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a b s t r a c t

Background: Schizophrenia is a devastating psychiatric disorder characterized by symptoms including
delusions, hallucinations, and disorganized thought. Kanizsa shape perception is a basic visual process
that builds illusory contour and shape representations from spatially segregated edges. Recent studies
have shown that schizophrenia patients exhibit abnormal electrophysiological signatures during Kanizsa
shape perception tasks, but it remains unclear how these abnormalities are manifested behaviorally and
whether they arise from early or late levels in visual processing.
Method: To address this issue, we had healthy controls and schizophrenia patients discriminate quartets
of sectored circles that either formed or did not form illusory shapes (illusory and fragmented conditions,
respectively). Half of the trials in each condition incorporated distractor lines, which are known to
disrupt illusory contour formation and thereby worsen illusory shape discrimination.
Results: Relative to their respective fragmented conditions, patients performed worse than controls in
the illusory discrimination. Conceptually disorganized patients—characterized by their incoherent
manner of speaking—were primarily driving the effect. Regardless of patient status or disorganization
levels, distractor lines worsened discrimination more in the illusory than the fragmented condition,
indicating that all groups could form illusory contours.
Conclusion: People with schizophrenia form illusory contours but are less able to utilize those contours
to discern global shape. The impairment is especially related to the ability to think and speak coherently.
These results suggest that Kanizsa shape perception incorporates an early illusory contour formation
stage and a later, conceptually-mediated shape integration stage, with the latter being compromised in
schizophrenia.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Schizophrenia is a devastating psychiatric disorder characterized
by delusions, hallucinations, disorganized thought, bizarre behavior,
flat affect, and declines in social, academic, and vocational func-
tioning. Recent studies from brain imaging and visual psycho-
physics have revealed a constellation of visual abnormalities that
are not immediately apparent from the clinician's armchair, ranging
from reduced contrast sensitivity (Slaghuis, 1998) to weaker three-
dimensional depth illusions (Emrich, 1989; Keane, Silverstein,

Wang, & Papathomas, 2013). In the last 30 years, and especially in
the last 10 years (Silverstein & Keane, 2011; Uhlhaas & Silverstein,
2005), it has become increasingly apparent that schizophrenia
impairs perceptual organization—the process whereby coherent
and persisting object representations are derived from spatiotem-
porally fragmented retinal images. As examples, when faces or line
drawings are shown in degraded fashion, persons with schizophre-
nia are worse than healthy controls at identifying those stimuli
(Doniger, Foxe, Murray, Higgins, & Javitt, 2002); and when pre-
sented with a scattered array of oriented elements (Gabors),
patients are less adroit at representing a subset of those Gabors as
forming a single contour (Silverstein et al., 2009, 2012; Silverstein,
Kovács, Corry, & Valone, 2000). The deficit can also lead to a
paradoxical performance advantage whenever perceptual organiza-
tion renders the task more difficult, as with size contrast illusions
(Silverstein et al., 2013; Tibber et al., 2013; Uhlhaas, Phillips,
Mitchell, & Silverstein, 2006).
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An unresolved issue is why perceptual organization impair-
ment arises in schizophrenia. Does it occur as a result of a
dysfunction of lateral connectivity in early visual cortex, as some
have maintained (Kéri, Kelemen, Janka, & Benedek, 2005; Robol
et al., 2013; Dakin et al., 2005)? Or does it instead arise from
higher order circuits, perhaps from faulty feedback from frontal
and parietal regions (Keane, Silverstein et al., 2012)? We investi-
gated this question with a classic “Kanizsa” square stimulus, in
which four white sectored circles form a darkened surface
bounded by illusory contours. Kanizsa shapes make for nearly
ideal test stimuli: the eliciting conditions have been extensively
documented since the 1950s (Geisler, Perry, Super, & Gallogly,
2001; Kanizsa, 1955; Kellman & Shipley, 1991; Lesher & Mingolla,
1993) and the neural underpinnings of the process have been
investigated non-clinically with a variety of techniques including
EEG, fMRI, single-cell recording, and TMS (Lee & Nguyen, 2001;
Maertens, Pollmann, Hanke, Mildner, & Moller, 2008; Murray et al.,
2002; Wokke, Vandenbroucke, Scholte, & Lamme, 2013), revealing
a critical role of feedback from LOC and long-range horizontal
connections in V1/V2 (Seghier & Vuilleumier, 2006). Moreover, a
key component process of illusory shape perception—contour
completion (or contour interpolation)—is important in its own
right, allowing species throughout the animal kingdom to extract
object shape and number (Nieder, 2002).

1.1. EEG studies of Kanizsa shape perception in schizophrenia

The neurobiological substrate and time course of Kanizsa shape
perception in schizophrenia have been studied with the scalp-
recorded electroencephalogram (EEG), but the results have not
always been consistent. Spencer et al. (2003) had observers
discriminate Kanizsa shapes from featurally similar fragmented
configurations, and measured stimulus-locked phase locking,
which records EEG phase variance at a fixed duration after
stimulus onset. Healthy controls, but not patients, evinced an
early evoked gamma band response (72–98 ms) over occipital
electrodes when responding to illusory vs. fragmented shapes. In a
follow-up study, “response-locked phase locking”—measured
backward in time from a subject's button press—was greater for
the illusory than the fragmented stimulus for both groups. How-
ever, the difference arose at a higher frequency for controls than
patients (31–44 Hz vs. 22–24 Hz) (Spencer et al., 2004). The
reduced oscillation frequency was considered to reflect disrupted
early “feature-binding” (though see below).

Foxe, Murray, and Javitt (2005) applied a virtually identical
behavioral paradigm as above, but analyzed high density visual
evoked potentials (VEPs) rather than oscillations. They found that
the N1 component (106–194 ms) was enhanced for the illusory
relative to the fragmented stimulus for patients and controls.
It was thereby argued that illusory contour formation is intact in
schizophrenia. The interpretation is plausible given that: (i) the N1
component reflects ventral stream processing, especially in the
lateral occipital complex, a primary locus for illusory contour
formation (Doniger et al., 2002; Halgren, Mendola, Chong, &
Dale, 2003; Mendola, Dale, Fischl, Liu, & Tootell, 1999; Murray,
Foxe, Javitt, & Foxe, 2004; Murray et al., 2002); and (ii) the N1 time
frame corresponds to the period in which illusory contours form in
behavioral and neurophysiological studies (Gold & Shubel, 2006;
Guttman & Kellman, 2004; Keane, Lu, & Kellman, 2007; Lee &
Nguyen, 2001; Ringach & Shapley, 1996).

Importantly, both sets of studies left open the possibility of
abnormal high-level contributions to Kanizsa shape perception.
Foxe et al. (2005) unexpectedly found greater right inferior frontal
activation among patients in the time period of the so-called NCl

waveform (240–400 ms), an established signature of perceptual
closure (Butler et al., 2013). Spencer et al. (2004) discovered that

the two strongest clinical correlates of reduced response-locked
phase locking were global thought disorder (r¼ .61) and one of its
components, conceptual disorganization (r¼ .58). These symptom
correlates were estimated on the basis of how clearly a patient
communicated during a clinical interview (see below) and suggest
that Kanizsa shape perception is at least associated with higher
order cognition (Silverstein et al., 2013; Uhlhaas et al., 2006).
Spencer and colleagues also acknowledge that reduced synchrony
over occipital electrodes could be ascribed to an aberrant high-
level template matching process in which a configuration is
recognized as a target.

Importantly, behavioral results from the above EEG studies
could not settle whether perceptual differences exist in schizo-
phrenia. Lower patient accuracy in the discrimination task (as in
Spencer et al., 2003, 2004) could be blamed on generalized deficits
—that is, reduced attention or motivation. Normal patient accuracy
(as in Foxe et al., 2005) could be explained by ceiling effects, since
the task was extremely straightforward and the stimuli so distinct.
Therefore, considered jointly, the above EEG studies have not
made it clear whether Kanizsa shape perception deficits exist in
schizophrenia, let alone the level at which such deficits arise.
What is needed, and what we provide here, are the first psycho-
physical data that directly address this issue.

1.2. Establishing and understanding illusory shape perception
deficits in SZ

We probed Kanizsa shape perception with a variation of
Ringach and Shapley's (1996) “fat/thin” shape discrimination task,
which has been extensively employed to understand perceptual
development (Hadad, Maurer, & Lewis, 2010), modal and amodal
completion (Kellman, Garrigan, Shipley, & Keane, 2007), comple-
tion speed (Guttman & Kellman, 2004) and autism (Milne & Scope,
2008), among other issues. On each trial of our experiment,
subjects discriminated the orientations of four sectored circles or
pac-men (Gold, Murray, Bennett, & Sekuler, 2000; Gold & Shubel,
2006; Guttman & Kellman, 2004; Keane et al., 2007; Murray,
Sekuler, & Bennett, 2001; Pillow & Rubin, 2002; Ringach &
Shapley, 1996; Zhou, Tjan, Zhou, & Liu, 2008). In the illusory
condition, the sectored circles jointly formed a Kanizsa square, and
subjects decided whether the elements formed a fat or thin shape
(see Fig. 1A). In a control (“fragmented”) condition, the sectored
circles faced downward to prevent illusory contours, and the task
was to discern whether the elements were each rotated left or
right. These two conditions have sometimes been described as
differing by a geometric property, “relatability”, which governs
when elements can and cannot connect via interpolation (Kellman
& Shipley, 1991). Half of the trials involved distractor lines, which
disrupt illusory contour formation and worsen illusory shape
discrimination (Dillenburger & Roe, 2010; Keane, Lu, Papathomas,
Silverstein, & Kellman, 2012, 2013; Ringach & Shapley, 1996; Zhou
et al., 2008). Task difficulty depended on pac-man rotational magni-
tude, with larger rotations making the alternatives easier to distin-
guish. An adaptive staircase determined the difficulty for a trial and
estimated the amount of rotation needed to achieve threshold
accuracy (79.7%).

Two metrics were of interest. One is global shape integration,
which corresponds to how well subjects distinguish Kanizsa
shapes relative to featurally similar fragmented shapes (without
distractors). A lower relative threshold in the illusory condition
demonstrates an enhanced capacity to take advantage of the
Gestalt layout of the stimulus. Also of interest was how well
subjects fill-in illusory contours. Filling-in was gauged by how
much subjects responded to seemingly irrelevant information
(distractor lines) placed near the filled-in paths. The underlying
assumption was that the more that subjects fill-in illusory
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contours, the more that distractors would impair discrimination in
the illusory relative to the fragmented condition. This second
metric was chosen because others have shown that distractor
lines near the edges of Kanizsa shapes worsen illusory shape
perception, but exercise little, if any effect when illusory contours
are absent (Keane, Lu et al., 2012, 2013; Ringach & Shapley, 1996;
Zhou et al., 2008). Reverse correlation and other studies have also
revealed filling-in by examining behavioral or neural responses to
line segments or luminance noise placed near filled-in boundaries
(Dillenburger & Roe, 2010; Dresp & Bonnet, 1991; Dresp &
Grossberg, 1997, 1999; Gold et al., 2000; Gold & Shubel, 2006;
Keane et al., 2007; Keane, Lu et al., 2013). Certain displays also
show phenomenologically that background texture increases
contour salience when aligned with the pac-men and degrades
contour salience otherwise (Ramachandran, Ruskin, Cobb, Rogers-
Ramachandran, & Tyler, 1994).

Our two metrics—global shape integration and filling-in—may
seem like they are measuring the same thing, but prior studies
suggest otherwise. Murray, Imber, Javitt, and Foxe (2006)
employed a fat/thin discrimination task and showed that—within
124–186 ms post-stimulus onset—the response magnitude and
scalp topography of the VEP was strongly modulated by the
presence of illusory contours but not the accuracy of response.
By contrast, a later VEP time period (330–406 ms) depended on
response accuracy for illusory configurations. These results were
taken to show that boundary completion is automatic and dis-
sociable from shape discrimination. Keane, Lu et al. (2013) utilized
a behavioral fat/thin task and reached virtually identical conclu-
sions. Subjects in that study were biased to conceptualize each
discriminated stimulus as a single partly visible shape or as a
disconnected set of edge elements (group and ungroup strategy,
respectively). The elements of the stimulus were geometrically
arranged to either allow or prevent illusory contours (relatable
and non-relatable conditions, respectively). The “group” strategy
enhanced the discrimination of relatable stimuli but not non-

relatable stimuli. This provides evidence that how a subject cogni-
tively regards a Kanizsa stimulus can play an important role in how
well it is discriminated. At the same time, distractor line effects
obtained regardless of strategy, indicating that illusory contours were
filled in automatically and independently of cognitive expectation.

We investigated illusory contour and shape completion in the
context of a key symptom of schizophrenia, conceptual disorganization,
which was evaluated by how a participant communicated during the
clinical interview. A conceptually disorganized person's speech tends
to be long-winded and rambling, with no obvious final objective; it
contains logical errors, non-sequiturs and loose associations, so that
one topic does not clearly relate to the next; and it is often interrupted
with extended pauses, where the individual might completely lose
his/her train of thought. In its most severe forms, disorganized speech
may be almost completely incomprehensible, producing a veritable
“word salad.” There are good reasons to focus on conceptual dis-
organization. Spencer and colleagues found that it strongly correlated
with stimulus- and response-locked phase locking in Kanizsa detec-
tion tasks (rs4.57) (2003, 2004). Cross-sectional and longitudinal
studies have linked conceptual disorganization with reduced size
contrast (Ebbinghaus) illusions and impaired contour integration
(Silverstein et al., 2013; Uhlhaas et al., 2006). More generally, thought
disorder, a symptom which encompasses conceptual disorganization,
has been touted as the “primary defining feature” of schizophrenia in
that it unifies an otherwise extremely heterogeneous illness
(Andreasen, 1999). Indeed, a disturbance in associative processes was
seen as the hallmark of schizophrenia in one of the original formula-
tions of the disorder (Bleuler, 1911/1950).

To summarize, we examined the pac-man rotational magnitude
(threshold) needed to reach �80% accuracy for four different condi-
tions, corresponding to whether or not there were illusory contours
(relatability) and whether or not there were distractor lines. Illusory
contour formation was assessed by gauging how much distractors
increased threshold in the illusory vs. the fragmented conditions;
global shape integration was assessed by comparing thresholds for

Fig. 1. Stimuli and trial sequence: (A) subjects discriminated illusory or fragmented squares, which were accompanied by distractor lines for half of the trials. (B) The task was
to say "fat"/"thin" for the illusory condition or "left"/"right" for the fragmented condition.
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the illusory and fragmented conditions without distractors. If dis-
tractor lines increase threshold in the illusory condition with little
effect in the fragmented, and if only global shape integration is
impaired in the illness, then primarily late integration processing
stages would be implicated in schizophrenia. By contrast, if patients
are less susceptible to distractor lines and they more poorly distin-
guish Kanizsa shapes, then early and perhaps also late stages could be
impaired. A high-level integration deficit further implies worse global
shape integration among conceptually disorganized individuals.

2. Methods

2.1. Observers

For all subjects, inclusion/exclusion criteria were: (1) age 18–65; (2) no history
of electroconvulsive therapy; (3) absence of neurological, pervasive developmental,

or affective disorders; (4) no drug dependence in the last 6 months (as assessed
with the Mini International Neuropsychiatric Interview 6.0 (Sheehan et al., 1998);
(5) Full Scale IQZ75, as estimated with a vocabulary test (Zachary, 1991) (cut-off
similar to Spencer et al. (2003, 2004); (6) no brain injury due to accident or illness
(e.g., stroke); and (7) the ability to provide written informed consent. All subjects
accepted payment for their time.

The eligible patient sample consisted of 78 paid persons who met DSM IV-TR
(APA, 2000) criteria for schizophrenia or schizoaffective disorder, according to the
Diagnostic Interview for Genetic Studies (DIGS) (Nurnberger et al., 1994) and
electronic medical records. Three patients (3.9% of the sample) could not reach
threshold at the lowest difficulty level (maximum rotation) on the fragmented
condition and were removed from the study. The Premorbid Adjustment Scale
(PAS) was administered to assess social isolation, peer relationships, scholastic
performance, school adaptation, and social-sexual aspects of life prior to illness
onset (Cannon-Spoor, Potkin, & Wyatt, 1982). All patients except one were taking
atypical and/or typical antipsychotic medications at the time of testing. We
assessed whether or not there was any correlation between medication and task
performance after converting total daily antipsychotic medication dosages to
chlorpromazine equivalents (Andreasen, Pressler, Nopoulos, Miller, & Ho, 2010).

The control group comprised 18 psychologically healthy individuals, as deter-
mined with the Structured Clinical Interview for DSM-IV Diagnosis for non-patients
(SCID-NP; Spitzer, Williams, Gibbon, & First, 1992). In an effort to match on IQ and
education, healthy individuals without 4-year college degrees were preferentially
recruited. Demographic and clinical variables for the final samples are shown in
Table 1.

Symptoms of the illness were assessed with the Positive and Negative
Syndrome Scale (PANSS; Kay, Fiszbein, & Opler, 1987). As in prior studies
(Silverstein et al., 2013; Uhlhaas et al., 2006), we categorized members of our
clinical sample as “disorganized” if they exhibited moderate to severe levels of
conceptual disorganization (viz., scoring 43 on item P2 of the PANSS) and as “non-
disorganized”, otherwise (see Table 2). One of the 75 subjects did not complete the
PANSS assessment and so could not be categorized into these two groups.

2.2. Apparatus

Experimental stimuli were shown on LED monitors (60 Hz) at one of three
testing sites and the viewing distance was varied (between 620 and 650 mm) so
that individual pixels subtended .0251 of visual angle square. Stimuli were
displayed at (achromatic) intensities of 59 cd/m2 (black) or 76 cd/m2 (white), as
verified with a Konica Minolta LS-100 luminance meter. The experiment was coded
in Matlab with Psychophysics Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli,
2007; Pelli, 1997) and Palamedes Toolbox extensions (Prins & Kingdom, 2009).

2.3. Stimulus

Stimuli consisted of four white sectored circles (diameter¼3.01; wedge angle ¼
90°) centered at the vertices of an invisible square (side¼9.01), which itself was

Table 1
Demographic and clinical characteristics of study participants.

Demographic/clinical factor Schizophrenia
(N¼75)

Controls
(N¼18)

Group
comparison

Mean SD Mean SD

Age 46.0 11.2 41.1 9.9 p¼ .097
Education, father (years) 13.4 3.0 12.6 3.5 p¼ .319
Education, mother (years) 12.5 2.6 12.2 2.8 p¼ .701
Education, self (years) 13.1 2.2 13.4 2.0 p¼ .531
Ethnicity (% Caucasian) 60.0 NA 38.9 NA p¼ .120
FSIQ (Shipley) 93.9 10.5 94.7 7.4 p¼ .771
Gender (% male) 62.7 NA 50.0 NA p¼ .422
Handedness (% right) 90.7 NA 83.3 NA p¼ .596
Neuroleptics: typical/
atypical/both

6/55/8 NA NA NA NA

PANSS, positive 20.1 4.6 NA NA NA
PANSS, negative 18.2 4.6 NA NA NA
PANSS, general 39.6 7.2 NA NA NA
PANSS, total 77.9 13.7 NA NA NA
Schizophrenia/schizoaffective
disorder

46/29 NA NA NA NA

Note: FSIQ, Full Scale IQ, as estimated with the Shipley Institute of Living Scale
(Zachary, 1991)

Table 2
Demographic and clinical characteristics of patient subgroups.

Demographic/clinical factor Disorganized (N¼15) Non-disorganized (N¼59) Group comparison

Mean SD Mean SD

Age (years) 45.3 12.7 46.1 11.0 p¼ .797
Age of psychosis onset 21.5 7.1 22.9 7.5 p¼ .534
Chlorpromazine equiv. (mg/day) 828 527 462 329 p¼ .02n

Education, father (years) 13.8 2.6 13.4 3.1 p¼ .664
Education, mother (years) 13.2 2.8 12.3 2.6 p¼ .292
Education, self (years) 13.6 2.2 12.9 2.3 p¼ .346
Ethnicity (% Caucasian) 53.3 NA 61.0 NA p¼ .769
FSIQ (Shipley) 93.9 10.7 93.8 10.6 p¼ .965
Gender (% male) 66.7 NA 61.0 NA p¼ .772
Handedness (% right) 93.3 NA 89.8 NA p¼1.000
Hospitalizations (#) 11.8 8.3 8.2 7.3 p¼ .115
Neuroleptics: typical/atypical/both 3/10/2 NA 3/44/6 NA p¼ .206
Outpatient (%) 33.3 NA 66.7 NA p¼ .037n

PANSS, positive 25.1 4.9 18.9 3.5 po .001nnn

PANSS, negative 19.9 4.0 17.8 4.7 p¼ .107
PANSS, general 44.8 7.3 38.3 6.5 p¼ .001nn

PANSS, total 89.9 13.1 74.9 12.1 po .001nnn

Premorbid adjustment (overall) 2.5 .9 2.5 .7 p¼ .863
Premorbid adjustment (social sexual functioning) 6.86 5.10 4.34 2.79 p¼ .095

n po .05.
nn po .01.
nnn po .001.
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centered on the screen (Fig. 1A). The total edge length of the mouths of the four
pac-men divided by the perimeter of the invisible square on which they were
centered was equal to one-third. To put it another way, the unrotated pac-men in
the illusory condition formed a square, one-third of which was physically specified
(support ratio¼ .33; Shipley & Kellman, 1992). Certain trials contained distractor
lines (dimensions¼4.0� .11), which were centered between the sectored circles
and had a length equal to 2/3rds of the illusory edge. Anti-aliasing (edge artifact
removal) was applied by projecting the stimuli from a matrix that was four times
larger than the screen stimulus. A fixation point appeared at the screen center on
each trial.

2.4. Procedure

The trial presentation sequence (Fig. 1B) was similar to earlier studies (Keane,
Lu et al., 2012; Ringach & Shapley, 1996; Zhou et al., 2008) and consisted of a
1000 ms black screen, a 200 ms target presentation, a 50 ms uniform black screen,
and 300 ms mask (to cap stimulus processing time). Another black screen would
linger until a response, after which an auditory beep sounded for a correct answer.

One half of the experiment consisted of the illusory condition, and the other
half, the fragmented condition. The ordering of the two conditions was counter-
balanced across subjects. In the illusory condition, the sectored circles were
oriented to enable illusory contour formation (i.e., they were “relatable”; Kellman
& Shipley, 1991). The elements were individually rotated to form fat or thin shapes
(e.g., the top right and bottom left were rotated clockwise and the other elements
were rotated counter-clockwise by the same magnitude to produce a thin shape;
see Fig. 1). In the fragmented trials, the elements were oriented downward (to
prevent illusory contours) and were individually rotated to the right or left all in
the same direction. A left/right task was chosen because it forced subjects to make
judgments on the lateral properties of the stimulus—similar to the illusory
condition—and because the task was easier to explain than alternative control
conditions, such as clockwise vs. counterclockwise. To reduce the possibility of

group differences in key press errors (mismatching a key press with a response),
we had subjects verbally say “left”/“right” or “fat”/“thin” after each trial, with the
experimenter subsequently entering the response on behalf of the subject. In each
half of the experiment, there were 64 practice trials and 84 non-practice trials, the
latter half of which presented distractor lines. This number of practice trials—which
was slightly smaller than what has been used in other studies (Keane, Lu et al.,
2012; Zhou et al., 2008)—allowed subjects to get acclimated to the fast presentation
times and slight orientation differences that they would be seeing for the rest of the
experiment (see below). The first non-practice trial and the first distractor line trial
in a block were excluded for the purposes of threshold estimation since such trials
were more often missed by observers. Subjects received a brief break between
blocks and immediately preceding the distractor line trials.

Task difficulty depended on rotational magnitude, with larger rotations making
the alternatives easier to distinguish. A Bayesian adaptive “Psi” method (Kontsevich
& Tyler, 1999) recommended a rotational magnitude on each trial so as to minimize
entropy (uncertainty) of the slope and threshold estimates of the psychometric
function. Rotational magnitude was expressed in log units given the decelerating
function relating this quantity to proportion correct (Zhou et al., 2008). The
algorithm assumed a log-Weibull (Gumbel) function (Prins & Kingdom, 2009):

ψ ðx;α;β; γ; λÞ ¼ γþð1�γ�λÞð1�expð�10βðx�αÞÞÞ

where ψ is the proportion correct, x is the rotational magnitude, α is threshold, β is
slope, γ is the guess rate (.5), and λ corresponds to the proportion of accidental
responses (assumed to be .03) (Wichmann & Hill, 2001). Threshold, the most
important parameter, establishes the position of the sigmoidal curve along the
abscissa and corresponds to the rotational magnitude (in log degrees) needed for
79.7% accuracy. Overall, we selected the Psi method because it makes no assump-
tion about slope—which can change from condition to condition—and because it
provides arguably the most efficient means for estimating two parameter psycho-
metric functions (Klein, 2001), yielding a reliable threshold estimate (72 dB) with
as few as 30 trials.

Fig. 2. Results from the computerized experiment: Thresholds for trials with and without distractor lines (light yellow and dark orange, respectively) are shown for the healthy
control and schizophrenia groups (top) and for the two patient subgroups (bottom). Higher thresholds signify worse performance. Errors¼7SEM.
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Instructions were shown immediately before and after the practice trials on
each half of the experiment. Special effort was made to make the illusory condition
as clear as possible to all subjects. On one screen, luminance-defined lines were
drawn on the borders of the illusory shape, so that subjects could see clearly what
was meant by “fat” or “thin”. On subsequent screens, starkly different fat/thin
shapes (rotation¼101) were shown individually, side-by-side, and then in temporal
succession (period¼2 s). In the practice trials, the target presentation time and
rotational magnitude decreased incrementally (3200 ms, 1600 ms, 800 ms, 400 ms,
and 200 ms; 101, 81, 61, and 41) so that observers could gradually accommodate to
the subtle shape differences and brief stimulus presentation.

2.5. Analyses

Two sets of analyses were performed on the threshold values—one comparing
controls and patients, and the other comparing disorganized and non-disorganized
patients. For each comparison, we conducted a 2 (relatability: illusory, fragmented)�2
(distractor: no lines, lines)�2 (group) mixed-model Type III Sum-of-Squares ANOVA.
Filling-in was measured as the relatability�distractor interaction. Accordingly, a three-
way interaction (equivalent to a t-test on the difference scores) determined whether
the groups differed on this variable. Global shape integration was assessed separately
and corresponded to the illusory-fragmented threshold difference without distractors.
Relationships between symptoms and task performance were evaluated using Spear-
man rho correlations. t-Tests were two-tailed and equal variances were assumed,
unless otherwise noted.

3. Results

Fig. 2 shows the threshold results for each condition and group;
Fig. 3 directly compares the filling-in and global shape integration
metrics for those same groups. There were main effects of
relatability, distractor, and group (F(1,91)¼6.85, p¼ .01, η2p¼ .07; F
(1,91)¼36.42, po .001, η2p¼ .286; F(1,91)¼11.88, p¼ .001, η2p¼ .116).
An expected distractor by relatability interaction (F(1,91)¼18.417,
po .001, η2p¼ .168) revealed that the distractors raised threshold
more in the illusory than the fragmented condition. Importantly,
this interaction did not at all depend on whether people had
schizophrenia (F(1,91)¼ .02, p¼ .638, η2p¼ .002; see Fig. 3A). This
suggests that the two groups similarly filled-in illusory contours.
By contrast, global shape integration was compromised in the
clinical group (t(63.18)¼2.20, p¼ .031, d¼ .58 unequal variances;
Fig. 3B) such that controls, but not patients, had lower thresholds
in the illusory relative to the fragmented condition.

In comparing non-disorganized and disorganized patients, we
found main effects of relatability (F(1,72)¼32.21, po .001, η2p¼ .309)
and distractor (F(1,72)¼20.42, po .001, η2p¼ .221), similar to before,
but not patient subgroup (F(1,72)¼ .967, p¼ .329, η2p¼ .013). More
importantly, there was an expected interaction between distractor
and relatability (F(1,72)¼12.04, po .001, η2p¼ .143), which itself did
not depend on subgroup (F(1,72)¼2.14, p¼ .158, η2p¼ .029; see
Fig. 3A). This argues that disorganization exercises no obvious effect
on contour filling-in. Global shape integration, by contrast, differed
strongly between the subgroups (t(72)¼3.25, p¼ .002, d¼ .95; see
Fig. 3B), with the disorganized group performing worse. Here, it is
important to note that, because a number of disorganized patients
performed at near-chance levels in the illusory condition, it was
difficult for the distractor lines to further elevate thresholds in that
case, leading to a probable underestimation of filling-in for this
subgroup.

We also compared the two most extreme groups, controls and
disorganized. There were effects of relatability, distractor, and group
(F(1,31)¼19.56, po .01, η2p¼ .387; F(1,31)¼21.14, po .001, η2p¼ .405; F
(1,31)¼10.42, p¼ .003, η2p¼252). There was the expected distrac-
tor� relatability interaction (F(1,31)¼5.37, p¼ .027, η2p¼ .148), which,
again, did not depend on group (F(1,31)¼ .36, p¼ .551, η2p¼ .012; see
Fig. 3C). The shape integration deficit in disorganized patients was
large (t(18.57)¼3.814, p¼ .001, d¼1.12, unequal variances). In fact,
the control subject with the worst global shape integration value still

performed better than over half of the disorganized patients (viz., in
the upper left half of Fig. 3D, the 8 markers furthest from the
diagonal are all disorganized patients). If only patients with negative
filling-in were included in the analysis—so that the disorganized
group as a whole exhibited stronger filling-in than controls—qualita-
tively the same result emerged (t(24)¼2.29, p¼ .03, d¼ .83), further
demonstrating the specificity of the impairment to global shape
integration.

To ascertain whether shape integration impairments can arise
without conceptual disorganization, we also compared non-
disorganized patients and controls. There were main effects of
relatability, distractor, and group (F(1,75)¼4.25, p¼ .043, η2p¼ .054;
F(1,75)¼3.07, po .001, η2p¼ .318; F(1,75)¼10.97, p¼ .001, η2p¼ .128).
There was an interaction of relatability and distractor (F(1,75)¼
21.41, po .001, η2p¼ .222), which did not depend on group
(F(1,75)¼ .70, p¼ .405, η2p¼ .009). Global shape integration also
did not depend on group (t(75)¼1.01, p¼ .317, d¼ .27, unequal
variances). Thus, it seems that although people with schizophrenia
as a whole are worse at shape integration, individuals with
moderate to severe levels of conceptual disorganization were
primarily driving the effect.

An objection so far is that subjects may be performing worse on
Kanizsa shape perception tasks because these individuals have
broader orientation tuning curves, making them less sensitive to
the slants of the edges that decide contour convexity (Robol et al.,
2013; Schallmo, Sponheim, & Olman, 2013). This is unlikely in our
case because the highly influential disorganized patients had
(non-significantly) lower fragmented thresholds than the non-
disorganized patients and had similar fragmented thresholds to
the healthy controls (p¼ .244).

Clinical and demographic correlates were also considered.
Across all patients, neither filling-in nor global shape integration
correlated with IQ, age, visual acuity, estimated age of onset of
psychotic symptoms, estimated age of first psychiatric hospitaliza-
tion, estimated total number of psychiatric hospitalizations, schi-
zoaffective vs. schizophrenia diagnosis, handedness, outpatient
status, education level (self/mother/father), medication dosage
(in CPZ equivalents), premorbid adjustment scale scores (total,
and subscores), or past visual hallucinations (all ps4 .07, uncor-
rected). Interestingly, global shape integration deficits were more
pronounced for patients who smoked (r¼ .308, p¼ .008) and
filling-in was less pronounced for male patients (r¼ .294, p¼ .01).
Both findings are empirically unprecedented, would not survive
multiple corrections, and so must be regarded as preliminary (for a
discussion of the relation between sex and perceptual organiza-
tion in schizophrenia, see Joseph, Bae, and Silverstein (2013)).
There were no significant correlations with positive/negative/
general/total PANSS scores or with reports of current visual
hallucinations (ps4 .11). It must be acknowledged that our
patients were higher functioning, with about 60% receiving treat-
ment on an outpatient basis (requiring at most biweekly doctor
visits) and none requiring inpatient psychiatric hospitalization.
Inclusion of more severely ill patients would obviously increase
sample heterogeneity and make detection of other symptom
correlates more likely. Nevertheless, these data replicate past
findings of a strong relationship between being able to systematize
visual elements into discrete forms and organize thoughts into
fluid and coherent speech.

Visual hallucinations were also considered since their severity
correlated with occipital oscillation abnormalities in Spencer et al.
(2004). We found no correlations with either shape integration or
filling-in. This could be because we examined only the presence, not
severity, of visual hallucinations or it could be because only subjects
with the most pronounced hallucinations produced the overall
effect in Spencer et al. (p. 17292). It is worth noting, however, that
current visual hallucinations in our study were linked with
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conceptual disorganization (ρ¼ .250, p¼ .033), which is consistent
with past reports (Lee, Williams, Loughland, Davidson, & Gordon,
2001). It is also consistent with the hypothesis that hallucinations
and other positive symptoms represent responses to an overall state
of disorganization, reflecting the compensatory development of
hyper-synchronized networks that ultimately lead to symptoms
such as hallucinations (Lee, Williams, Breakspear, & Gordon, 2003;
Lee, Williams, Haig, & Gordon, 2003; Williams et al. 2009).

4. Discussion

We employed a variant of the well-validated fat/thin discrimination
task to improve upon prior schizophrenia studies, which have not yet
established the existence, let alone neural locus, of Kanizsa shape
perception impairments. We found that, regardless of group, distrac-
tors raised thresholds more in the illusory relative to fragmented
conditions, suggesting that patients fill-in and rely upon illusory
contours during Kanizsa shape discrimination. Yet patients simulta-
neously demonstrated higher thresholds in the illusory versus frag-
mented condition, indicating that they could not properly employ
illusory contours for distinguishing illusory shape. Shape integration
impairments primarily arose among those with moderate to severe
levels of conceptual disorganization, underscoring a critical role for
this symptom in perception and thought. The group differences could
not be attributed to poor motivation or attention since all subjects
performed at about the same level of accuracy on all conditions and
since integration was always measured as a within-subject difference.

These data, we believe, are the first to behaviorally establish Kanizsa
shape perception impairment in schizophrenia and to clearly link this
deficit to conceptual disorganization.

4.1. Implications for EEG studies

A major goal of our study was to arbitrate between the at times
conflicting EEG results from past reports on Kanizsa shape
perception in schizophrenia. Our results corroborate Foxe et al.’s
(2005) interpretation of the N1 VEP modulation as a signature of
intact illusory contour formation in the disorder. Just as their N1
component obtained for Kanizsa shapes regardless of patient
status, so too did our distractor line effects arise regardless of
clinical status. Foxe et al.'s report of abnormal frontal lobe
activation is also consistent with our claim that patients are poor
at representing illusory contours at a conceptual stage of analysis.

Our data additionally corroborate certain behavioral and gamma
band synchrony results of Spencer et al. (2003, 2004. People with
schizophrenia genuinely are worse at detecting Kanizsa shapes,
which in turn is intimately linked to levels of conceptual disorgani-
zation. However, a birds-eye view of the evidence prevents us from
endorsing the claim that these deficits originate in early occipital
areas. As noted by others (Foxe et al., 2005), gamma band synchrony
commonly arises over frontal areas during illusory shape perception
tasks, obtains several hundred milliseconds after stimulus onset,
and could mark differences in attention or target selection (Csibra,
Davis, Spratling, & Johnson, 2000; Herrmann & Mecklinger, 2000;
Herrmann, Mecklinger, & Pfeifer, 1999). Spencer et al. (2004) also

Fig. 3. Contour filling-in and shape integration for controls and patients: Values in the direction of the arrow indicate better filling-in (left panels) or better shape integration
(right panels). (A, B) Whereas contour filling-in was similar between groups, global shape integration was worse for schizophrenia patients, especially those with conceptual
disorganization. (C, D) The distractor line effect—how much performance worsens by adding distractor lines—was similar between controls and disorganized patients for the
illusory and fragmented condition. The same two groups differed sharply on their ability to discriminate illusory relative to fragmented configurations.
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acknowledge that gamma irregularities might be ascribed to poor
“template matching” in which incoming sensory representations are
compared to long-term shape representations. We go even further
and argue that it is not any template matching that is impaired
(given the relatively normal fragmented discrimination in the
disorganized group), but the process of precisely matching illusory
contours with the corresponding shape template boundaries main-
tained in long-term memory. In other words, it is not enough that
illusory contours are synthesized reflexively at early stages of
perception, since such a process can proceed without any conscious
recognition or awareness whatsoever (Keane, Mettler, Tsoi, &
Kellman, 2011; Lee & Nguyen, 2001). Successful shape discrimination
also requires a non-obligatory process of integrating contours into a
high-fidelity shape representation and comparing that shape to the
response alternatives. It is this last set of operations that we claim to
be most problematic for persons with schizophrenia.

The present investigation also sheds light on EEG studies that
investigate visual shape completion in healthy adults. Murray et al.
(2006) argued on the basis of electrophysiological results that
distinguishing Kanizsa shapes comprises an early automatic
boundary formation stage followed by a conceptual shape dis-
crimination stage. The current data obviously cohere well with
these results: our clinical participants automatically formed illu-
sory contours, but were less able to use those contours to
differentiate shape. This two-stage model of Kanizsa shape dis-
crimination is also consonant with a previous behavioral study, as
noted (Keane, Lu et al., 2012) and with a visual agnosia investiga-
tion in which a brain damaged patient could complete contours
but not bind those contours into shapes (Giersch, Humphreys,
Boucart, & Kovács, 2000).

4.2. Conceptual and perceptual organization in schizophrenia

Based on multiple published reports, Uhlhaas and Silverstein
(2005) posited a subtype of schizophrenia characterized by poor
premorbid social functioning, earlier illness onset, poor response
to medication and treatment, heightened levels of conceptual
disorganization, and impaired perceptual organization (e.g.,
reduced contour integration or Ebbinghaus-type illusions). Results
from the present investigation support most attributes of this
hypothesized “disorganized” subtype. In our sample (Table 2),
persons who were conceptually disorganized had more severe
positive and general symptoms, were more likely to require
greater than an outpatient level of care, were less adroit at Kanizsa
shape discrimination (relative to fragmented discrimination), and
had marginally poorer premorbid social-sexual functioning
(p¼ .095). In contrast to predictions, however, the disorganized
and non-disorganized schizophrenia patients were undifferen-
tiated on their age of onset of psychiatric symptoms and age at
first hospitalization (both furnished by patient self-report). Other
aspects of premorbid functioning (e.g., scholastic performance and
peer relationships) were also similar between the two patient
groups. Nevertheless, our results reinforce the notion that there
may be a genuine etiopathophysiological subtype of schizophre-
nia, which may be usefully segregated and targeted in genetic and
treatment studies (Rietkerk et al., 2008).

So what is the causal relation between shape integration
impairments and conceptual disorganization? Does disorganiza-
tion cause poor perceptual organization or is there a common
cause to both? There are no clear answers to these questions at
present. Some have argued that there may be a widespread
disturbance in “cognitive coordination” (Phillips & Silverstein,
2003) that disrupts perception, thinking, and motor processing,
which may all result from hypofunctioning NMDA glutamate
receptors. A related possibility is that the underlying neural
machinery required for organizing thoughts are also recruited in

high-level shape perception, and that disrupting the one is
tantamount to disrupting the other. As evidence, healthy people,
when biased to conceptualize Kanizsa configurations as fragmen-
ted, evince a pattern of results very similar to those produced by
the disorganized patients in the present study (Keane, Lu et al.,
2012): they normally respond to distractor lines, normally dis-
criminate fragmented arrays, but poorly discriminate illusory
shapes. In other words, healthy people can be biased to see
Kanizsa shapes like disorganized schizophrenia patients by adopt-
ing a fragmented conceptual schema. A specific region that may
subserve perception and thought on these tasks may be orbito-
frontal cortex. The OFC is active �300 ms after stimulus onset
during certain Kanizsa shape detection tasks (Halgren et al., 2003)
and contributes to various forms of object recognition (Bar, 2003).
Gray matter volume in the region gradually shrinks over the
course of the illness, especially among persons with thought
disorder (Nakamura et al., 2008).

4.3. Illusory contour formation and other forms of early integration
in schizophrenia

We provided evidence for intact illusory contour formation in
schizophrenia by showing that—regardless of clinical status—
distractor lines impose a stronger adverse effect when appearing
near illusory rather than fragmented contours. We believe it is
premature, however, to infer that all forms of the illness leave
illusory contour formation unscathed. It is possible that early
contour linking could be compromised primarily or even exclu-
sively in so-called Kraepelian patients, who have a unique etio-
pathological profile, characterized by a greater frequency of long-
term inpatient psychiatric care, a deteriorating course, formal
thought disorder (i.e., conceptual disorganization), and poster-
iorization of gray matter loss extending to the occipital lobe
(Mitelman & Buchsbaum, 2007). Such patients might be consid-
ered as an extreme form of the disorganized subtype described
above and might be particularly vulnerable to various forms of
early visual processing abnormalities. Consider, for example, a
classic surround contrast suppression task, in which the contrast
of a central patch is reduced when surrounded by a high-contrast
texture (Chubb, Sperling, & Solomon, 1989). The effect is com-
monly thought to rely upon gain control between spatial
frequency-tuned inhibitory neurons in V1. Dakin and colleagues
(Dakin et al., 2005) found enormous reductions in surround
contrast suppression with chronic inpatient schizophrenia sub-
jects, intermediate effects with a mixture of inpatients and out-
patients (Tibber et al., 2013) and very small effects with mostly
outpatients (Barch et al., 2012), all of which are consistent with the
view that primarily Kraepelian patients generate the effect. Results
from illusory contour tasks may take on a similar pattern.

More generally, data from our study and others do not support
the hypothesis of low-level grouping impairments in high-
functioning persons with schizophrenia. Two possible counter-
examples are worth considering. One derives from a collinear
facilitation task in which sensitivity to detect the presence of a
central low-contrast oriented element is increased when it is
flanked by collinear (versus orthogonal) high contrast elements
(Polat & Sagi, 1993). The effect is robust in healthy controls but
putatively absent in remitted schizophrenia. The behavioral dif-
ference is often attributed to impaired excitatory lateral interac-
tions between orientation tuned spatial frequency filters in V1
(Kéri et al., 2005; Must, Janka, Benedek, & Kéri, 2004). However,
patients in one of our on-going studies are managing to achieve
normal levels of facilitation, at least in some cases (Keane,
Erlikhman, Kastner, Paterno & Silverstein, in preparation), and so
we cannot yet embrace the conclusion. Reduced contrast surround
suppression, discussed above (Barch et al., 2012), presents another
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possible counterexample. Here again the data are not entirely
compelling since the effect sizes are barely detectable even with
large samples (�260 subjects, half patients) and since alternative
explanations cast in terms of higher-level “object-knowledge”
must still be ruled out, as noted by others (Dakin, Carlin, &
Hemsley, 2005; Lotto & Purves, 2001). The foregoing, of course,
does not mean that all aspects of early vision are intact in
schizophrenia. The P1 component (�54–104 ms) of the VEP, for
example, is reliably attenuated along the dorsal pathway (Butler
et al., 2013; Foxe et al., 2005) for a variety of stimulus types even
for first episode patients (Yeap, Kelly, Thakore, & Foxe, 2008). Our
claim here is simply that—of the low-level deficits that exist in the
disorder—none have plausibly been shown to be specific to visual
grouping when the patients are high-functioning.

4.4. Future directions

Unintelligible thought or speech can be precipitated by injury
(stroke victims with Wernicke's aphasia), illness (e.g., influenza
patients with delirium), drug intake (Ketamine-induced psychosis:
Krystal et al., 2005) or other forms of psychopathology (autism:
Solomon, Ozonoff, Carter, & Caplan, 2008). Therefore, we ask: Must
disorganization be accompanied by schizophrenia for perceptual
organization deficits to arise? Another question alluded to briefly
above is: Are acutely ill Kraepelian patients compromised in
forming illusory contours? It would additionally be useful to
investigate the practical consequences of poor visual shape com-
pletion and whether such dysfunction can be remediated by
instruction, training, or neurostimulation. Addressing the fore-
going issues will shed light on the interrelation of thought and
perception for representing a structured distal environment, as
well as the plasticity of these relationships in normal and patho-
logical states.
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