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A B S T R A C T   

Resting-state activity has been used to gain a broader understanding of typical and aberrant developmental 
changes. However, the developmental trajectory of resting-state activity in relation to cognitive performance has 
not been studied in detail. The present study assessed spectral characteristics of theta (5–8 Hz) and alpha (9–13 
Hz) frequency bands during resting-state in a priori selected regions of the frontoparietal network (FPN). We also 
examined the relationship between resting-state activity and cognitive performance in typically developing 
children. We hypothesized that older children and children with high attentional scores would have higher 
parietal alpha activity and frontal theta activity while at rest compared to young children and those with lower 
attentional scores. MEG data were collected in 65 typically developing children, ages 9–14 years, as part of the 
Developmental Chronnecto-Genomics study. Resting-state data were collected during eyes open and eyes closed 
for 5 min. Participants completed the NIH Toolbox Flanker Inhibitory Control (FICA) and Attention Test and 
Dimensional Change Card Sort Test (DCCS) to assess top-down attentional control. Spectral power density was 
used to characterize the FPN. We found during eyes open and eyes closed, all participants had higher theta and 
alpha power in parietal regions relative to frontal regions. The group with high attentional scores had higher 
alpha power during resting-state eyes closed compared to those with low attentional scores. However, there were 
no significant differences between age groups, suggesting changes in the maturation of neural oscillations in 
theta and alpha are not evident among children in the 9-14-year age range.   

1. Introduction 

The human brain is consistently active even in the absence of a task. 
Magnetoencephalography (MEG) and electroencephalography (EEG) 
have long been used to record this resting brain activity. These resting- 
state recordings are undemanding and involve no explicit task beyond 
the participants resting quietly with their eyes open or closed for a 
relatively short time. Neural oscillations measured during these resting- 

state recordings are recognized as an important metric of brain function 
in both children and adults (Chapman et al., 1962; Volavka et al., 1967; 
Srinivasan, 1999; Barry et al., 2007, 2009). Therefore, characterizing 
the developmental progression of neural oscillations during resting-state 
may assist in our understanding of brain development and its relation to 
behavioral and cognitive performance. 

Resting-state studies have revealed consistent and repeatable corre
lations between brain regions. Functional magnetic resonance imaging 
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(fMRI) studies have extended our understanding of the resting-state 
using functional connectivity, which is typically defined as coordi
nated fluctuations in BOLD signal between spatially separated brain 
regions. These functionally connected regions are in turn referred to as 
networks. Resting-state fMRI studies have identified resting-state net
works including the frontoparietal network (FPN) (Raichle et al., 2001; 
Calhoun et al., 2002; Greicius et al., 2003), which has also been 
observed in MEG studies (Brookes et al., 2011). 

The FPN is connected to various brain regions that are active during 
task engagement (Corbetta and Shulman, 2002; Fan et al., 2005) and is 
functionally associated with attentional performance (Fox et al., 2005; 
Vincent et al., 2008; Markett et al., 2014; Visintin et al., 2015). The FPN 
has been specifically associated with top-down attentional control 
(Corbetta and Shulman, 2002; Bressler et al., 2008; Ciesielski et al., 
2010; Lückmann et al., 2014) and it may alter the functional connec
tivity to other networks according to task requirements (Cole et al., 
2013). The FPN has also been implicated in other functions, including 
initiating and adjusting cognitive control abilities (Corbetta and Shul
man, 2002; Dosenbach et al., 2007; Fair et al., 2007; Cole et al., 2014; 
Lückmann et al., 2014) and working memory performance (Barnes et al., 
2016; Astle et al., 2015). Prior studies indicate that changes in the or
ganization or maturation of the FPN parallel cognitive development 
(Luna et al., 2015). 

Neural oscillations are a mechanism by which network connectivity 
is facilitated (Engel et al., 2013; Fries, 2015) and may be used to assess 
the FPN during resting-state. Theta (5–8 Hz) and alpha (9–13 Hz) os
cillations specifically map onto the FPN and are also related to attention, 
memory, affect, and cognitive processing (Klimesch, 1999; Aftanas 
et al., 2001; Başar et al., 2001a, 2001b; Klimesch et al., 2007; Ciesielski 
et al., 2010). Both are involved in long-distance integration of neuronal 
activity (von Stein & Sarnthein, 2000; Donner and Siegel, 2011). In 
contrast to alpha power, which is strongest in parietal cortex during eyes 
closed rest, frontal theta power increases during task-performance (Kli
mesch, 1999). 

Prior MEG and EEG studies have found a decrease in power spectral 
density (PSD) with increasing age in lower frequencies (delta 1–4 Hz, 
theta 5–8 Hz) (Cragg et al., 2011; Gómez et al., 2017; Brookes et al., 
2018) and an increase in PSD with increasing age in higher frequencies 
(alpha 9–13 Hz, beta 4–29 Hz, gamma 31–58 Hz) (Gasser et al., 1988a; 
Klimesch, 1999; Clarke et al., 2001; Cragg et al., 2011; Gómez et al., 
2017; Anderson and Perone, 2018; Perone et al., 2018). Measuring the 
underlying PSD changes may be done at the source or sensor level with 
most studies examining PSD at the sensor level. Examining PSD at the 
source level remains a strength for MEG (Pathak et al., 2016; Khan et al., 
2018) and is increasingly being used for EEG (Rodríguez-Martínez et al., 
2015; Pani et al., 2020). Using source PSD to characterize develop
mental change is a reliable method given that MEG spectral measures 
have good to excellent test-retest reliability (Candelaria-Cook et al., 
2019). However, little is known about how source PSD is related to 
behavioral and cognitive measures in children. 

Alpha reactivity, which is an estimate of alpha power reduction from 
eyes closed to eyes open conditions, is also associated with cognitive 
health; prior MEG/EEG studies identified systematic differences in alpha 
reactivity in clinical populations (Stam et al., 2005; Ciesielski et al., 
2007; Cornew et al., 2012; Wilson et al., 2013; Wang and Meng, 2016; 
Hassan et al., 2017). For instance, alpha reactivity may be a marker of 
cholinergic system integrity (Wan et al., 2019). In children, alpha 
reactivity increases with age (Somsen et al., 1997) and decreases in late 
adulthood and in neurodegenerative disorders like Alzheimer’s disease 
and Lewy body dementia (Schumacher et al., 2020). However, the 
relationship between alpha reactivity and attention in childhood has yet 
to be examined. 

The developmental trajectory of FPN is not well understood, limiting 
our ability to identify how aberrant maturation of this circuit may be 
associated with developmental psychopathologies and other behav
ioral/cognitive challenges. Further, the association between resting- 

state activity and neuropsychological task performance during devel
opment is unclear. Based on the literature we examined the spectral 
characteristics of theta (5–8 Hz) and alpha (9–13 Hz) activity across a 
priori regions of interest (ROIs) of FPN in younger children versus older 
children. We also examined the relationship between PSD across FPN 
during resting-state and individual differences in top-down attentional 
control as measured by neuropsychological tests. We hypothesized that 
while at rest, older children and children with high attentional skills 
would have higher parietal alpha and frontal theta activity compared to 
young children and children with low attentional skills. We also ex
pected that older children would have lower theta and alpha power 
across FPN while at rest compared to younger children. 

2. Material and methods 

2.1. Participants 

As part of a larger longitudinal study on neurodevelopment, the 
present study included 65 typically developing children, ages 9–14 years 
(Mage = 11.34, SD = 1.76; 31 females). Participant characteristics are 
presented in Table 1. To consider developmental stages, children were 
separated into two groups to assess differences between younger chil
dren (9–11 years) and older children (12–14 years). 

The sample characteristics, sampling, and methods of the Develop
mental Chronnecto-Genomics (DevCog) study, a longitudinal develop
mental study, are described in depth in a separate manuscript (see 
Stephen et al., 2021). Of the original 102 participants enrolled at the 
New Mexico site, 26 data sets were not yet processed due to missing 
MEG and/or MRI scans at the time of this analysis, three were removed 
due to noisy data and eight were excluded due to disclosure of exclu
sionary criteria following participation. Exclusionary criteria included 
history or current clinical diagnosis of any DSM-5 disorder, develop
mental and neurodevelopmental disorders based on parent-report, 
medication affecting the central nervous system (e.g. Ritalin, SSRIs), 
parental history of psychiatric disorders, and parental-report of prenatal 
exposure to drugs or alcohol. This research was approved by the Ches
apeake IRB and conforms with the Declaration of Helsinki. All partici
pants and their parent/legal guardian gave assent/informed consent 
prior to the performance of any study procedures. 

2.2. Measures 

2.2.1. Neurobehavioral measures 
Neurobehavioral data were collected after the MEG scan. Partici

pants completed the NIH Toolbox Cognition Battery, of which two tasks 
were used to assess top-down attentional control: The Flanker Inhibitory 
Control and Attention Test (FICA; Zelazo et al., 2013) and the Dimen
sional Change Card Sort Test (DCCS; Frye et al., 1995; Zelazo, 2006). 
FICA is derived from the original Eriksen flanker test (Eriksen and 
Eriksen, 1974) and the Attention Network Test (Fan et al., 2002; Rueda 
et al., 2004), which measures attention and executive function. Partic
ipants were asked to focus upon an arrow located in the middle of the 

Table 1 
Participant demographics.  

Group n Age Mean (SD) IQ Mean (SD) 

Younger Children 35 
(16F) 

10.27 (0.88) 111.4 (11.63) 

Older Children 30 
(14F) 

13.45 (0.97) 107.6 (15.72) 

FICA-L 16 
(6F) 

12.03 (1.82) 100.8 (15.11) 

FICA-H 45 
(23F) 

11.60 (1.86) 112.4 (12.08) 

Note. FICA = NIH Toolbox - Flanker Inhibitory Control and Attention Test; L =
Low attentional group; H = High attentional group; F = Female. 
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screen while inhibiting attention to stimuli nearby (e.g. flanking ar
rows). Participants responded by pressing buttons to congruent and 
incongruent signals (20 mixed trials). DCCS measures task switching or 
set shifting (i.e., the capacity for switching among strategies or tasks). 
Participants were shown two target cards (i.e. brown boat and a white 
rabbit) and were asked to sort them based on one dimension (i.e. color or 
shape) and then switch dimensions throughout the task. Performance 
scores for both FICA and DCCS, were normed (M = 50, SD = 10) and 
fully corrected for age, educational attainment (parent’s education used; 
education may be used as a proxy for socioeconomic status, SES), and 
race/ethnicity (e.g. White, Asian, Black, Hispanic, multiracial). Partici
pants were placed into low (scores < 42) and high (scores ≥ to 42) 
attentional groups for both FICA and DCCS. 

The NIH Toolbox is one of the few batteries that is well-standardized 
and normed across multiple demographic variables in a large sample 
(Casaletto et al., 2015), which decreases the false positive rate of 
abnormal responses in underrepresented groups (i.e. most norms are 
based on typical, neurologically-healthy White, North Americans) 
(Heaton et al., 2009; Lezak et al., 2012; Casaletto et al., 2015). 

2.2.2. MEG behavioral tasks 
All participants attended a 75-min-long MEG visit which included 5 

min of eyes open and eyes closed resting-state (10 min of total resting- 
state). The other tasks are described elsewhere (Stephen et al., 2021). 
The order of eyes open/eyes closed was randomized across participants. 
In the eyes open condition, participants were asked to gaze at a fixation 
cross projected onto a screen placed 100 cm in front of them. In the eyes 
closed condition, participants were instructed to rest quietly and remain 
with their eyes closed until they were instructed to open them. During 
both conditions the participants were instructed to rest quietly without 
thinking of anything in particular. 

2.3. MEG data acquisition and processing 

MEG data were collected using the Elekta Neuromag (Elekta Oy, 
Helsinski, Finland) 306-channel whole-head biomagnetometer in a 
magnetically shielded room (Vaccumschmelze-Ak3B; Hanau, Germany) 
at the Mind Research Network in Albuquerque, New Mexico. Electro
oculogram (EOG) electrodes (placed above the left eyebrow and lateral 
to the right outer canthi) and electrocardiogram (ECG) electrodes 
(placed on the left and right clavicle) were used to provide signals for 
artifact rejection of eye-blinks, eye movement, and heartbeat. Four head 
position indicator (HPI) coils were placed on the participants’ left and 
right mastoid bone and forehead to determine head position while in the 
MEG scanner. The locations of these HPI coils were registered to the 
head shape/size and position of three fiducial points (left and right 
preauricular and nasion) using 3D digitization equipment (Fast Trak; 
Polhemus, Colchester, VT). Participants sat upright during recording 
and were monitored using audio and video link between the magneti
cally shielded room and control room. Continuous HPI monitoring was 
enabled throughout MEG data collection to allow for motion correction. 

The head center for each participant was identified using the Neu
romag MRIlab software by co-registering each participant’s structural 
MRI with the MEG HPI data. Structural MRIs were obtained from 52 of 
the 65 (80%) participants. Source locations for the other 13 participants 
for whom no structural MRIs were available were mapped onto struc
tural volumes obtained from participants with similar head size, age, 
and gender who had successfully completed the MRI scan. This method 
has been found to produce low source estimation errors of approxi
mately 5–10 mm using a participant’s MRI and the best-fit MRI (Holli
day et al., 2003). Sagittal T1-weighted anatomical MR images were 
obtained using a Siemens TIM Trio 3T MRI system with a 32-channel 
head coil. 

The MEG data were collected at a sampling rate of 1000 Hz with an 
anti-aliasing filter with a passband of 0.1–330 Hz. Raw MEG data were 
filtered for noise sources and corrected for head motion with the 

Neuromag Maxfilter 2.1 software using the temporal extension of signal 
space separation (t-SSS) method and movement compensation (Taulu 
and Kajola, 2005; Taulu and Hari, 2009). Eye blink and cardiac artifacts 
were automatically identified from the EOG and ECG channels, respec
tively, and eliminated using signal space projection (SSP) (Uusitalon and 
Ilmoniemi, 1997) in MNE software (Gramfort et al., 2014). The 
continuous data obtained for each rest condition (eyes open, eyes 
closed) were then segmented into 2 s duration epochs. Data epochs with 
large amplitude artifacts with the magnetic field at any sensor exceeding 
5 pT were rejected. 

Next, cortical source analysis of the MEG data was performed using 
the FreeSurfer, Neuromag, and MNE software packages. We began with 
an automatic cortical reconstruction and subcortical segmentation from 
MPRAGE MRIs using the FreeSurfer software recon-all function. Then, a 
bilateral hemisphere surface-based source space was created using eight 
times recursively subdivided octahedron spacing. Next, boundary 
element model (BEM) meshes were created automatically using the 
watershed algorithm (Ségonne et al., 2004) from the MNE python 
software package which produces brain, inner skull, outer skull and 
outer skin surface triangulation. Each surface triangulation was 
isomorphic with an icosahedron, which was recursively subdivided, 
yielding 5120 triangles. The inner skull file was used for the single 
compartment BEM forward model. 

A forward solution was calculated using a single layer BEM. The 
loose variable was set to 0.2 which is the MNE default for surface- 
oriented source space. For depth weighting the default coefficient, 0.8, 
was used with cortical patch statistics to define normal orientations. The 
inverse operator previously calculated was applied to each epoch in the 
MEG data using dynamic statistical parametric mapping (dSPM) (Dale 
et al., 2000) an anatomically constrained linear estimation with a reg
ularization parameter with a signal to noise ratio of 3. Next, a time 
course for each label and source estimate was extracted with the mean 
flip method which averages the source estimates within each label with 
sign flips to reduce signal cancellation. 

Normalized power per frequency band was obtained by calculating 
the total power across the frequency range of interest (1–58 Hz) and 
dividing the power within frequency band by the total 1–58 Hz power. 
Five individual files were created, delta (1–4 Hz), theta (5–8 Hz), alpha 
(9–13 Hz), beta (14–29 Hz), and gamma (31–58 Hz) for each partici
pant. Alpha reactivity was used as a measure of arousal and was 
calculated using normalized spectral power. The following formula was 
used for each ROI: Alpha reactivity = (eyes closed – eyes open)/eyes 
open. Therefore, the greater the alpha reactivity index, the greater the 
difference between eyes open and eyes closed alpha reactivity. 

ROI analysis was used to examine statistical significance between 
groups in select regions. Data from a priori ROIs in FPN were analyzed, 
which included two frontal regions, i.e., rostral middle frontal (rMF) and 
rostral anterior cingulate cortex (rACC) and two posterior regions, i.e., 
inferior parietal (IP) and precuneus (PC). The ROIs were selected using 
the DKT atlas (Klein and Tourville, 2012), which cover 62 regions and is 
the standard choice for MEG analysis. All spectral data were exported to 
MATLAB (2018a, MathWorks) and run through custom scripts to sum
marize measures. 

2.4. Statistical analysis 

All statistics were performed using SPSS (version 26). Outliers for 
PSD and neuropsychological scores were removed by converting data to 
z-scores and replacing absolute values that were 3.29 or greater with the 
average score of the participant’s age and gender group (Field, 2009). 
Repeated Measures Analysis of Variance (RM-ANOVAs) were calculated 
to test group differences with statistical thresholds set at p < .05, unless 
otherwise noted. When applicable, Greenhouse-Geisser corrections were 
made to account for violations of sphericity. Effect sizes are reported 
using partial eta2. Pairwise comparisons were adjusted for multiple 
comparisons by Bonferroni correction. 

I. Solis et al.                                                                                                                                                                                                                                      



Neuropsychologia 159 (2021) 107914

4

Spectral data were analyzed using omnibus RM-ANOVA with age 
group (9–11 years & 12–14 years) as between-subject factor, and the 
eight regions (Left, Right hemisphere: rMF, rACC, IP, & PC) as repeated 
measures. Each resting-state (eyes open, eyes closed) and frequency 
band (theta, alpha) was analyzed separately based on a priori 
hypotheses. 

3. Results 

To test whether older children had higher parietal alpha (9–13 Hz) 
and frontal theta (5–8 Hz) spectral power, RM-ANOVAs were calculated 
on normalized PSD values with age group as the between-subjects factor. 
Separate analyses were performed for eyes open and eyes closed. 

3.1. Eyes open 

There was a significant main effect for PSD across regions within 

theta (F (3.2, 203.6) = 27.64, p < .001, ηp2 = 0.305) and alpha (F (1.8, 
114.1) = 26.95, p < .001, ηp2 = 0.300) frequency bands. Pairwise 
comparisons, adjusted for multiple comparisons by Bonferroni correc
tion, revealed greater theta and alpha power in parietal regions relative 
to frontal regions, Fig. 1. There were no significant differences between 
age groups. To examine whether children with higher attentional skills 
had higher parietal alpha and frontal theta activity, RM-ANOVAs were 
performed within theta and alpha bands. There were no theta or alpha 
significant differences for either low/high FICA and DCCS performance. 

3.2. Eyes closed 

There was a significant main effect for PSD across regions within 
theta (F (2.8, 179.2) = 34.08, p < .001, ηp2 = 0.351) and alpha (F (2.0, 
127.6) = 37.41, p < .001, ηp2 = 0.373). Bonferroni adjusted pairwise 
comparisons revealed greater theta and alpha power in parietal regions 
relative to frontal regions. Additionally, the left rMF (M = 0.016, SEM =

Fig. 1. Mean spectral power in a) theta (5–8 Hz) and b) alpha (9–13 Hz) frequency bands, eyes open and c) theta and d) alpha frequency bands, eyes closed across 
younger and older children. Frontal regions had significantly lower power spectral density (PSD) compared to parietal regions in both frequency bands in both 
conditions. L = left; R = Right; rMF = rostral middle frontal; rACC = rostral anterior cingulate cortex; IP = inferior parietal; PC = precuneus. 
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0.002) had significantly higher alpha power relative to the left rACC (M 
= 0.015, SEM = 0.001, p = .003) and right rACC (M = 0.015, SEM =
0.001, p < .001). There was no significant difference between age 
groups. 

Within alpha, there was a significant attentional group difference in 
FICA (F (1, 59) = 4.90, p = .031, ηp2 = 0.077), indicating the high 
attentional group had higher PSD mean (M = 0.018, SEM = 0.001) 
relative to the low attentional group (M = 0.014, SEM = 0.001), see 
Fig. 2. There was no significant difference between the DCCS attentional 
groups. 

3.3. Alpha reactivity 

Alpha reactivity index was calculated to measure the difference be
tween eyes open and eyes closed. There was a significant difference in 
alpha reactivity across regions in all participants (F (2.2, 141.2) = 3.60, 
p = .025, ηp2 = 0.054). One sample t-test indicated alpha reactivity in 
parietal region was significantly higher compared to alpha reactivity in 
frontal regions. Bonferroni adjusted pairwise comparisons revealed a 
significantly greater alpha reactivity in the right rMF (M = 0.198, SEM 
= 0.035) compared to left rACC (M = 0.136, SEM = 0.034, p = .04) and 
right rACC (M = 0.115, SEM = 0.033, p = .002). There were no other 
significant differences in alpha reactivity found across age groups or 
attentional groups (FICA and DCCS groups). 

4. Discussion 

The FPN is involved in top-down attentional control (Corbetta and 
Shulman, 2002; Bressler et al., 2008) and has a protracted development 
through adolescence and early adulthood (Ciesielski et al., 2006; Chai 
et al., 2017). However, the developmental patterns in FPN using spectral 
power and its relation to neuropsychological performance are not well 
understood. We focused on four ROIs (rMF, rACC, IP, & PC) based on 
previous studies (Fox et al., 2005; Fair et al., 2007; Berry et al., 2017) 
identifying these regions as being part of the FPN. We found that 
younger children (ages 9–11 years) and older children (ages 12–14 
years) did not differ significantly in spectral power in the theta (5–8 Hz) 
or alpha (9–13 Hz) frequency bands across FPN in either eyes open or 
eyes closed during resting-state. However, all participants had signifi
cantly higher theta and alpha spectral power in parietal regions 
compared to frontal regions during both eyes open and eyes closed. This 
finding is in line with previous work showing high alpha power in 

posterior regions (Gasser et al., 1988a, 1988b; Wada et al., 1996). High 
theta power in parietal regions has also been observed among infants 
and young children (Clarke et al., 2001; Orekhova et al., 2001), thus 
showing a maturation progression from parietal to anterior regions 
(Matousek and Petersen, 1973; Gasser et al., 1988b). This suggests that 
children at this age range (9–14) may be primarily using parietal regions 
compared to frontal regions and the progression may shift during 
adolescent years. 

During eyes closed, the high attentional FICA group had significantly 
higher alpha power compared to the low attentional FICA group during 
resting-state. That is, participants with higher alpha spectral power 
during resting-state had higher performance scores on FICA. Increased 
alpha power at rest may assist with subsequent neuropsychological tasks 
which is similar to previous studies examining ongoing brain recordings 
during cognitive task performance (Klimesch, 1999, 2012, 2012; 
Hanslmayr et al., 2005, 2007; van Dijk et al., 2008; Mathewson et al., 
2009). Further, others have found that larger resting-state alpha power 
may be related to a person’s increased inhibitory control (MacLean 
et al., 2012) by pre-activating task-relevant networks that leads to 
greater efficiency in selecting relevant stimuli (Jann et al., 2010). 
Similarly, Bonnefond and Jensen (2012) found that alpha power pre
dicted the participants’ task performance during a modified Sternberg 
working memory task measured with MEG and alpha power increased 
prior to an anticipated distractor. These findings suggest that 
resting-state activity may be able to predict cognitive abilities in sub
sequent tasks. 

It is important to note that the low and high attentional FICA groups 
differed in their IQ performance, where the low attentional group had 
significantly lower IQ scores than the high attentional group. This is in 
line with other studies suggesting that attention is associated with in
telligence (Schweizer and Moosbrugger, 2004; Cowan et al., 2006). It 
has been long debated whether attention is related to intelligence but 
through structural examination of attention there is evidence for a de
gree of overlap between both (Schweizer et al., 2005; Schweizer, 2010). 
Therefore, the current study did not covary for intelligence as selective 
attention may be a constituent of intelligence. The current results should 
be interpreted with caution given that we cannot separate these two 
variables. 

We examined alpha reactivity which revealed no significant differ
ence between age groups. This finding differs with previous studies that 
have found an increase with age (Somsen et al., 1997) in children 5–12 
years. The largest change was detected between 6-7 and 9–11 year olds. 
The difference in age between the two studies may explain the lack of 
age-related changes in alpha reactivity reported here. Furthermore, our 
finding is in line with others who have suggested that low alpha reac
tivity may be associated with neuropsychiatric disorders (Besthorn 
et al., 1997). For instance, children with ADHD had significantly less 
alpha reactivity in the frontal regions compared to typically developing 
children (Fonseca et al., 2013). Additionally, adults with cognitive 
decline (van der Hiele et al., 2008), Alzheimer’s disease (Besthorn et al., 
1997; Babiloni et al., 2010; Mcbride et al., 2014), and schizophrenia 
(Candelaria-Cook et al., 2019) have been associated with reduced alpha 
reactivity. Since this cohort was exclusively composed of children with 
healthy development, low variation in alpha reactivity is expected. 

However, there was greater alpha reactivity in the right rMF region 
compared to the left and right rACC across all participants. The rMF has 
been associated with inhibition in children, ages 9–12 (Heitzeg et al., 
2014). These authors found that children with poor inhibitory control 
performance on an fMRI go/no-go task had reduced activity in the left 
rMF. Furthermore, adolescents with autism spectrum disorders utilized 
frontal regions and failed to recruit parietal regions while performing 
inhibitory tasks (Vara et al., 2014). Conversely, controls recruited both 
frontal and parietal regions and this pattern was associated with better 
performance on inhibitory tasks. Collectively, these data suggest that 
typical development of the rMF may lead to greater inhibitory control 
which may be associated with greater alpha reactivity in the rMF region. 

Fig. 2. Eyes closed, mean alpha (9–13 Hz) spectral power across the Flanker 
Inhibitory Control and Attention Test (FICA) attentional groups. A significant 
difference found in eyes closed resting-state, revealing greater alpha in higher 
attentional group compared to low attentional group. PSD = power spectral 
density; L = left; R = Right; rMF = rostral middle frontal; rACC = rostral 
anterior cingulate cortex; IP = inferior parietal; PC = precuneus. 
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It is important to address the limitations of the current study. First, 
the narrow age range (9–14 years) limits the broader understanding of 
neurodevelopment of spontaneous neural activity and resting-state 
connectivity. However, major developmental changes occur within 
this age range (Eccles, 1999; Fair et al., 2009; Barber et al., 2013; 
Anderson and Perone, 2018; Marek et al., 2018) including a period of 
increased onset of psychopathology (Walker, 2002; Rutter, 2007). Thus, 
by studying typically developing youth, we may then better understand 
how brain development differs in youth with developmental disorders. 
Secondly, the study used an a priori ROI approach to examine the FPN 
which limits the analysis of whole-brain connectivity. Future studies are 
needed to examine the role of other networks in brain development. 

4.1. Conclusion 

In this study, we demonstrate that developmental changes are not 
evident in the FPN across theta (5–8 Hz) and alpha (9–13 Hz) frequency 
bands in this age group. Furthermore, resting alpha power during eyes 
closed is greater in children with better performance in the FICA 
attention task relative to lower performing children. Resting-state 
cortical networks have been mostly examined using fMRI, but the cur
rent findings support the use of MEG with its higher temporal resolution 
to study the role of spontaneous neural activity and brain networks in 
cognitive development. 
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