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A B S T R A C T   

Electroencephalogram (EEG), as a direct response to brain activity, can be used to detect mental states and 
physical conditions. Among various EEG-based emotion recognition studies, due to the non-linear, non-sta
tionary and the individual difference of EEG signals, traditional recognition methods still have the disadvantages 
of complicated feature extraction and low recognition rates. Thus, this paper first proposes a novel concept of 
electrode-frequency distribution maps (EFDMs) with short-time Fourier transform (STFT). Residual block based 
deep convolutional neural network (CNN) is proposed for automatic feature extraction and emotion classification 
with EFDMs. Aim at the shortcomings of the small amount of EEG samples and the challenge of differences in 
individual emotions, which makes it difficult to construct a universal model, this paper proposes a cross-datasets 
emotion recognition method of deep model transfer learning. Experiments carried out on two publicly available 
datasets. The proposed method achieved an average classification score of 90.59% based on a short length of EEG 
data on SEED, which is 4.51% higher than the baseline method. Then, the pre-trained model was applied to 
DEAP through deep model transfer learning with a few samples, resulted an average accuracy of 82.84%. Finally, 
this paper adopts the gradient weighted class activation mapping (Grad-CAM) to get a glimpse of what features 
the CNN has learned during training from EFDMs and concludes that the high frequency bands are more 
favorable for emotion recognition.   

1. Introduction 

Human emotion plays an important role in the process of affective 
computing and human machine interaction (HMI) (Preethi et al., 2014). 
Moreover, many mental health issues are reported to be relevant to 
emotions, such as depression, attention deficit (Alkaysi et al., 2017), 
(Bocharov et al., 2017). Much information such as posture, facial 
expression, speech, skin responses, brain waves and heart rate are 
commonly used for emotion recognition (Liberati et al., 2015). There is 
some evidence that electroencephalogram (EEG) based methods are 
more reliable, demonstrating high accuracy and objective evaluation 
compared with other external features (Zheng et al., 2015). Although 
EEG has a poor spatial resolution and requires many sensors placed on 
the scalp, it provides an excellent temporal resolution, allowing 

researchers to study phase changes related to emotion. EEG is 
non-invasive, fast, and low-cost compared with other psychophysio
logical signals (Niemic, 2004). Various psychophysiological studies have 
demonstrated the relationship between human emotions and EEG sig
nals (Sammler et al., 2007), (Mathersul et al., 2008), (Knyazev et al., 
2010). With the wide implementation of machine learning methods in 
the field of emotion recognition, many remarkable results have been 
achieved. Sebe et al. summarized the studies of emotion recognition 
with single modality, described the challenging problem of multimodal 
emotion recognition (Sebe et al., 2005). Alarcao et al. presented a 
comprehensive overview of the existing works on EEG emotion recog
nition in recent years (Alarcao and Fonseca, 2019). A number of EEG 
datasets have been built with various emotions or scored in one 
continuous emotion space. However, the problem of modeling and 
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detecting human emotions has not been fully investigated (Mühl et al., 
2014). EEG based emotion recognition is still very challenging for the 
fuzzy boundary between emotion categories as well as the difference of 
EEG signals from kinds of subjects. 

Various feature extraction, selection and classification methods have 
been proposed for EEG based emotion recognition (Zhuang et al., 2017). 
Friston modeled the brain as a large number of interacting nonlinear 
dynamical systems and emphasized the labile nature of normal brain 
dynamics (Friston, 2001). Several studies have suggested that the 
human brain can be considered as a chaotic system, i.e., a nonlinear 
system that exhibits particular sensitivity to initial conditions (Ezzat
doost et al., 2020). The nonlinear interaction between brain regions may 
reflect the unstable nature of brain dynamics. Thus, for this unstable and 
nonlinear EEG signals, a nonlinear analysis method such as sample en
tropy (Jie et al., 2014) is more appropriate than that of linear methods, 
which ignores information associated with nonlinear dynamics of the 
human brain. Time-frequency analysis methods are based on the spec
trum of EEG signals. Power spectral density and differential entropy of 
sub-band EEG rhythms are commonly used as emotional features (Duan 
et al., 2013), (Ang et al., 2017). In the last decade, a large number of 
studies have demonstrated that the higher frequency rhythms such as 
beta and gamma outperform lower rhythms, i.e., delta and theta, for 
emotion recognition. Traditional recognition methods are mainly based 
on the combination of hand-crafted features and shallow models like 
k-nearest neighbor (KNN), support vector machines (SVM) and belief 
networks (BN) (Duan et al., 2012), (Sohaib et al., 2013), (Zubair and 
Yoon, 2018). However, EEG signals have a low signal-to-noise ratio 
(SNR) and are often mixed with noise generated in the process of data 
collection. Another much more challenging problem is that, unlike 
image or speech signals, EEG signals are temporally asymmetry and 
nonstationary, which has created significant difficulties for data pre
processing to obtain clean data for feature extraction. The nonstationary 
means the properties (mean, variance and covariance) of EEG signals 
varied with time partly or totally. Temporally asymmetric refers to the 
fact that the corresponding activation lobes and activation degree are 
different under various cognitive activities. Pauls has identified these 
two nonlinearity properties of EEG (Palus, 1996). Moreover, traditional 
manual feature extraction and selection methods are crucial to an af
fective model and require specific domain knowledge. The commonly 
used dimensionality reduction techniques for EEG signal analysis are 
principal component analysis (PCA) and Fisher projection. In general, 
the cost of these traditional feature selection methods increases 
quadratically with respect to the number of features that is included 
(Dash and Liu, 1997). 

As a form of representation learning, deep learning can extract fea
tures automatically through model training (Zhang et al., 2018). Apart 
from the successful implementation in image and speech domains, deep 
learning has been introduced to physiological signals, such as EEG 
emotion recognition in recent years. Zheng et al. trained an efficient 
deep belief network (DBN) to classify three emotional states (negative, 
neutral, and positive) by extracting differential entropy (DE) of different 
frequency bands and achieved an average recognition of 86.65% (Zheng 
and Lu, 2015). As a typical deep neural network model, convolutional 
neural network (CNN) has achieved great progress in computer vision, 
image processing and speech recognition (Hatcher and Yu, 2018). 
Yanagimoto et al. built a CNN to recognize the emotional valence of 
DEAP and analyze various emotions with EEG (Yanagimoto and Sugi
moto, 2016). Wen et al. rearranged the original EEG signals through 
Pearson Correlation Coefficients and fed them into the end-to-end CNN 
based model for the purposes of reducing the manual effort on features, 
which achieved an accuracy of 77.98% for Valence and 72.98% for 
Arousal on DEAP, respectively (Wen et al., 2017). 

The mainly used feature extraction methods of EEG signals can 
mainly be divided into time domain, frequency domain, and time- 
frequency domain (Wang, 2011), (Chuang et al., 2014), (Li et al., 
2017). Frequency analysis transformed the EEG signals into frequency 

domain for further feature extraction. Since many studies demonstrated 
that the frequency domain features have higher distinguishability, we 
proposed the novel concept of electrode-frequency distribution maps 
(EFDMs) firstly. With the successful application of CNN in speech 
recognition (Abdelhamid et al., 2014), we build a deep neural network 
for emotion recognition based on EFDMs. The EFDMs of EEG signals can 
be regarded as grayscale images. Therefore, with proposed EFDMs, we 
realized the purpose of constructing emotion recognition model based 
on CNN. 

At present, studies on EEG emotion recognition mainly focus on 
subject-dependent emotion recognition tasks. For engineering applica
tions, it’s obviously impossible to collect a huge amount of subjects’ EEG 
signals in advance to build a universal emotion recognition model to 
identify the emotions of every person. Therefore, how to realize the 
subject- dependent pattern classification is one tough issue in the 
practical application of emotion recognition. Traditional emotion 
recognition models are usually established for a specific task on a small 
dataset, thus they often fail to achieve good effect under new tasks, due 
to the possible differences in stimulus paradigm, subjects and EEG 
acquisition equipment. In addition, the learning process of deep neural 
networks is vitally important, and generally requires a large amount of 
labeled data, while the acquisition of EEG signals is not as easy as that of 
image, speech and text signals. Accordingly, how to achieve a highly 
effective classifier through the training process based on a small number 
of labeled samples is another issue that needs to be considered. In this 
paper, transfer learning is employed to solve those problems highlighted 
above. Among various transfer learning methods, one is to reuse the pre- 
trained model from source domain to target domain, dependent on the 
similarities of data, tasks and models between them (Pan and Yang, 
2010). Transfer learning accelerates the training process by transferring 
the pre-trained model parameters to a new domain task. Since Yosinski 
et al. published an article on how to transfer the features in deep neural 
network, it has achieved a rapid development in the field of image 
processing (Yosinski et al., 2014). 

We firstly proposed a novel concept of EFDMs based on multiple 
channel EEG signals. Then four residual blocks based CNN was built for 
automatic feature extraction and emotion classification with EFDMs as 
input. We mainly set up two experiments in this paper. One is to evaluate 
the effectiveness of the proposed method on SEED. Second, based on the 
deep model transfer learning strategy, the pre-rained CNN from the first 
experiment is applied to DEAP for the cross-datasets emotion recogni
tion. At the last, we have given more neuroscience interpretation by 
revealing the key EEG electrodes and frequency bands corresponding to 
each emotion category based on the attention mechanism of deep neural 
network and the proposed EFDMs. 

2. Methods 

In this section, we will detail the general framework of the EFDMs 
based CNN for emotion recognition, including a short description of 
short-time Fourier transform (STFT), the structure and key parameters 
of the proposed CNN as well as a brief introduction to Grad-CAM. 

2.1. Short-time Fourier Transform 

Fourier transform (FT) is often used to analyze the frequency features 
of time series. It provides the frequency information averaged over the 
entire signal time interval, and does not know the time when each fre
quency component appears. Therefore, the spectrum of two signals with 
large difference in time domain may be the same in frequency domain. 
That is to say, FT assumes that the time sequences are stationary, which 
is a false hypothesis for EEG signals apparently. For these nonstationary 
signal analyze, the time series should be cut into minor segments, and 
within each segment, the signal waves can be approximately considered 
as stationary signals used for FT. The idea is called STFT. It is a sequence 
of Fourier transforms of a windowed signal, used to analyze how the 
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frequency content of a nonstationary signal changes. Provides the time- 
localized frequency information for situations in which frequency 
components of a signal vary over time. The calculation of STFT is 
defined as: 

Xðτ;wÞ¼
Z ∞

� ∞
xðtÞωðt � τÞe� jwtdt (1)  

where xðtÞ represents original signal and ωðtÞ indicates the window 
function such as the Hanning window as shown in (2). It’s a linear 
combination of modulated rectangular windows, and usually emerges in 
applications that require low aliasing and less spectrum leakage. 

wðnÞ¼
1
2

�

1 � cos
�

2πn
N � 1

��

(2)  

in which n represents the window length and N is the sampling number. 
As for discrete time series, the data could be broken up into seg

ments. Each segment is Fourier transformed, and the complex result is 
added to a matrix, which records magnitude and phase for each point in 
time and frequency. The calculation of STFT for discrete time series can 
be expressed as: 

Xðm;wÞ¼
X∞

n¼� ∞
x½n�ω½n � m�e� jwn (3)  

where x½n� is a time series and ω½n� is window function. With a 
normalization of Xðm;wÞ, we got the corresponding EFDMs. 

2.2. The proposed model for EEG emotion recognition 

In image processing, convolution operations can effectively filter 
image information, and CNN make use of these characteristics to ach
ieve automatic feature extraction from images. In order to apply the 
CNN for automatic feature extraction and pattern classification in EEG- 
based emotion recognition, we proposed a novel concept of EFDMs 
based on multiple channel EEG signals. These EFDMs can be treated as 
grayscale images to apply two dimensional convolution operation. 

A CNN with four residual blocks is proposed for EEG emotion 
recognition with EFDMs as input. The general network structure is 
shown in Fig. 1. The network consists of 1 convolution layer, 4 residual 
blocks, 4 max pooling layers, 2 fully connected layers, and finally the 
Softmax layer. The network also includes 5 batch normalization and 4 
dropout layers for over-fitting consideration. The size of the max pooling 
window is 2 � 2, and the window slide step is 2. In addition, all inter
mediate layers use the Rectified Linear Unit (ReLU) as an activation 
function. The detailed structure of the residual block is shown in the 
dashed box. The size of the convolution kernel in the residual block is 3, 
3, 1, the sliding step is 1, and one batch normalization layer is included 
after each convolution layer. 

Fig. 1. The proposed residual block based CNN for EEG emotion recognition.  
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The residual block based CNN can effectively alleviate the problem 
of gradient disappearance and gradient explosion through the shortcut 
connections between layers. The network embedded with max pooling 
layer has a certain translation and rotation invariance to the input. 
Moreover, since the emotion-related features of EEG signals mainly re
flected in the sub-frequency rhythms, the pooling operation in the fre
quency direction can make the neural network more effective for 
extracting emotion-relevant features from EFDMs. Finally, two fully 
connected layers are used for emotion classification based on the fea
tures extracted by the former convolution layers. 

2.3. Grad-CAM 

Gradient-weighted class activation mapping (Grad-CAM) is used to 
make CNN-based models more transparent by producing visual expla
nations (Selvaraju et al., 2020). This can be used to understand the 
importance of input data with respect to a target class of interest. In 
order to obtain the class-discriminative localization map Grad-CAM for 
any class c (Lc

Grad� CAM), the gradient of the score for class c was first 
computed (yc), with respect to the feature maps Ak of a convolutional 
layer. These gradients flowing back are global-average-pooled to obtain 
the neuron importance weights: ac

k 

αc
k ¼

1
Z

X

i2w

X

j2h

∂yc

∂Ak
ij

(4)  

in which Z represents the number of pixels in the feature map. 
Through performing a weighted combination of forward activation 

maps followed by a ReLU, the Grad-CAM can be expressed as: 

Lc
Grad� CAM ¼ReLU

 
X

k
αc

kAk

!

(5) 

The output Lc
Grad� CAM indicates which parts the proposed neural net

works have paid more attention to, and we denote them as attention 
heat maps. For each emotion, we use (6) to calculate the average heat 
maps of all samples to understand what’s the difference when classify 
different emotions. 

LAVE ¼
1
N
X

Lc
Grad� CAM (6)  

3. Dataset description and analysis 

In this section, we make a description on two EEG emotion recog
nition datasets, i.e. SEED and DEAP. Then some data preprocessing 
methods are presented to prepare samples for cross-datasets emotion 
recognition. Finally, data distribution between different subjects are 
analyzed. 

3.1. SEED dataset description 

SEED dataset contains three categories of emotions, i.e., negative, 
neutral, and positive. Fifteen subjects (7 males and 8 females) partici
pated in the experiments. EEG signals were recorded using an ESI 
NeuroScan System at a sampling rate of 1000 Hz from a 62-channels 
active AgCl electrode cap according to the international 10–20 system 
while they were watching emotional film clips. There are 15 trials (film 
clips watching test) in one experiment. Each subject participated in the 
experiment 3 times at an interval of one week or longer. 

For EEG signal processing, the raw EEG data were first down- 
sampled to 200 Hz. In order to filter the noise and remove most arti
facts, a bandpass filter of 0.5Hz–70Hz was performed (Zheng et al., 
2019). 

3.2. DEAP dataset description 

DEAP is a multimodal dataset consisting of EEG recordings collected 
while watching the selected video clips to analyze human affective 
states. The EEG and peripheral physiological signals of 32 participants 
were recorded using a Biosemi ActiveTwo system as each watched 40 1- 
min long excerpts of music videos. The experiments were performed in 
two laboratory environments with controlled illumination. The EEG 
signals were recorded at a sampling rate of 512Hz from 32 active elec
trodes according to the international 10–20 system. Each participant 
assesses their levels of arousal, valence, dominance and liking using self- 
assessment manikins (SAM). Participants selected the numbers 1–9 for 
emotional state for each clip. The arousal scales extend from passive to 
active, and valence ranges from negative to positive. 

Some preprocessing operations have been applied to the raw data, 
such as down sampling the recordings to 128 Hz; EOG artifacts were 
removed; a bandpass filter of 4Hz–45Hz was applied; averaged to the 
common reference. After that, the data were segmented into 60 s trials 
and a 3 s pre-trial baseline removed (Koelstra et al., 2012). 

3.3. Data preprocessing 

For the SEED dataset since the length of the EEG signals acquired 
under various stimulus differs greatly, we firstly count the lengths of all 
EEG trials, then the EEG signals are truncated (taking the first 37,000 
sampling points for subsequent analysis) to ensure that every kind of 
emotion has the same number of samples. 

Due to the big differences in the experimental protocol, the compo
sition of subjects, and the configuration of signal acquisition system 
between DEAP and SEED dataset. In order to ensure that the classifi
cation task using both SEED and DEAP is similar, the emotional space of 
DEAP is divided into discrete parts according to the valence score similar 
to the approach in (Lan et al., 2019). Samples with a score in valence 
greater than 7 were classified as positive, samples with scores less than 
or equal to 7 and greater than 3 were classified as neutral, and samples 
with scores no more than 3 were treated as negative. Based on this 
classification criterion, the number of subjects with different types of 
emotion was counted in each film stimulus, and the frequency results are 
shown in Fig. 2. The horizontal axis represents the film clip index from 1 
to 40, and the vertical axis represents the number of subjects with one 
specific emotion corresponding to each stimulus. We then look for the 
trials that have the most participants who reported to have successfully 
induced positive, neutral and negative emotion, respectively. These 
trials are: #18 for positive emotion, #16 for neutral emotion, and #38 
for negative emotion, each having 27, 28 and 19 subjects respectively. 
Fourteen subjects in DEAP (numbered 2, 5, 10, 11, 12, 13, 14, 15, 19, 22, 
24, 26, 28 and 31) that successfully induced all three types of emotions 
under these three trials (#18, #16 and #38) were selected for subse
quent experiments. 

After that, the EEG signals in each channel are divided into a number 
of samples with a 1s long non-overlapping Hanning window in two 
datasets. Hence, we obtain 185 samples of one trail corresponding to one 
film clip, and 41625 samples are obtained under different emotions in 
SEED. For DEAP, since each trial lasts for 63 s and the first 3 s are 
baseline recording without emotion elicitation, we only use the segment 
from the 4th second to the end. Thus, 60 samples were obtained in each 
trial, the total number of samples is 2520. Finally, Fourier Transform 
and normalization are performed on the samples to get the EFDMs. 

3.4. EFDMs 

The Fourier transform is applied to each EEG channel of all samples 
obtained above, and then the transformed results are normalized to 
produce the input data that are suitable for CNN. The normalized results 
in two dimensions were known as EFDMs. The EFDMs of the EEG signals 
can be represented as grayscale images, and the normalized results can 
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be compared to the gray pixel value. Therefore, we can build a CNN for 
EEG-based emotion recognition with EFDMs. Fig. 3 shows the EFDMs 
under different emotions. 

3.5. Data distribution analysis 

In order to illustrate the difference in EEG signals between different 
subjects, we use the SEED dataset as an example and randomly select 50 
samples of five subjects under three emotional states for analysis. Firstly, 
the DE of five sub-band EEG signals in all channels are extracted, and the 
feature vectors are formed. Then the PCA is used to reduce the dimen
sionality of the features, the two components with the largest eigen
values are retained for data distribution analysis. 

As can be seen from Fig. 4, the data distribution among different 

subjects is quite different, which does not satisfy the independent and 
identical assumption between training and test samples in traditional 
machine learning. In addition, the feature differences among three kinds 
of emotions of the same subject are not obvious. Therefore, in this case, 
traditional machine learning methods often fail to achieve good recog
nition results. The recently proposed transfer learning is specifically 
designed to solve this problem. Such methods usually carried out within 
one dataset, which has some similar parts among different subjects, such 
as EEG signal acquisition equipment and experimental process, this is 
helpful for knowledge transfer from source to target domain. However, 
in cross-dataset emotion recognition task, the differences introduced by 
different signal acquisition equipment and experimental environments 
need also to be considered. Therefore, it is more difficult to realize the 
transfer learning of emotion recognition model with cross-datasets. 

Fig. 2. DEAP emotion space discrete results with valence score.  

Fig. 3. EFDMs under different emotions.  
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4. Experiments and results analysis 

We set up two experiments. First, the effectiveness of the proposed 
method for EEG-based emotion recognition is verified using SEED. Then, 
based on the deep neural network transfer learning strategy, the pre- 
trained model is applied to DEAP with 12 training samples of each 
emotion class. 

4.1. SEED based emotion recognition 

Over the past few years, many scholars have conducted notable 
research on EEG based emotion recognition with SEED. To compare the 
proposed approach with (Zheng and Lu, 2015), (Lu et al., 2015), (Liu 
et al., 2016), (Yang et al., 2017), in this experiment, we strictly obey the 
protocol of Zheng et al. (Zheng and Lu, 2015). Specifically, for all 15 
trials of EEG data associated with one session of one subject, the first 9 
trials are used to serve as the training set and the remaining 6 are the 
testing set. Then, the recognition accuracy corresponding to each period 
is obtained for each subject. Finally, the average classification accuracy 
over three sessions for all 15 subjects is calculated. 

The training and testing processes are implemented using Pytorch 
framework with Adam algorithm as an optimizer; the learning rate is set 
as 0.0001, and the loss function is a cross entropy loss function. 

We compared the proposed models with other state-of -the-art ap
proaches (Tang et al., 2017), (Li et al., 2018), (Song et al., 2018) and the 
baseline method, which uses DBN directly as the classifier. As shown in 
Table 1, Bimodal-LSTM achieved the best accuracy (93.97%) among (Lu 
et al., 2015), (Liu et al., 2016), (Yang et al., 2017), (Tang et al., 2017) 
with 4 s of EEG as well as eye movement information. Based on single 
EEG, Li et al. (Lu et al., 2015) obtained the best recognition rate of 
92.38% with 9s EEG. The result of the proposed model based on EFDMs 
and CNN is 90.59%, which is 4.51% higher than the baseline results with 
differential entropy and DBN. Compared with other methods, the data 
samples of 1s used in this paper are shorter and the process to produce 
EFDMs through STFT is simpler compared to DE. That is to say, the EEG 
based emotion recognition method combined with EFDMs and CNN is 
effective. 

To see the results of recognizing each emotion, we depict the 
confusion matrix corresponding to the experiments using SEED, as 
shown in Fig. 5. Each row of the confusion matrix represents the target 
class and each column represents the predicted class that a classifier 

outputs. The element ði; jÞ is the percentage of samples in class i that 
were classified as class j. From the results we can see that, in general, 
positive emotion can be recognized with high accuracy (93%), while 
negative emotion is more difficult to recognize, and very easy to be 
confused with neutral emotion. 

4.2. DEAP based emotion recognition 

The goal of machine learning is to build a model that is as general as 
possible to meet the requirements of different user groups and different 
environments. However, such an ideal model often fails to meet the 
expected requirements in practical applications. Therefore, how to 
establish a universal model to tackle the possible differences between 

Fig. 4. Two-dimension visualization of features selected from different subjects in SEED.  

Table 1 
Some notable works on SEED dataset.  

Method Feature Classifier Signal Accuracy 
(%) 

Zheng and Lu 
(2015) 

DE DBN EEG(1s) 86.08 

Lu et al. 
(2015) 

DE (EEG) Fuzzy integral 
fusion strategy 

EEG (4s) þ
Eye 
movement 

87.59 

Liu et al. (Liu 
et al., 
2016), 
2016 

DE BDAE þ SVM EEG (4s) þ
Eye 
movement 

91.01 

Yang et al. ( 
Yang et al., 
2017), 
2017 

DE hierarchical 
network with 
subnetwork nodes 

EEG (4s) þ
Eye 
movement 

91.51 

Tang et al. ( 
Tang et al., 
2017), 
2017 

PSD, DE, 
Mean, SD 

Bimodal-LSTM EEG (4s) þ
Eye 
movement 

93.97 

Li et al. (Li 
et al., 
2018), 
2018 

DE BiDANN EEG (9s) 92.38 

Song et al. ( 
Song et al., 
2018), 
2018 

DE DGCNN EEG (1s) 90.40 

Ours EFDMs CNN EEG (1s) 90.59  
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subjects and signal acquisition devices under different classification 
tasks, as well as realizing few-shot learning, is a problem that needs to be 
taken into consideration in CNN-based emotion recognition system. 
Various studies on CNN have shown that shallow convolution layers are 
designed to extract common basic features from the input, while deeper 
convolution layers can extract more abstract and task related features. 
Therefore, it is possible to get an accurate classification result based on 
partial fine-tuning of the pre-trained CNN with a few training samples. 
Generally, the accuracy is positively correlated with the number of fine- 
tuned layers. To this end, through two deep neural network transfer 
learning strategies, i.e. just fine-tune the fully connected layers or fine- 
tune all layers, the pre-trained CNN with SEED is transformed for 
another emotion recognition task based on DEAP. 

In order to produce EFDMs with the same attributes (including 
channel order, frequency range and size) for deep model transfer 
learning between two datasets, we take following different preprocess
ing methods. For SEED, 32 EEG channels (Fp1, Fp2, AF3, AF4, F7, F3, Fz, 
F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, 
P3, Pz, P4, P8, PO3, PO4, O1, Oz, O2) are shared with DEAP and the first 
64 frequency points are selected to build EFDMs with a size of 32 � 64. 
For DEAP, the EEG channels are rearranged according to the former 
presented electrode order to ensure that they are consistent with SEED. 

Based on the review of relevant works, we found that some scholars 
have conducted research on emotion recognition with transfer learning 
across two datasets (Lan et al., 2019). However, there are some differ
ences between the research focus. The main research focus of this paper 
is to realize emotion recognition based on a deep model transfer strategy 
with a few training samples. While the latter aims to use a domain 
adaptation method to transfer the classification knowledge learned 
using SEED, to DEAP. There are also differences in experimental set
tings. In this paper, a small amount of data of the target subject is used 
for training, while the latter uses the leave-one- subject-out 
cross-validation strategy for classification on DEAP. (The data of each 
session in SEED were used as source samples, and each subject in DEAP 
was set as a target sample for testing.) The recognition results using the 
DEAP dataset with domain adaptation from (Lan et al., 2019) are shown 
in Table 2. 

It can be seen from the table that Transfer component analysis (TCA) 
achieved the best recognition accuracy under the three experimental 
settings. However, the recognition accuracy of all domain adaptation 
methods is very low (no more than 43%), and the recognition result for 
Information theoretical learning (ITL) is even lower than that of the 
baseline method which did not adopt transfer learning. 

From here on, we will carry out deep model transfer learning based 

on a small number of training samples. For DEAP, we randomly divide 
the samples of each subject into a training and testing dataset with a 
training versus testing ratio of 1:4. (Which means 20% for training, 80% 
for testing, the training sample size of each emotion is 12.) Then, two 
different deep model transfer learning strategies are used to fine-tune 
the pre-trained CNN with the training dataset, after which the 
network is tested on the testing samples. During model fine-tuning, 
Adam is used as an optimizer, the learning rate is 0.00002 with cross- 
entropy as a loss function. The recognition accuracy of the proposed 
method using the DEAP dataset based on a few training samples is 
shown in Fig. 6. 

The average recognition accuracy and standard deviation of the 
baseline, fine-tune fc layers and fine-tune all layers are 32.94% (3.80), 
70.14% (9.81), and 82.84% (10.74), respectively. The baseline indicates 
that the pre-trained model using SEED is directly applied to DEAP 
without using a transfer learning strategy. It can be seen that the 
recognition accuracy of all 15 subjects with this method is very low (less 
than 40%), which means that the data distribution of DEAP is quite 
different from that of SEED. The data distribution between these two 
datasets doesn’t satisfy the independent and identical assumption of 
traditional machine learning. It is worth noting that the baseline result is 
similar to the baseline recognition accuracy in (Lan et al., 2019). 
Fine-tune fc layers and fine-tune all layers represent the recognition 
results obtained by using 12 training samples to fine-tune the 
pre-trained CNN with fully connected layers or all layers, respectively. 
For each subject, the recognition results of these two methods changed 
synchronously. Compared with the baseline results, these two transfer 
learning strategies improved the recognition accuracy significantly for 
every subject. The method of fine-tune all layers achieved the best 
classification results among 15 subjects with an average accuracy of 
82.84%, the highest result is 96.60% on subject 11, while a lower result 
is 61.18% and 63.13% for subject 7 and 9, respectively. The best 
recognition accuracy using fine-tune fc layers is 84.86% with subject 11. 
However, its performance on subject 5, 7, 9, and 14 is poor, all of them 
are lower than 60%. 

The confusion matrix of the proposed method is shown in Fig. 7. As 
can be seen from the figure, the baseline method classified almost all 
samples (about 84%) as neutral emotion, only a small number of sam
ples are recognized as negative, while fewer samples are classified as 
positive (less than 1%). It shows that there is a big difference in the 
EFDMs between the two datasets, and the pre-trained CNN learned from 
SEED cannot be directly used for DEAP. With the proposed deep model 
transfer learning strategy of fine-tuning the fully connected layers of the 
pre-trained CNN, the classification accuracy has been greatly improved. 
The best result is obtained in neutral emotion recognition (77%), fol
lowed by positive, while the result of negative emotion recognition is not 
as good as the former (62%). With the method of fine-tuning all layers, 
the recognition results have been further enhanced, the positive emotion 
recognition is the best (86%), the neutral is second, and the accuracy of 
the negative emotion recognition has reached 79%. It is worth noting 
that the emotions achieved with the best classification accuracy of fine- 
tune fc layers and fine-tune all layers are neutral and positive, respec
tively. That is to say, through fine-tuning the weights of the convolution 
layers in the pre-trained CNN, it has helped to learn more emotion 

Fig. 5. Confusion matrix on SEED.  

Table 2 
Cross-datasets emotion recognition results with leave-one-subject-out cross- 
validation strategy.  

Method SEEDI→DEAP SEEDII→DEAP SEEDIII→DEAP 

Baseline 34.57 (7.98) 32.99 (3.44) 32.51 (6.73) 
MIDA 40.34 (14.72) 39.90 (14.83) 37.46 (13.11) 
TCA 42.60 (14.69) 42.40 (14.56) 39.76 (15.15) 
SA 36.73 (10.69) 37.36 (7.90) 37.27 (10.05) 
ITL 34.50 (13.17) 34.10 (9.29) 33.62 (10.53) 
GFK 41.91 (11.33) 40.08 (11.53) 39.53 (11.31) 
KPCA 35.60 (6.97) 34.69 (4.34) 35.11 (10.05)  
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Fig. 6. The recognition accuracy of our proposed method on DEAP.  

Fig. 7. The confusion matrix on DEAP.  

Fig. 8. Classification accuracy with varying number of training samples.  
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related features in DEAP. The average recognition accuracy for fine- 
tuning all layers is 82.84%. 

We set up six comparative experiments to illustrate the effectiveness 
of the proposed methods for EEG based emotion recognition, including 
one-shot learning (taking one sample from each emotion to form a 
training set, and using remaining samples for testing), as well as the 
experiments with a training data proportion of 0.05, 0.1, 0.3, 0.4 and 
0.5, respectively. For the training dataset, we randomly selected a 
number of samples from all types of emotions according to the training 
data proportion, and the remaining samples are used to form the testing 
dataset. In order to avoid the problem that a small number of randomly 
selected training samples are not representative enough, the compara
tive experiment under every experimental setting was repeated five 
times, and the average value was used as the final result. The average 
recognition accuracy and standard deviation of the proposed methods 
with a different number of training samples are shown in Fig. 8. 

We can see that the accuracy direction of these two deep model 
transfer learning is consistent, both increase with the number of training 
samples used. When the number of training samples from each emotion 
increased to 12 (the training data proportion is 0.25), the growth trend 
of these two methods was significantly slower. Under each experimental 
setup, the result of fine-tune all layers is always better than that of fine- 
tune fc layers. This shows that there is a difference in EFDMs between 
SEED and DEAP, which needs to be adjusted through the fine-tuning 
with the weights of the convolution layers. Additionally, under the 
‘one-shot learning’ experimental setup, which uses only one sample 
from each emotion kind for training, the accuracy of these two methods 
(e.g., fine-tune fc layers 45.50% (5.60), fine-tune all layers 50.02% 
(11.48)) is much higher than that of the baseline method (32.94% 
(3.80)). This also illustrated by the effectiveness of the proposed 
methods in emotional recognition by fine-tuning the CNN with a few 
samples. 

4.3. What did our network learn? 

The existing CNN based EEG emotion recognition studies take the 
original EEG signals or time frequency maps as the input. However, the 
original EEG signals cannot represent its frequency feature, and the time 
frequency maps cannot reflect the position relationship between EEG 
channels. The EFDMs proposed in this paper can simultaneously give 
expression to the frequency distribution as well as the EEG electrodes 
position information. Based on the attention mechanism of deep neural 
network, we adopt Grad-CAM to analysis what information the CNN has 
learned from EFDMs. Investigate the key EEG electrodes as well as fre
quency bands corresponding to each emotion category automatically 
and simultaneously. 

Fig. 9 shows the ‘attention maps’ generated with Grad-CAM of 
different emotion categories. The brighter the color is, the more 
important the information contained in this area is to emotion recog
nition. Similarly, the darker the color is, the less important this area is. 
From the figure, we can see that the EEG channels and frequency bands 
that the CNN focused on are quite different. The average attention level 
for all channels are shown in the right histogram, which represent the 
average of Grad-CAM value across each channel. From these attention 
heat maps and histograms, we can find that there is a large similarity 
between negative and neutral emotion. That’s why the network mis
classified 6% of neutral emotions into negative (with 3% into positive), 
while the proportion of negative samples misclassified into neutral is 8% 
(with 4% into positive) as shown in Fig. 5. 

From Fig. 9 (a), (d), the key frequency bands related to negative 
emotion recognition mainly concentrated in 25–57 Hz, and the key 
channels distributed around FC2, FC6. From Fig. 9 (b), (e), the key EEG 
frequency bands and channels of neutral emotion are 27–55Hz, and T8, 
CP5, CP1, CP2. Similarly, the critical information of positive emotion 
from Fig. 9 (c), (f) are 24–59Hz, and FC2, FC6. Although the distribution 
of key frequency bands under three emotions is highly coincident, the 

Fig. 9. Heat maps and average attention level for every channel obtained through Grad-CAM on SEED. (a), (d) Negative. (b), (e) Neutral. (c), (f) Positive.  
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key point of positive (29Hz) is quite different from that of negative 
(44Hz), and neutral (44Hz). This means the high frequency feature 
components contain more distinguishing information for EEG based 
emotion recognition. In addition, the alpha band (8–13Hz) of some 
channels is helpful for negative and positive emotion classification, 
while not for neutral emotion. We can draw the conclusion that CNN 
pays more attention to the high frequency bands of the EEG signals 
(24–59Hz), which is consistent with the conclusion in (Zheng et al., 
2015), (Zheng and Lu, 2015), (Wang et al., 2014), (Zheng et al., 2019). 
Therefore, the CNN can be trained to automatically discover the EEG 
channels and features that are conducive to emotion recognition. It is 
worth noting that the range of key EEG channels and frequency bands 
obtained in this paper is a little wider than the true information due to 
the influence of two-dimensional convolution operation. That is to say, 
the real key EEG channels and frequency bands related to emotion 
recognition should be concentrated in several channels and frequency 
bands with the highest brightness in the attention maps. 

5. Conclusion 

In this paper, we have provided a solution to tackle the challenge of 
differences in individual emotions with deep model transfer learning. 
Aims to build a robust emotion recognition model independent of 
stimulus, subjects, and EEG collection device etc. We have mainly set up 
two experiments, within and cross-datasets emotion recognition. First, 
the effectiveness of the proposed approach is valid on SEED with an 
average accuracy of 90.59%. After that, the pre-rained CNN from the 
first experiment is applied to DEAP with the deep model transfer 
learning method. Experiments show that when 12 training samples of 
each emotion are used for deep model fine-tune, a high accuracy can be 
achieved with a few samples. At the last, based on the attention mech
anism of deep neural network, we adopt Grad-CAM to analysis what 
information the CNN has learned from EFDMs, obtained the key EEG 
electrodes and frequency bands corresponding to each emotion category 
automatically and simultaneously. The results show that the high fre
quency bands (24–59Hz) are more helpful for emotion recognition. he 
key channels of neutral are T8, CP5, CP1, CP2, which is different from 
that of negative and positive (FC2, FC6). 

From Table 1, we can see that the proposed approach hasn’t achieved 
the best performance, this may due to the 1s signal used is shorter than 
that of others with 4s and 9s, or due to the lack of eye movement data. 
We will consider the issue of EEG data length as well as the multimodal 
data fusion method for emotion recognition in the future. Moreover, we 
only studied the transfer learning method of fine-tuning deep neural 
networks to tackle the challenge of individual difference between sub
jects with the cross-datasets emotion recognition experiment at present. 
More and more advanced deep transfer learning methods have emerged 
recently. Therefore, more attempts should be tried with these algo
rithms. Furthermore, the source and target domain included in this 
paper is the same. Concentrate on the EEG emotion recognition issue 
with insufficient samples and different source and target domain is 
another work worth studying. 
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