast rate typically about 6 Hz with oddball 

stimuli embedded in the train of standard stimuli at fixed intervals, resulting in a slower equivalent 

presentation rate for oddball stimuli, typically around 1Hz (e.g., S S S S S O S S S S S O S S S S S O S S S S S 

O). The advantage of this approach in signal processing terms is that the noise in EEG signals is distributed 

across all frequencies. Traditional ERP techniques will inevitably include both the signal and the noise from 



all frequencies. The FPVS-oddball paradigm examines only the exact frequency of the visual stimulation, 

that is, 6 and 1Hz. Noise in neighbouring frequencies does not affect the signal of interest, consequently 

providing very high SNRs.  

To date the approach has been used most commonly in studies of face processing and recognition 

(Dzhelyova & Rossion, 2014; Liu-Shuang, Norcia, & Rossion, 2014; Liu-Shuang et al., 2016; Rossion, 2014; 

Rossion et al., 2015). But it has also proven successful in probing low-level visual processing (e.g., 

orientation encoding; Heinrich et al., 2009a) and basic lexical representations (e.g., word/non-word 

discrimination; Lochy, Van Belle, & Rossion, 2015). To further advance our understanding of the method’s 

potential, our objective was to extend this approach to other domains of mental processing, specifically to 

an example of higher level cognition, such as abstract semantic categorisation. Semantic categorisation 

refers to people’s ability to group information in a manner that highlights conceptual commonalities or 

differences between different entities (Rosch, 1975). As it can occur at different levels of specificity, the 

same entities can be classified in many different ways (Mervis & Rosch, 1981).  

Common objects such as furniture, for instance, can be categorised into so-called subordinate 

categories (e.g., as chairs, tables, beds etc., Mack, Gauthier, Sadr, & Palmeri, 2008) which, in turn, can 

prompt even more fine-grained subordinate classifications (e.g., chairs may be considered dining chairs or 

office chairs; Tversky & Hemenway, 1984). At the same time, however, furniture can also be categorised 

according to so-called superordinate categories (e.g., just like vehicles, but unlike tools, as non-graspable 

objects; Rice, Valyear, Goodale, Milner, & Culham, 2007) which, in turn, can prompt even coarser 

superordinate classifications (e.g., furniture, vehicles and tools together can count as man-made rather 

than natural entities; (Caramazza & Shelton, 1998; Rogers & Patterson, 2007). In short, based on a 

perceiver’s domain-specific knowledge (Tanaka & Taylor, 1991) and/or momentary processing goal 

(Barsalou, 1991),multi-level conceptual hierarchies can provide numerous levels of specificity according to 

which objects can be categorised.  

To gain an even better hold on the mechanisms of semantic categorisation in the human brain, it 

seems warranted to develop tasks that can objectively quantify an individual’s ability to categorise objects 



upon perception along various levels of semantic specificity. Such a task would not only be of particular 

experimental value, but could ultimately also inform the assessment of neural disorders characterized by 

difficulties with semantic categorisation, such as fronto-temporal dementia. We believe that the newly 

developed FPVS-oddball paradigm lends itself well for such a purpose. The paradigm has already been used 

to assess the integrity of face processing in prosopagnosia (Liu-Shuang et al., 2016). Inspired by this 

prospect, the aim of this study was to extend the FPVS-oddball paradigm to semantic processing. We 

predicted that increases in power at the oddball stimulation frequencies would be observed when 

standard and oddball stimuli differed in their semantic categories. We also predicted that when stimuli 

were scrambled, therefore removing any semantic category level information, oddball responses would 

not be observed.   



2 Method 

2.1 Participants 

Twenty adults (aged 18-28, mean age 20.9 (±2.1), 6 males) gave consent to participate in the study. They 

were recruited from the University of Bristol student population and declared themselves to be in normal 

health and had normal or corrected-to-normal vision. Ethical approval for our procedures were obtained 

from the University of Bristol Science Faculty ethics board. Participants provided written informed consent 

before participating and were free to withdraw from the study at any time.  

2.2 Stimuli 

Images were selected from a previously validated set of 360 high quality colour images belonging to 23 

semantic categories (Moreno-Martínez & Montoro, 2012). Images were selected to form three separate 

sets expected to prompt semantic categorisation at different levels of specificity. Based on prior work on 

semantic categorisation (e.g. Chan et al., 2011; Moss & Tyler, 2000), one image set (set A) probed the 

coarse categorisation of everyday items as natural versus non-natural objects. This set comprised 60 

images of natural objects (e.g, birds, mammals, and trees, mean pixel intensity 0.91 (0.06), mean contrast 

0.22 (0.08)) and 15 images of non-natural objects (e.g. buildings, clothing, and furniture, mean pixel 

intensity 0.88 (0.06), mean contrast 0.25 (0.06))). A second set of images (set B) included only natural items 

and probed the more fine-grained classification of these items as animals versus non-animals (c.f Blundo, 

Ricci, & Miller, 2006; Hart & Gordon, 1992). Hence, it comprised 60 images of animals (e.g. mammals, 

birds, and marine animals, mean pixel intensity 0.91 (0.05), mean contrast 0.22 (0.06))) and 15 images of 

non-animals (e.g. fruit, vegetables, and nuts, mean pixel intensity 0.92 (0.05), mean contrast 0.19 (0.08)). 

The third set (set C), finally, contrasted different types of animals (c.f. Naselaris, Stansbury, & Gallant, 

2012). Specifically, it contained images of 60 birds (e.g., blackbirds, budgies, and owls, mean pixel intensity 

0.94 (0.06), mean contrast 0.18 (0.04)) with images of 15 non-birds (i.e., small mammals such as mice, 

rabbits, and squirrels mean pixel intensity 0.93 (0.02), mean contrast 0.19 (0.04)). As there were not 

enough bird images in the original Moreno-Martínez and Montoro image set, an additional 30 images were 

sourced using a Google image search and adapted to match the Moreno-Martínez and Montoro images in 



relevant physical characteristics. All images were 250x250 pixels, 72dpi, subtending 9° visual angle, with 

the central image cropped to a white background. In order to reduce systematic low-level colour 

confounds between the standard and oddball categories all images were converted to greyscale. In 

addition, control images were created by box scrambling the original images using the Matlab Randblock 

function (https://uk.mathworks.com/matlabcentral/fileexchange/17981-randblock). Box scrambling has 

been shown to remove semantic category information content, whilst preserving low-level visual content 

(e.g. Grill-Spector et al., 1998). An example of the images is provided in Figure 1 and the full image set is 

available in Supplementary Information A.  

 

Figure 1: Examples of image sets and the equivalent scrambled control images.  

2.3 Procedure 

Participants were seated 55cm from the monitor and instructed to maintain their gaze within a blue 

fixation square in which images were presented. They were instructed to press a hand held button every 

time the blue fixation square turned green. Images were presented onscreen for 80ms with an inter-

stimulus interval of 80ms. The study used an oddball paradigm presented in a steady state method as 

developed by Rossion and colleagues (e.g. Liu-Shuang et al., 2016; Rossion et al., 2015).  

Images were presented in sequences of five images, with the first four images being selected from the 

standard category and every fifth image being drawn from the oddball category. An example of this 

sequence is presented in Figure 2. This design elicits two distinct steady state responses. The standard 

presentation frequency of 6.25Hz, and the oddball presentation frequency of 1.25Hz.  



 Figure 2: Oddball steady state design and hypothesised neural steady state responses. A base frequency F 
is elicited in response to the presentation of every image at 6.25Hz, the oddball response f is elicited only 
to stimuli that violate the previously established semantic category of the standard stimuli. In the example 
above the standard stimuli are living objects and the oddball stimuli are non-living objects.  

Stimuli were presented in runs of 75 stimuli (60 standards and 15 oddballs) in a pseudo-randomised order 

ensuring 4 standard stimuli and a fifth oddball stimulus were always presented sequentially. Targets 

(fixation square turning green) only occurred on the second stimulus of the run of five, with a 10% 

probability of occurring for each run. This was repeated 15 times with a different randomised order each 

time resulting in 1125 stimuli presentations over 180s.  

Six conditions were presented: Image Sets A, B and C and their equivalent scrambled control image sets. 

The order of these blocks were counterbalanced across subjects using a balanced latin square design.  

The Fastball toolbox is a free, open-source Psychopy (Peirce, 2007) and Matlab (Mathworks Inc.) toolbox 

we have made available at https://gstothart.github.io/Fastball/. It allows the user to easily present stimuli 

in an FPVS-oddball paradigm with many modifiable parameters, and analyse the subsequent data.   

2.4 EEG recording 

EEG signals were sampled at 1000Hz from 64 Ag/AgCl electrodes fitted on a standard electrode layout 

elasticised cap using a BrainAmp DC amplifier (Brain Products GmbH) with a common FCz reference and 

online low-pass filtered at 250Hz. Impedances were below 5kΩ. Recordings were analysed offline using 

Brain Electrical Source Analysis software v5.3 (BESA GmbH), Matlab (Mathworks Inc.) and the Fieldtrip 

toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). Artifacts including blinks and eye movements were 

corrected using BESA automatic artifact correction (Berg & Scherg, 1994). 



2.5 EEG analysis and Steady state response 

Data were re-referenced offline to a common average reference. Epochs from 0 to 180s around block 

onset were defined for each condition. The steady-state response was calculated according to the 

procedures described in (Rossion et al., 2015). Epochs were defined as the entire 180 second trial period 

associated with each semantic or control condition. This epoch length represents an integer number of 

cycles (225) of the oddball stimulus (1.25Hz) ensuring that a frequency bin corresponding to the exact 

oddball frequency and its harmonics, including the standard frequency (6.25Hz), were created. The 

frequency resolution was .0056Hz. Epochs were first linearly de-trended and the DC component was 

removed. The epochs were tapered with a Tukey window (matlab’s tukeywin function) with the first and 

last 4 seconds of the epochs being cosine tapered in order to remove discontinuities at the edge of the 

epochs. For each participant and each electrode, amplitude was computed on these windows using the 

fast Fourier transform (FFT). Amplitude was then corrected  by dividing the amplitude in each frequency 

bin by the mean amplitude of surrounding bins within a +/- 0.45Hz range (e.g. Alp et al., 2016; Srinivasan, 

Russell, Edelman, & Tononi, 1999) excluding the immediately adjacent bins (first neighbouring bin on each 

side). The +/- 0.45Hz range was chosen to give an amplitude correction that was comparable with previous 

research (e.g. Alp et al., 2016; Srinivasan et al., 1999), and represented 81 bins either side given the 

frequency resolution of this study. Excluding the immediately adjacent bins from this correction meant 

that the amplitude correction was less likely to include any spread of the signal to proximal frequency bins 

(e.g. for 1.25Hz adjacent bins were 1.2444 & 1.2556Hz).  

Previous research has shown a robust SSVEP response to the oddball frequency and many of its harmonics 

(e.g., Rossion et al., 2015; Norcia et al., 2015), so following the procedure outlined in Rossion et al. (2015) 

we determined the range of harmonics across which to analyse the data. Grand-average amplitudes 

(uncorrected) were created for each electrode and then pooled across all electrodes. The z-score for each 

frequency bin was then calculated using the mean and standard deviation of +/-0.45Hz bins, excluding the 

immediately adjacent bins (as described above). Harmonics of the oddball frequency in excess of z=3.29 

(p<.001) were defined as significant (see Table 1). The harmonics used in later analysis were based on the 



largest range of consecutive and significant harmonics across all 6 presentation conditions. From 1.25Hz 

upwards (e.g. 2.5, 3.75, 5Hz…), once a harmonic failed to reach significance, we capped the range for that 

condition as the last harmonic that was significant. Harmonics that related to the standard frequency (e.g. 

6.25Hz, 12.5Hz…) were excluded. Following the procedures of Rossion et al. (2015) and Heinrich et al. 

(2009b) the corrected amplitude was calculated for 3 values: the standard frequency F (6.25Hz), the 

oddball frequency f, and the sum of the oddball frequency and significant harmonics f+ (i.e. sum of 1.25, 

2.5, 3.75,5 & 7.5Hz). These three values were calculated for each participant and electrode across the six 

experimental conditions. We have made all the analysis code freely available and modifiable through the 

Fastball toolbox, https://gstothart.github.io/Fastball/.   

 

Using Fieldtrip software (Oostenveld et al., 2011), the difference in f+  between original and scrambled 

images for the three levels of semantic categorisation was statistically assessed across all electrodes using 

cluster-based permutation analysis (see Maris & Oostenveld, 2007) with 10,000 permutations.  For image 

Sets A and C the initial alpha value for cluster formation was lowered from alpha<0.05 to alpha<0.001, and 

for Set B it was lowered to alpha<0.01, as the difference was so large between experimental and control 

conditions that one large cluster spanning the entire scalp emerged. This is one weakness of the cluster 

permutation approach highlighted recently by Mensen and Khatami (2013). As a “sanity check” for the 

appropriateness of the cluster-based electrode selection a split-halves analysis was undertaken in which 

the subjects were split into two groups of 10. The 10 electrodes showing the strongest effect in subgroup 1 

were then used to examine the experimental effects in the subgroup 2, and vice versa. All experimental 

effects were maintained and validate the cluster-based approach.  

2.6 Presentation durations required to measure the steady state response 

To examine the time required to detect a reliable steady state oddball response, the steady state response 

was calculated over 15 increasing epoch lengths from 12 to 180 seconds (12 second increments). All 

lengths included an integer number of cycles at the oddball frequency. The steady state response was 



calculated in a similar way to the procedure described in the previous section except that amplitude values 

were converted to z-scores using the mean and standard deviation of the frequency bins +/- 0.45Hz 

(excluding the immediately adjacent bins). This allowed the significance of the steady state response at the 

oddball f, oddball plus harmonics f+, and standard frequency F to be assessed relative to alpha levels of 

0.05 (z=1.96) and 0.001 (z=3.29), for a similar approach see (Rossion et al., 2015). The electrodes selected 

were those showing the largest f+ response (PO10 for image sets A and C, PO9 for image set B). For the 

group-level analysis, the across-participant mean z-score for each epoch length was then calculated for 

each image set separately so that the detectability of the steady-state response to F, f and f+ could be 

investigated over increasing lengths of stimulus presentation.  



3 Results 

Fourier analysis of responses to the three image sets showed large steady state responses at 6.25Hz (F), 

1.25Hz (f) and its harmonics at 2.5Hz, 3.75Hz, 5Hz and 7.5Hz (f+) (see Table 1). Cluster permutation 

analyses demonstrated significantly increased f+ for the all three image sets compared to scrambled 

controls, clearly demonstrating that f+ responses were not due solely to low-level visual differences but 

reflected deviance detection due to semantic categorisation differences.  

Table 1. Across participant z-scores at oddball frequency and its harmonic (scalp-average). Bold indicates 

significance at p<.001 

Harmonic (Hz) 
 

Condition 

Set A Set A 
control 

Set B Set B 
control 

Set C Set C 
control 

1.25 5.07 2.65 6.02 3.36 3.45 1.53 
2.5 18.61 4.88 10.20 7.42 5.60 3.20 

3.75 23.05 7.75 12.61 6.99 19.99 5.63 
5 21.22 7.31 11.58 5.49 13.48 4.34 

7.5 3.54 1.87 10.78 6.06 5.98 3.77 
8.75 2.86 2.55 0.98 1.44 2.74 1.66 

10 2.62 3.65 1.05 0.71 0.21 2.05 
11.25 1.49 1.01 2.29 0.70 0.49 1.45 
13.75 2.09 0.94 0.90 0.39 0.16 -0.13 

15 0.21 1.04 -0.24 0.17 1.50 -0.68 
16.25 -0.46 2.46 -0.63 0.48 0.17 -0.22 

 

3.1 Set A 

Initial cluster analysis at cluster formation alpha<0.05 revealed one large cluster which included all 

electrodes. To identify the strongest areas of activity on the scalp, electrode clusters were formed with an 

entry alpha<0.001, which revealed a cluster with activity strongest in occipital and central areas including 

electrodes FCz, F4, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, CP1, CP2, TP10, P8, PO9, O1, Oz, O2, PO10, F1, F2, 

FC3, FC4, C5, C1, C2, C6, CP3, CPz, CP4, TP8, P6, PO7, PO3, PO4, PO8, cluster p < 0.0001, see Figure 3. 

3.2 Set B 

Cluster analysis at cluster formation alpha<0.01 revealed a left hemisphere dominant centro-parietal 

cluster comprising electrodes CP1, CP3, CPz, PO7, PO3, TP9, P7, P3, Pz, TP7, P5, P1, POz, cluster p < 0.001, 



and a right hemisphere dominant parieto-occipital cluster comprising electrodes P8, PO10 and PO8, cluster 

p = 0.008, see Figure 3. 

3.3 Set C 

Initial cluster analysis at cluster formation alpha<0.05 revealed one large cluster which included all 

electrodes. To identify the strongest areas of activity on the scalp cluster formation alpha<0.001 revealed 

an parieto-occipital cluster including electrodes P8, PO10, PO8, PO7, PO3, P7, PO9, O1, Oz and O2, cluster 

p < 0.0001, and a central cluster comprising electrodes CPz, F4, FC1, FC2, C3, Cz, C4, CP2, F2, FC4, C1, C2, 

FCz and Fz, cluster p < 0.0001, see Figure 3. 

It was observed that F reduced when images were scrambled. To verify that any reductions in f+ observed 

were due to the removal of semantic content (as opposed to simply being a consequence of image 

scrambling) the percentage change in F from original to scrambled was calculated. The difference in f+ at 

electrode PO7 was then examined in a 1-way (original vs scrambled) repeated measures ANCOVA with 

percentage change in F as a covariate. The f+ to scrambled images was significantly reduced image sets A 

(F(1,18)=35.64, p<0.001), B (F(1,18)=6.75, p<0.05) and C (F(1,18)=17.26, p<0.001) after controlling for the 

percentage reduction in F from original to scrambled images.



 

Figure 3: Topography plots indicating significant differences between image sets compared to their 
scrambled controls in the spectral power of f+ (sum of 1.25Hz and its harmonics at 2.5Hz, 3.75Hz,5Hz and 
7.5Hz) at regions of interest identified by cluster permutation analysis. Spectral plots represent the mean 
corrected amplitude of the electrodes included in the clusters identified with x and + markers.



3.4 Presentation durations required to measure the steady state response 

3.4.1 Group effects 

The main analysis demonstrated a SSVEP to the oddball stimuli demonstrating the detection of a change in 

semantic categorisation that occurred during the 3 minute trial period. As a follow-up analysis, we 

investigated the presentation duration of the stimuli needed for the across-participant amplitude at the 

oddball frequency of experimental trials to be detectable as statistically significant. By analysing the Z score 

over increasing presentation durations, we were able to investigate the time necessary for a stable and 

measurable steady state response to occur, see Figure 4. The Z score of F was greater than p=0.001 after 

30s in all three conditions. The Z score of f+ in response to image set A was greater than p=0.05 after 36s 

and greater than p=0.001 after 72s. The Z score of f+ in response to image set B was greater than p=0.05 

after 72s and greater than p=0.001 after 168s. The Z score of f+ in response to image set C was greater 

than p=0.05 after 48s and greater than p=0.001 after 96s. A 3-way repeated measures ANOVA  (Set A, Set 

B, Set C) indicated no significant effect of image set on onset time of F F(2,38)=1.80, p=0.178, or f+ 

F(2,38)=2.29, p=0.115. For image sets A and C the sum of 1.25Hz and the subsequent four harmonics (f+) 

was a stronger than 1.25Hz alone (f). In image set B they were equivalent.  

 

Figure 4: The F, f and f+ steady state responses over increasing presentation durations for image sets A and 
C at electrode PO10 and image set B at PO9. Z-scores reflect the deviation of amplitude at the specific 
frequencies of stimulation (F, f & f+) from surrounding frequencies (+/- 0.45Hz). The horizontal dashed 
lines indicate the z-score thresholds associated with conventional levels of statistical significance (z=1.96, 
p=0.05; z=3.29, p=0.001).  



3.4.2 Individual subject effects 

Analysis of individuals’ amplitudes after increasing presentation durations demonstrated that the oddball 

f+ response was detectable at a statistically significant (p<0.05) threshold in 1-2 mins for the majority of 

subjects. Figure 5 illustrates the distribution of individual subjects’ times, individual values are available in 

Supplementary Info B. 

 
Figure 5: Time for individual subjects’ F,f and f+ to reach z=1.96, p=0.05. Circles indicate subjects with 
times greater than 1.5 x Interquartile Range, asterisks indicate subjects with times greater than 3 x 
Interquartile Range.  



4 Discussion 

Across three levels of semantic categorisation subjects showed clear and distinct steady state responses to 

standard and oddball stimuli. Oddball responses were significantly increased compared to scrambled 

controls demonstrating that they were a result of a change in the semantic category of the visual object, 

and not due to systematic differences between standard and oddball stimuli in their basic visual properties 

or the overall reduction in steady-state responses to scrambled images. Examination of the amplitude of 

the oddball steady state responses after increasing presentation durations showed they were significant at 

group level at p<0.05 in under 72s in all three conditions. Individual subjects typically showed significant 

responses within ~60s. We have demonstrated that the FPVS-oddball paradigm is a powerful, sensitive and 

most importantly easily modifiable tool that can used to examine abstract conceptual processing in single 

subjects and groups.  

The extension of this approach to abstract conceptual processing, e.g. semantic categorisation, is an 

important addition to the work of Rossion and colleagues in the field of face perception (e.g. Rossion, 

2014). While the paradigm has also been demonstrated to be viable with lexical discrimination tasks (Lochy 

et al., 2015) ours is the first study demonstrating its validity in assessing abstract conceptual processing, 

e.g. semantic knowledge. There is considerable evidence for the ability of the visual system to classify 

objects after short presentation times during explicit target detection, e.g. during Rapid Serial Visual 

Presentation (Potter, 1975, 1976), and that classification can be made on the basis of higher level visual 

properties (e.g. VanRullen & Thorpe, 2001). Importantly however, we demonstrate that the FPVS-oddball 

paradigm is sensitive to implicit processing as participants were instructed simply to pay attention to all 

images presented and were not cued in any way to attend to the semantic category. Consequently, we are 

able to objectively measure the extent of pre-attentive discrimination without having to include the 

additional noise associated with the impact of masking and memory recall performance on explicit 

responses. The paradigm is therefore easily adaptable, and what constitutes an oddball and elicits an 

oddball response can be defined in low level visual or abstract conceptual properties.  



We propose that the f+ response in the current study reflects a combination of the visual MMN (vMMN) 

and a semantic category specific neural response. E.g. for image set A, the oddball response will reflect 

both change detection and the neural populations that respond specifically to non-living objects. These 

populations are stimulated at a rate of 1.25Hz, which we propose results in less neural habituation than in 

those being stimulated at 6.25Hz. Roving standard paradigms in traditional MMN studies have addressed 

the issue of neural habituation, and the extension of the FPVS-oddball paradigm to other oddball designs 

would be a worthy avenue for future investigation and may help to delineate the MMN response from that 

of differences in neural habituation.  

The topographic distribution of responses to original images was broadly similar across the image sets, 

with the greatest power in lateral occipital sites, and a weaker but consistent central site. Scrambled 

images showed a considerably weaker but comparable pattern of lateral occipital and central activity. 

Cluster permutation analyses identified these areas as significantly different in both image sets A and C. 

The difference in in central areas is intriguing and points to neural generators beyond the visual cortex. The 

vMMN, which we propose forms part of the f+ response, has been demonstrated to involve neural 

generators in the Inferior Frontal Gyrus (Hedge et al., 2013). The temporal lobe, as part of the visual 

ventral stream, has repeatedly be shown to be involved in semantic categorisation (e.g. Anzellotti, Mahon, 

Schwarzbach, & Caramazza, 2010; Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016; Kreiman, Koch, & 

Fried, 2000; Moss & Tyler, 2000). It is beyond the remit of the current study to make any claims about the 

neural generators of the oddball response but is certainly an avenue of interest for future studies, as the 

very high signal to noise ratio of the current approach would lend itself well to spatial modelling. While the 

topographies in response to original and scrambled images in image set B were similar to sets A and C, the 

cluster permutation analysis revealed a parietal and right hemisphere occipital cluster, which were less 

statistically significant than the clusters in sets A and C. It is possible that the distinction between  

standards and oddballs in set B was less clear than sets A and C, resulting in a weaker change detection 

response. This was neither anticipated or desired, but may be helpful in demonstrating the sensitivity of 

the approach to varying degrees of differentiation between standards and oddballs. MMN magnitude 



increases as the difference between standards and oddballs increases (Näätänen, Pakarinen, Rinne, & 

Takegata, 2004; Pakarinen, Takegata, Rinne, Huotilainen, & Näätänen, 2007), therefore we maintain that 

although vMMN is not the sole driver of the  f+ response, the weaker vMMN to a standard-oddball pairing 

that is not as distinct as others may explain the difference in results.  An alternative explanation is that the 

difference in topographies is due to different neural generators for the different semantic categories. 

Dzhelyova et al. (2017) demonstrated distinct topographic patterns to different facial expressions using a 

similar FPVS-oddball paradigm. However we should be cautious in drawing immediate parallels between 

face and object processing, and further studies using a wide range of semantic categories is required to 

explore this possibility. 

We have also demonstrated that the approach is remarkably stable and sensitive at the level of the 

individual subject, with most participants showing statistically significant oddball responses after only 60s. 

This has not been possible with traditional event-related paradigms, and resulted in an inability to translate 

promising experimental findings at group level to viable clinical tools at the individual level. In 

combination, the adaptability, speed, stability at the individual participant level, and sensitivity to implicit 

processing mean that with rigorous validation this approach has the potential to provide a reliable, 

objective, non-verbal measure of many aspects of cognition.  

Finally, small f+ responses were observed to the scrambled images. This was unexpected and is likely due 

to systematic differences in visual properties between the standard and oddball images that were not 

totally disrupted by box scrambling. E.g. in image set C birds vs non-birds feathers and fur would have been 

distinguishable even in the scrambled images. Additionally box scrambling created a small difference in the 

visual angle of the control stimuli as they were less concentrated in the centre of the fixation square. This 

highlights the need for the careful control of low-level visual characteristics when assessing higher level 

processing. Future studies should make every effort to ensure systematic differences are minimised, and 

investigate the efficacy of alternative techniques for generating control stimuli, e.g. phase, texture or 

diffeomorphic scrambling (Stojanoski & Cusack, 2014). Additionally future studies could include the 

reversal condition of standard and oddball stimuli, e.g. non-living objects as standards and living as 



oddballs, in order to investigate any hierarchical preference in the visual system for particular semantic 

categories. While participants were not formally assessed for their explicit awareness of standard/oddball 

categories, anecdotally they indicated that they did not notice any change. Future studies should formally 

measure whether participants noticed any categorical change during the task, this would also allow direct 

comparisons with the Rapid Serial Visual Presentation literature.   

In summary, we have demonstrated that the FPVS-oddball paradigm is a powerful new tool in cognitive 

neuroscience capable of being adapted to assess a wide range of cognitive functions. Stable and reliable at 

the level of the individual subject the technique has considerable clinical potential and provides an 

objective, non-verbal measure of abstract conceptual processing.  
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Highlights 
 Neural measures of cognition stable at the individual subject level are needed 

 Semantic categorisation is assessed using EEG steady-state oddball paradigms 

 Single subjects show stable responses after less than one minute of recording time 

 

 




