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a b s t r a c t

The N400 event-related potential (ERP) is a brain response to any potentially meaningful stimulus. Like
reaction time (RT), the amplitude of this ERP is reduced by the prior presentation of a semantically related
stimulus. However, results of a few studies suggest that this semantic matching effect could be reduced
when using already presented stimuli, and rapidly disappear with further presentations. On the other
hand, the topography of the N400 on the scalp depends on the semantic category of the stimulus. Like the
semantic matching effect, this category effect also seems to be smaller for already presented stimuli. Taken
together, these facts suggest that the semantic processes indexed by the N400 could be absent for stimuli
riming
ultiple repetitions

vent-related potentials

that have already been presented multiple times. Here, we show that this conclusion would be premature.
We used the same semantic categorization task in conditions of massive repetition and in conditions of
single presentation. We found that the effects of semantic matching and of semantic category on RTs and
N400s were similar in the two conditions. Moreover, the localization of the sources of the independent
components accounting for the match effect revealed brain regions that were common to both conditions.
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These results suggest that
content word.

. Introduction

One frequent way to study how the brain processes the meaning
f words is to explore the semantic priming effect, that is the facili-
ation of the processing of a word (e.g., nurse) which is produced by
he prior presentation of a semantically related word (e.g., doctor)
Meyer & Schvaneveldt, 1971). Behavioral priming effects consist in
educed reaction times (RTs) to primed words compared to words
receded by semantically unrelated words. Priming effects also
ppear in the modulation of an event-related brain potential (ERP):
he N400, a negative electrical field that peaks around 400 ms after
ord onset and constitutes a response of the brain to any potentially
eaningful stimulus (Kutas & Federmeier, 2000). Primed words

licit smaller N400 potentials than unprimed words. Such RT and
400 priming effects have been observed in hundreds of exper-
ments (see Kutas & Federmeier, 2000 for a review) including in
asks where access to the meaning of words is not necessary, such
s lexical decision tasks (e.g., Bentin, McCarthy, & Wood, 1985).
owever, these effects are stronger in tasks that require subjects

∗ Corresponding author at: Department of Psychiatry, McGill University, Mon-
réal, Québec, H3A 1A1, Canada.

E-mail address: bruno.debruille@douglas.mcgill.ca (J.B. Debruille).
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s and RTs could be used to study the semantic processes triggered by one
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o focus on the semantic properties of words (Chwilla, Brown, &
agoort, 1995; Holcomb, 1988; Mitchell et al., 1991), such as when

ubjects are asked to decide if the meaning of a word is related
o the meaning of the preceding word (e.g., Debruille et al., 2007;
iang & Kutas, 2005; Kiang, Kutas, Light, & Braff, 2007). In these

asks, RT and N400 effects are named semantic matching effects.
RTs and N400s are used not only to measure the extent to which

ome words are related to others, but also to study the processing of
ords according to their semantic category. Shorter RTs to concrete
ords (e.g., ‘apple’) than to abstract words (e.g., ‘idea’) have been

onsistently found (reviewed in Paivio, 1991). This is referred to as
he concreteness effect. Moreover, within concrete words, shorter
Ts for natural categories (e.g., names of animals) than for names
f artifacts (e.g., names of tools) have been frequently described
Kiefer, 2001; Paz-Caballero, Cuetos, & Dobarro, 2006; Price &
umphreys, 1989; Proverbio, Del Zotto, & Zani, 2007). Similarly,
400s to concrete words have larger amplitudes than those evoked
y abstract words (Kounios & Holcomb, 1994; West & Holcomb,
000). Within concrete words, different scalp distributions have

een associated with words from living vs. artifactual categories
Antal, Keri, Kovacs, Janka, & Benedek, 2000; Kiefer, 2001, 2005;
az-Caballero et al., 2006; Proverbio et al., 2007; Sim & Kiefer, 2005;
itnikova, West, Kuperberg, & Holcomb, 2006). The topography of
hese category effects is consistent with the results of neuropsy-

http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:bruno.debruille@douglas.mcgill.ca
dx.doi.org/10.1016/j.neuropsychologia.2008.10.007
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hological and neuroimaging studies that show the existence of a
istributed semantic system, where different categories of stimuli
re associated with different brain regions (Martin & Chao, 2001).

However, the study of the processing of words according to
emantic category appears limited to the categories that subsume a
ufficient number of exemplars. Indeed, repeating the presentation
f exemplars in order to have a sufficient number of trials for each
ategory appears impossible, a priori. RTs and N400 amplitudes are
otably reduced with only a few repetitions, an effect that also
eems to interact with semantic matching (Besson, Kutas, & Van
etten, 1992; Mitchell, Andrews, & Ward, 1993). As a matter of fact,
single repetition is already associated with an important decrease

n RTs. This is known as the repetition priming effect (Monsell,
985; Scarborough, Cortese, & Scarborough, 1977). After multiple
epetitions, it seems that a ‘floor’ is reached, although there are
ome discrepancies between studies. Not considering the ‘special
ase’ of immediate repetition for which sensory memory effects
ay intervene (Henson, 2003), certain studies found no further RT

acilitation after only two (Besson et al., 1992; Forbach, Stanners,
Hochhaus, 1974; Smith & Halgren, 1989) or three stimuli repe-

itions (Kazmerski & Friedman, 1997). In contrast, others found a
inear decrease in RTs using five (Jiang, Haxby, Martin, Ungerleider,

Parasuraman, 2000) or nine repetitions (Van Strien, Hagenbeek,
tam, Rombouts, & Barkhof, 2005).

For N400 amplitudes, the major reduction with repetition is part
f the so-called old/new ERP effect (for a review see Rugg & Curran,
007). It can still be seen with lags up to 30 min between the two
resentations (Duzel, Yonelinas, Mangun, Heinze, & Tulving, 1997).
ome studies reported that this amplitude reduction was propor-
ional to the number of repetitions (Finnigan, Humphreys, Dennis,

Geffen, 2002; Rugg, Brovedani, & Doyle, 1992; Van Petten, Kutas,
luender, Mitchiner, & McIsaac, 1991). Others found floors in N400
mplitude as early as the second or third presentation (Besson et
l., 1992; Kazmerski & Friedman, 1997; Kounios & Holcomb, 1992;
an Strien et al., 2005; Young & Rugg, 1992). Therefore N400 con-

rasts with other ‘semantic ERPs’, such as the recognition potential
RP) and the mismatch negativity (MMN) elicited by words, which
eem to be impervious to repetition (for the RP see Martin-Loeches
t al., 2002; for the MMN see Pulvermuller & Shtyrov, 2006).

Nevertheless, only a few studies have assessed the impact of rep-
tition on the effects of category and of semantic matching. For the
ffect of category, Kiefer (2005) and Sim and Kiefer (2005) reported
o interaction between repetition and category on RTs. In other
ords, the semantic category of the words (natural or artifactual)

ppeared to have the same impact on RTs at the first and second
resentation. In contrast, when considering ERPs in the N400 time
indow, interactions were found. The category effects were smaller

Sim & Kiefer, 2005) or non-existent (Kiefer, 2005) for stimuli that
ad been already presented. However, the use of a shape judgment
ask in Sim and Kiefer (2005), and that of a lexical decision task in
iefer (2005) could be responsible for this lack of resistance. Cate-
ory effects are more robust in tasks where semantic processing is
xplicitly required (for a review see Devlin et al., 2002).

As for semantic matching, Hanze and Meyer (1995) found a
eduction of the effect on RTs when words were repeated in a
aming task. Behavioral studies using lexical decision tasks have
ometimes reported additive effects of semantic priming and rep-
tition (den Heyer, Goring, & Dannenbring, 1985; den Heyer, 1986),
nd sometimes, a reduction of priming with repetition (Carroll

Kirsner, 1982; den Heyer & Benson, 1988). One interpretation

f these discrepancies is that the two effects interact only when
he number of trials between repetitions is relatively limited (i.e.,
etween 0 and 7, see den Heyer & Benson, 1988). As for the N400,
wo studies using words in sentences found that repetition reduced
emantic matching effects (Besson et al., 1992; Mitchell et al., 1993).
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n Besson et al. (1992), where two levels of repetitions were con-
rasted, the robust N400 difference found between semantically
ongruous and incongruous sentence endings was attenuated at
he second presentation and eliminated by the third presentation of
he sentences. Their results suggest that semantic matching effects
isappear at about the same time as the amplitude of the N400
eflection reaches floor levels. However in this study, complete
entences were repeated, making it likely that their final words,
o which N400s were recorded, could be anticipated (see also
lichney et al., 2000). These words may thus have been ‘completely
rimed’, hence the quasi absence of N400 matching effect. This pos-
ibility is reinforced by the instruction to remember sentences’ final
ords that was given to the subjects. In contrast, in another study
sing pairs of words, Radeau, Besson, Fonteneau, & Castro (1998)
eported that the effect of semantic matching on N400s and RTs at
he second presentation was the same as that observed at the first
resentation. However, the lag between the two presentations of a
ord was long (20 min) and the effect of repetition on N400s was

mall and only marginally significant, which is quite unusual.
In fact, the large reduction of RTs and of N400 amplitudes found

n many studies with just one repetition suggests that little or noth-
ng remains to be modulated after several repetitions. Accordingly,
o effect of semantic matching and of semantic category would be
xpected. On the other hand, the evidence showing an absence of
emantic matching and category effects on RTs and N400s for stim-
li that have already been presented is scarce. The persistence of
hese effects for highly repeated stimuli does not appear impossi-
le. In fact, such effects would be consistent with the results of
recent fMRI study that suggest that repetition modulates the

ctivity of brain areas different from the areas whose activity is
odulated by semantic matching (Raposo, Moss, Stamatakis, &

yler, 2006). Repetition could thus suppress the activity of only
part of the N400 generators. Others could still be modulated by

emantic matching and category, notably when semantic process-
ng is explicitly required.

The objectives of the present study were thus to test whether
ffects of category and of semantic matching on RTs and N400s
ould still be found at high repetition rates. To achieve this goal,
e chose an explicit semantic task in the hope of maintaining the

emantic processing of repeated words. Subjects had to decide if the
eaning of a target word matched that of a prime word. Two ver-

ions of this task were used. The first version was a ‘classic’ design in
hich two category words were used as primes: ‘vivant’ and ‘chose’,
hich mean ‘living’ and ‘thing’ in French. Numerous non-repeated

xemplars of these two categories were used as targets. Match and
ategory effects were thus expected on RTs and N400s. The second
ersion of our task was the critical one. Primes and targets were
nverted: the primes were the numerous non-repeated category
xemplars and the target words, to which N400s were recorded,
ere simply the two category words, each presented 60 times.

hese target words occurred at random with equal probability (0.5).
Note that the category words ‘vivant’ and ‘chose’, that is, ‘liv-

ng’ and ‘thing’, were chosen not only to obtain category effects
n RTs and N400s but also to obtain differential semantic matching
ffects. To achieve this goal, in both versions of the task, the category

vivant’ was only associated with animal exemplars. Meanwhile, the
ategory ‘chose’ was associated with varied category exemplars:
itchen/desk objects, clothes, tools, furniture, buildings and trans-
ortation means. According to Collins and Loftus (1975), the greater
he number of concepts that are primed in such a broad context,

he less each of them can be primed. We thus expected the cat-
gory ‘chose’ to be a less efficient prime than ‘vivant’ in the first
ersion. Similarly, in the second version, ‘chose’ was less likely to
e primed by the artifact exemplars than the category ‘vivant’ was
o be primed by the animal exemplars. The use of these words could
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hus allow the assessment of semantic matching for two different
trengths of priming. Meanwhile, it also permitted the assessment
f the category effect for unprimed targets, for which it is usually
bserved (Antal et al., 2000; Kiefer, 2005; Paz-Caballero et al., 2006;
roverbio et al., 2007; Sitnikova et al., 2006).

To characterize category effects, we compared their scalp distri-
ution between versions. To analyze the semantic matching effects
f the two versions, we compared their amplitudes, their time of
nset, the latencies of their peaks and their distribution on the
calp. Finally, to see to what extent these match effects could be
ssociated with similar brain generators, we submitted the sub-
raction ERPs to an independent component analysis (ICA) and a
ipole source modeling of the independent components obtained.

If the semantic processes indexed by N400s and RTs are still
resent for the highly repeated target words of version 2, these

ndexes should be modulated by semantic category and semantic
atching. Alternatively, if these semantic processes are abolished

n the second version, the processing of the two repeated target
ords might be limited to the most salient perceptual differences

xisting between them. Indeed, in the second version, subjects may
nticipate the correct answer after the presentation of the prime
for instance ‘vivant’ if the prime is an animal name) and then
apidly consider whether the string of letters that occurs is ‘vivant’
r whether it is ‘chose’. In this case of physical matching, target pro-
essing would be impervious to the semantic category of the target
ord and no differential matching effect should be seen despite

he unequal semantic priming strengths of the two categories used.
esults were published in an abstract form in Renoult & Debruille
2008).

. Methods

.1. Participants

32 right-handed native French speakers (14 women and 18 men) took part in the
wo versions of the experiment. They had normal or corrected-to-normal vision and
o history of neurological or psychiatric disorders. They were recruited by newspa-
er advertisements among people aged between 18 and 50 years (mean: 32 ± 10),
nd had at least a college level of education. They signed an informed consent form
ccepted by the Douglas Institute Research and Ethics Board. Data of five subjects
ere excluded from analyses due to excessive ocular artifacts in the EEG recordings.

.2. Task and procedure

Subjects were seated comfortably in a dimly lit room in front of a computer
creen placed 1 m from their eyes. Black words which length varied from 2.3 to 3 cm
mean: 2.6 ± 0.1) and height from 0.5 to 0.8 cm (mean: 0.68 ± 0.1) were presented
n a white background at the center of this screen. The mean number of letters of
he words was 7 ± 2. Each trial was made of three serially presented French words,
ach occurring for a 1 s duration and followed by a 1 s blank interval. The word

attention’, which has the same spelling and meaning in French and English, initiated
ach trial, followed by the prime word and the target word. In the first version of the
xperiment, the prime was the category word ‘vivant’ (=‘living’) or ‘chose’ (=‘thing’),
nd the target was one of 60 possible exemplars of animals or one of 60 possible
xemplars of artifacts. In the second version, primes and targets were inverted. The
rime was one of 60 possible exemplars of animals or one of 60 possible exemplars
f artifacts, and the target was one of the category words, each presented 60 times.
n both versions, in half of the trials the target word semantically matched the prime
ord and in the other half, it did not. When the target word occurred, subjects had

o respond yes for matches or no for mismatches as rapidly and as accurately as
ossible by pressing one of two keyboard keys with their right index finger. Then,
hey were requested to blink in response to the ‘clignez’ (‘blink’) instruction, which
ppeared 1–1.5 s after the offset of each target stimulus. The next trial began after a
ime interval that randomly varied between 1.5 and 2 s.

Both French category words ‘vivant’ and ‘chose’ are very frequent words, occur-
ing 20,395 and 138,950 times per 100 millions words, respectively, according to
he Brulex database (Content, Mousty, & Radeau, 1990). Exemplar words were taken

mong 120 French names of artifacts and 120 French names of animals. The artifact
ategory was associated with various exemplars (i.e., kitchen/desk objects, clothes,
ools, furniture, buildings and transportation means), while the living category was
nly associated with animal exemplars. These words were selected from among
amiliar words whose frequencies of usage vary between 38 and 50,652 per 100

illions (Content et al., 1990). The mean base-10 logarithm frequency for names of

a
(

v
m
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rtifacts was 3.2 (±0.6) and 2.8 (±0.6) for names of animals. There was no significant
ifference in frequency between the two categories (t = 0.34, p = .73).

The 120 animals’ names were used to make four lists of 30 words matched on
verage frequency and average word length (A1, A2, A3, A4). Similarly, four lists were
lso created out of the 120 names of artifacts (T1, T2, T3, T4). Each exemplar word
as used equally often as a target (in the first version) or as a prime (in the second

ersion) and in a matching or in a mismatching trial. Half of the subjects had the first
nd then the second version, while the order was reversed for the other half of the
ubjects. Subjects were divided into eight subgroups according to the list of words
hey were presented with in each experimental condition and according to whether
hey started by version 1 or 2. Each exemplar word was presented only once during
he experiment but each category word appeared 60 times in each version of the
ask, as a prime or as a target. Note that the term ‘animal targets’ in the text that
ollows refers not only to the trials in which 60 different animal exemplars were
sed as targets in the first version but also to the trials of the second version in
hich the corresponding category word (i.e., the word ‘vivant’) was presented 60

imes as a target (30 times in the match and 30 times in the mismatch condition).
imilarly, the term ‘artifact targets’ refers not only to the trials of the first version in
hich 60 different artifacts exemplars were used as targets but also to the trials of

he second version in which the corresponding category word (i.e., the word ‘chose’)
as presented 60 times.

.3. Data acquisition

Accuracy and reaction time were recorded for each trial. The EEG was recorded
ith tin electrodes mounted in an elastic cap (Electrocap International) from 30

ctive points all referenced to the right ear lobe. 28 of these points were placed
ccording to the extended International 10-20 System (Electrode Nomenclature
ommittee, 1991). These electrode sites could be grouped in a sagittal montage,
hich comprised Fz, FCz, Cz, and Pz, a para-sagittal montage, comprising FP1/2, F3/4,

C3/4, C3/4, CP3/4, P3/4, and O1/2; and a lateral montage, comprising F7/8, FT7/8,
3/4, TP7/8, and T5/6. The remaining two active electrodes were placed below each
ye in order to allow the monitoring of vertical eye movements by comparing their
EG signals to those derived from Fp1 and Fp2. The monitoring of horizontal eye
ovements was done by comparing F8 to F7 signals. The EEG was amplified 20,000

imes by Contact Precision amplifiers. High- and low-pass filter half-amplitude cut-
ffs were set at 0.01 and 100 Hz, with an additional 60 Hz electronic notch filter.
ignals were then digitized on-line at a sampling rate of 256 Hz and stored along
ith stimulus and response codes for subsequent averaging using the Instep (version

.3) software package.
EEG epochs contaminated by eyes movements, excessive myogram, amplifier

aturations or analog to digital clipping were removed offline by setting automatic
ejection criteria. Trials for which analog to digital clipping exceeded a 100 ms dura-
ion, and electrodes for which amplitude exceeded ±100 �V were excluded from
veraging.

.4. Data processing and measures

Mean RTs for each condition were computed using only the correct responses
nd excluding the trials where subjects took more than 2000 ms to respond.

ERPs to target words were computed by averaging the 1000 ms EEG epochs of
hese trials of each experimental condition, using a −200 to 0 ms baseline before tar-
et onset. For measuring the N400s, the mean voltage amplitude for each subject in
ach condition was computed in time windows that were centered on the latencies
f the negative peaks that appeared between 200 and 500 ms on the grand averages
f mismatch trials. These negative peaks culminated at 400 ms (N400) in version 1,
s is classical, and at about 290 ms (N290) in version 2. Mean voltage amplitudes in
ach subject were thus computed in a 350–450 ms time window in version 1 and in a
40–340 ms time window in version 2. The short duration of the time windows (i.e.,
00 ms) was chosen to focus on the negativies and to prevent the inclusion of the
ate positive complex (LPC), the deflection that immediately follows the negativities
f interest.

The latency of the peak of the N400 in version 1 and of the N290 in version 2
ere measured in each subject at Cz by assessing the timing of the maximum of

he negative peak observed between 200 and 500 ms. These measures were done in
he mismatch conditions, where the amplitudes of these negative waves were max-
mal. The waveforms were smoothed until only one negative peak appeared in this
poch. On the other hand, the latency of the onset of the N400 and of the N290 deflec-
ions and the onset latency of the match effects were determined using the method
roposed by Hagoort, Hald, Bastiaansen, & Petersson (2004) (see Section 2.5).

.5. Statistical analyses
For analyzing RTs, we ran a repeated-measures ANOVA with a multivariate
pproach which had, as within-subject factors, version (1st vs. 2nd), target category
animal vs. artifact) and match (match vs. mismatch).

For the mean voltages of ERPs within the 350–450 ms time window for the 1st
ersion and within the 240–340 time window for the 2nd version, three repeated-
easures ANOVAs with multivariate approaches were performed with the same
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ithin-subjects factors and the electrodes factor. For the para-sagittal and the lat-
ral montage, another within-subject factor, hemisphere (right vs. left), was added.
he Geisser and Greenhouse (1959) procedure was used to compensate for the het-
rogeneity of variance of the electrodes factor which had more than two levels. In
his case, the original degrees of freedom are reported together with the corrected
robability level and the epsilon (E) correction factor.

The latency of the onset of the match effect in both versions was determined by
sing the statistical method proposed by Hagoort et al. (2004). The difference wave-
orm (mismatch − match) was tested against zero in a series of running one-tailed
-tests. These tests were performed on the mean amplitudes in 25 ms bins, which
hifted in time by 10 ms (e.g. 150–175; 160–185; 170–195 ms, etc.), in the latency
ange of 150–500 ms after the onset of the critical word. This series of running t-tests
as performed at the midline central electrode (Cz).

Finally, to measure the onset of the N400 and N290 negative deflections
hemselves, similar analyses were done in the mismatch conditions, where the
mplitudes of these negative waves were maximal. These analyses were done in
ach version on an average of animal and artifact targets. This time, the waveforms
ere tested against the mean voltage of the ERPs in a 200–225 ms time window,

hat is, a time window closely centered on the peak of the positive wave, the P2, that
receded the negative deflection under focus.

.6. Independent component analysis and dipole source modeling

In an attempt to compare the ERP generators of the N400 match effect of version
to those of version 2, subtraction ERPs1 were submitted to an ICA and a dipole

ource modeling. These analyses were restricted to animal targets, that is, to the
argets for which we found significant N400 effects (see Section 3).

ICA decomposes the unaveraged EEG (Jung et al., 2001) or the event-related
otentials (Dien, Khoe, & Mangun, 2007; Makeig et al., 1999) into a sum of sparsely
ctivated independent components with fixed scalp maps and maximally inde-
endent time course (Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997). For
iologically plausible components, these component maps have been shown to
early fit the projection of a single equivalent current dipole, allowing hypotheses
s to the localization of this dipole (Onton & Makeig, 2006).

The ICA was conducted with EEGLAB 6.01b (Delorme & Makeig, 2004),
freely available open source toolbox (http://www.sccn.ucsd.edu/eeglab) run-

ing under Matlab 6.5 (The Mathworks). Individual subjects subtraction ERPs
mismatch–match) of 1 s (−200 to 800 ms) from our 30 active electrodes were con-
atenated and submitted to ICA. Decompositions of version 1 and version 2 ERPs
ere performed separately. We applied infomax ICA (Bell & Sejnowski, 1995) with

he EEGLAB function runica (Delorme & Makeig, 2004), which produced 30 inde-
endent components.

Source localizations were computed for all the 30 components with DIPFIT2,
n EEGLAB plug-in that performs component localization by fitting an equivalent
urrent dipole model using a non-linear optimization technique (Scherg, 1990).
he head model used for the analyses was the spherical model (BESA), that is co-
egistered with the average Montreal Neurological Institute (MNI) brain. The brain
tructures where the dipoles were localized were identified using the Talairach atlas
oordinates (Talairach & Tournoux, 1988). The location solution was restricted to the
ray matter, within a search range of 3 mm. Components for which the scalp projec-
ions of the dipoles left more than 15% of the variance of the component scalp maps
nexplained were excluded, as well as components associated to dipoles that were
utside of the head.

We then used the envtopo() function of EEGLAB to find the components that
ade the largest potential contribution to the ERP matching effect (Delorme &
akeig, 2004; Onton, Westerfield, Townsend, & Makeig, 2006). Two 150 ms time
indows centered on the negative deflections observed in the subtractions were
sed: a 400–550 ms window for version 1 and a 235–385 window for version 2.

ndependent components, which, taken together, accounted for at least 80% of vari-
nce (PVAF) in these windows were selected in each version. These components
ere then clustered according to similarity in scalp maps, dipole locations and con-

ribution to the ERPs using the K-means algorithm implemented in EEGLAB (Onton
t al., 2006).

. Results

.1. Behavioral data
The mean number of errors was six, both in version 1 and 2 (=5%
f trials). Given the risk of floor effects, no further accuracy analyses
ere made.

1 We thank S. Makeig for pointing out the possibility of working on data subtrac-
ions with ICA, since it is linear.
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The ANOVA conducted for RTs revealed a main effect of ver-
ion (F(1,26) = 21.9, p < .001) showing that RTs were shorter in
ersion 2 (1029 ms) than in version 1 (1165 ms). A main effect
f semantic matching was found (F(1,26) = 54.41, p < .001) indi-
ating, as expected, that mismatch trials were associated with
onger reaction times (1133 ms) than match trials (1063 ms). Impor-
antly, there was no significant interaction between match and
ersion. Version 2 was thus associated with a match effect that
as similar in amplitude to that of version 1. As expected, the

ffect of semantic matching was significantly greater for animal
argets than for artifact targets (F(1,26) = 27.67, p < .001), with no
ersion × target × match interaction. Post hoc analyses revealed
hat the match effect was generally significant for animal targets
F(1,26) = 164.06, p < .001) but not for artifacts targets.

A main effect of target category was also obtained
F(1,26) = 15.81, p < .001), which indicated that animal targets
ere categorized faster (1074 ms) than artifact targets (1122 ms).

his effect was just significantly (F(1,26) = 4.69, p = 0.04) greater in
he 2nd (995 ms vs. 1063 ms) than in the 1st version (1152 ms vs.
182 ms) but was significant in both versions (F(1,26) = 7.5, p = .01
or version 1 and (F(1,26) = 13.73, p = .001) for version 2). Given that,
s mentioned, the target category interacted with match, post hoc
nalyses were run. They revealed that, in the match conditions, RTs
ere longer for artifact targets (1126 ms) than for animal targets

1002 ms) (F(1,26) = 28.19, p < .001). In the mismatch conditions,
here was a version × target interaction (F(1,26) = 6.46, p = .017).
urther post hoc analyses showed that, in mismatch trials, RTs for
rtifact targets were longer than for animal targets in version 1
F(1,26) = 10.34, p = .003) but not in version 2.

.2. Electrophysiological data

.2.1. General description
Fig. 1 represents the grand averages of the ERPs elicited by the

arget words in the two versions of the task, separating animal tar-
ets (at the top) from artifacts targets (at the bottom). Negative is
lotted upwards in all figures. After a positive wave peaking around
00 ms post-onset, these ERPs include a negative deflection, whose
nset in version 2 (continuous lines) appears to coincide with its
nset in version 1 (dashed lines). For animal targets ERPs, this nega-
ive deflection also appears larger for mismatches (in blue) than for

atches (in red) not only in the 1st but also in the 2nd version. For
hese mismatches, the negative deflection reaches its maximum
arlier in the 2nd (around 290 ms at Cz) than in the 1st version
about 400 ms at Cz). The positive wave that follows the negative
eflection appears to have, consequently, an earlier occurrence in
he 2nd version of the task. In the mismatch condition at Cz, this
ate positive wave peaks around 675 ms in version 1 and around
00 ms in version 2. In Fig. 2, which includes the mismatch–match
RP subtractions, the match effect appears to be substantially ear-
ier in the 2nd than in the 1st version. The effect peaks around
80 ms for animal targets (top of Fig. 2) and 400 ms for artifact
argets (bottom of Fig. 2) in version 1 at Cz electrode. In version 2,
t peaks around 300 ms for animal targets and at about 335 ms for
rtifact targets.

.2.2. Peak latency analyses
Statistical analyses of the peak latencies of the post-P200 neg-

tivities confirmed that these deflections occurred significantly
arlier in version 1 than in version 2 (F(1,26) = 78.49, p � .001).
.2.3. Mean voltage amplitudes
Statistical analyses of the mean voltage amplitudes revealed
main effect of version for all montages (F(1,26) = 75.71,

< .001 for the sagittal; F(1,26) = 45.01, p < .001 for the para-

http://www.sccn.ucsd.edu/eeglab
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ig. 1. Grand average ERPs (n = 27) to target words in the two versions of the sema
ifferent animal exemplars were used as targets in the 1st version (dashed lines), an

n English), was used repeatedly as a target in the 2nd version (continuous lines). Ar
s targets in the 1st version, and to the trials in which the corresponding category w

agittal, and F(1,26) = 71.77, p < .001 for the lateral montage),
ndicating that ERPs were more positive in version 2 than in
ersion 1.

A main effect of match was found on all montages (F(1,26) = 9.55,
= .005 for the sagittal; F(1,26) = 6.30, p = .019 for the para-sagittal,
nd F(1,26) = 4.26, p = .049 for the lateral montage). Most impor-

antly, there was no interaction between match and version, nor any
nteraction between these 2 factors and electrodes or hemisphere,
howing that the match effect was similar in both versions of the
ask and did not differ in its scalp distribution. As expected, the
ffect of match was significantly more important for animal than for

p
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tegorization task. Negativity is up. Animal targets (top) refer to the trials in which
e trials in which the corresponding category word, that is, the word ‘vivant (‘living’

targets (bottom) refer to the trials in which different artifacts exemplars were used
chose’ (‘thing’ in English), was repeatedly used as a target in the 2nd version.

rtifact targets (as illustrated by Fig. 1) at the sagittal (F(1,26) = 6.34,
= .018) and the para-sagittal montage (F(1,26) = 4.46, p = .044). This
ifference was similar in both versions as no multiple interaction

mplying this factor was found.
Analyses restricted to animal targets (Fig. 1, top) showed that

he match effect was significant at all montages (F(1,26) = 16.99,

< .001 for the sagittal; F(1,26) = 9.95, p = .004 for the para-sagittal
nd F(1,26) = 4.49, p = .044 for the lateral montage). There was no
nteraction between match and version or between these factors
nd electrodes or laterality (see Fig. 3A for the voltage maps of
ersion 1 and 2).
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Fig. 2. Waveforms obtained by subtracting ERPs to matching ta

Analyses restricted to artifact targets (Fig. 1, bottom) showed
n absence of main effect of match, except for a trend at the sagit-
al montage (F(1,26) = 3.65, p = .067). For this montage, there was

significant interaction between version, match and electrodes
F(3,78) = 4.27, E = 0.66, p = .02) illustrating that the match effect
as somewhat more important in the 2nd than in the 1st version

nd more so at centro-parietal electrodes than at frontal sites. Post
oc analyses for the sagittal montage confirmed that the match
ffect was never significant for artifact targets in the 1st version.

t only marginally reached significance at the midline central elec-
rode (Cz) in the 2nd version (F(1,26) = 4.55, p = .043) while there
as a trend at Pz (F(1,26) = 3.21, p = .085). For the lateral mon-

age, a significant interaction between match and hemisphere was
ound (F(1,26) = 9.48, p = .005) illustrating that the match effect was

a
s
f
e
a

from ERPs to mismatching targets. For other details, see Fig. 1.

ore pronounced on the right than on the left side (see Fig. 1).
ost hoc analyses for the lateral montage showed that the match
ffect was significant over the right hemisphere (F(1,26) = 8.38,
= .008), and tended to be greater in the 2nd version than in the
st (F(1,26) = 3.02, p = .094).

A main effect of target category was also obtained on all mon-
ages (F(1,26) = 22.29, p < .001 for the sagittal; F(1,26) = 8.12, p = .008
or the para-sagittal, and F(1,26) = 9.66, p = .005 for the lateral mon-
age). Most importantly, this effect was similar in both versions

s there was no interaction between target category and ver-
ion or between these factors and the electrodes or hemisphere
actors. There was however, as previously mentioned, a target cat-
gory × match interaction on the sagittal (F(1,26) = 6.34, p = .018),
nd the para-sagittal montage (F(1,26) = 4.46, p = .044). Post hoc
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Fig. 3. Spline interpolated isovoltage maps for non repeated targets (version 1) and massively repeated targets (version 2). These maps were based on the mean voltages of
ERPs in the 350–450 ms time window (N400, version 1) and in the 240–340 ms time window (N290, version 2). (A) Effect of semantic matching. Mean voltage amplitudes
for matching trials were subtracted from the means for mismatching trials. Only animal targets, for which significant N400 match effects were found, were used. (B) Effect
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f semantic category. Mean voltage amplitudes for animal targets were subtracted
onditions only since category effects are usually assessed in unprimed targets.

nalyses for the match conditions showed that ERPs to artifact
argets were more negative than those to animal targets on the
agittal (F(1,26) = 20.21, p < .001) and on the para-sagittal montage
F(1,26) = 9.06, p = .006). In the mismatch conditions, target ERPs
iffered only in interaction with the electrodes factor (F(3,78) = 4.77,
= 0.89, p = .006 for the sagittal and F(6,156) = 4.93, E = 0.32, p = .012

or the para-sagittal montage). Further analyses for the sagittal
ontage showed that ERPs to artifact targets were significantly
ore negative than those to animal targets at Cz (F(1,26) = 8.22,
= .008) and tended to be so at Pz (F(1,26) = 3.61, p = .068). For the
ara-sagittal montage, ERPs to artifact targets were more nega-
ive than those to animal targets at C4 (F(1,26) = 8.3, p = .008), and
4 (F(1,26) = 6.29, p = .019). In contrast, at prefrontal sites, artifact
ended to be more positive than animal targets (F(1,26) = 3, p = .09).
his effect just missed significance at Fp2 (F(1,26) = 3.52, p = .072).

Fig. 3B shows the scalp voltage maps that were obtained by
ubtracting ERPs to animal targets from those to artifact targets
n version 1 and version 2 in mismatch conditions (since the effect
f category is usually studied in unprimed targets). Compared to
RPs to animal targets, ERPs to artifact targets were generally more

egative over centro-parietal sites and more positive over frontal
ites. This effect was slightly and non-significantly more focused on
entral sites in version 2 than in version 1, likely due to the use of
nly one repeated category in the former case and multiple target
ords in the latter.

b
p
(
s
s

the means obtained for artifact targets. These maps were made using mismatch

Finally, to investigate if the match effect varied with the number
f repetitions, we compared this effect across the number of presen-
ations in version 2. These analyses were restrained to the animal
argets, that is to the targets for which we found significant N400

atching effects. Mean voltage amplitudes for the first 30 pre-
entations (first 15 match trials and first 15 mismatch trials) were
ompared to those of the last 30 presentations (last 15 match tri-
ls and last 15 mismatch trials). The analysis run for each montage
evealed no interaction between repetition and match. There was a
riple interaction of match × number of repetitions × hemisphere at
he para-sagittal (F(1,26) = 11.57, p = .003) and at the lateral montage
F(1,26) = 6.92, p = .015). Post hoc analyses made for each hemi-
phere revealed that the repetition × match interaction was never
ignificant.

.2.4. Analyses on onset latencies
Statistical analyses were made on the latency of the onset of

he match effect (mismatch–match conditions, Fig. 2). These anal-
ses made at Cz showed that, for animal targets, this effect started

etween 250 and 275 ms after target onset in version 2 (t = −2.26;
= .02), whereas in version 1, it started between 410 and 435 ms

t = −1.82; p = .04). For artifact targets, in version 2, the match effect
tarted between 290 and 315 ms (t = −2.18; p = .04), whereas, in ver-
ion 1, no significant onset was found.
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activity have more often been observed in tasks relying on explicit
semantic categorization (Devlin et al., 2002). It is thus possible that
the use of implicit tasks in these studies was responsible for the sup-
pression of the effect with repetition. Accordingly, category effects
J.B. Debruille, L. Renoult / Neu

The superposition of the ERPs from version 1 to those from the
ersion 2 on Fig. 1 suggests that the negative ERP deflections them-
elves onset approximately at the same time. Analyses made with
n average of the ERPs to animal and artifact targets in mismatch
onditions, where these deflections were the largest, confirmed this
bservation. The onset was found to be between 230 and 255 ms
n version 1 (t = −3.07; p = .005) and between 240 and 265 ms in
ersion 2 (t = −3.41; p = .002).

.2.5. ICA and dipole source modeling
The ICA and the dipole source modeling were limited to the ani-

al targets for which match effects were significant. In version 1, 12
ndependent components (ICs) accounted for 83% of the variance
f the match effect in the N400 time window, while in version 2, 8
Cs accounted for 81% of the effect. These ICs were then clustered
ccording to similarity in scalp maps, dipoles, and contribution to
he ERPs, using the K-means algorithm implemented in EEGLAB.

e chose six as the initial number of clusters for version 1 and four
or version 2, that is half the number of ICs in each version. After
nspection of the initial clustering results, the number of clusters
as adjusted progressively until the resulting clusters were stable

nd homogeneous (e.g., Jung et al., 2007). Three component clusters
n version 1, and two in version 2 were finally defined.

Fig. 4 shows dipole locations for all clusters and their mean
calp maps. In both versions, the match effect was associated with
first cluster that projected most strongly to the posterior scalp at
ccipito-temporal locations, with a clear left-sided asymmetry in
ersion 2. A second cluster had a frontal midline scalp distribution
n both versions, but with a slight right-sided asymmetry in version
. Finally, in version 1, a last cluster had a left frontal projection, that
irrored cluster 2 distribution on the other side of the scalp.
Dipole source modeling revealed two sources that were com-

on to version 1 and 2. In version 1, the first cluster grouped five
Cs and was located in the anterior part of the left parahippocampal
yrus (Brodmann Area: BA 28) (x: −21, y: −21, z: −6). The residual
ariance of the dipole model (RVDM) was 11%. The second cluster,
rouping three ICs, was located in the right medial frontal gyrus,
n the vicinity of the anterior frontal-polar cortex (BA 10) (x: 17,
: 48, z: 10). The RVDM for this solution was 10%. The third cluster
rouped four ICs and had a generator in the left medial frontal gyrus
BA 10 and 9) (x: −17, y: 42, z: 14). The RVDM was 9%.

In version 2, cluster 1 grouped four ICs and had a source in the
nterior part of the left parahippocampal gyrus (BA 28) (x: −15, y:
10, z: −10). The RVDM for this solution was 8%. The second cluster
rouped four ICs and was located in the right medial frontal gyrus,
ear the anterior frontal-polar cortex (BA 10) and the right anterior
ingulate cortex (BA 32) (x: 9, y: 45, z: 6). The RVDM for this solution
as 10%.

. Discussion

The present study aimed at investigating the impact of massive
epetition of target words on the effects of semantic matching and
ategory, as assessed by N400s and RTs. To force semantic process-
ng, subjects were given an explicit semantic categorization task:
hey had to decide whether target words belonged to the same
ategory as prime words. The first version of the task was a ‘clas-
ic’ design in which two category words were used as primes and
umerous non-repeated exemplars of these two categories as tar-

ets. In the second version of the task, primes and targets were
nverted: the primes were the numerous non-repeated category
xemplars and the target words, to which N400s were recorded,
ere simply the two category words, each presented 60 times.

mportantly, as categories and exemplars can be associated with
t
i

chologia 47 (2009) 506–517 513

ifferent N400 raw amplitudes (Kounios & Holcomb, 1992), only
he persistence of N400 effects with repetition was analyzed. Note
hat, in any case, Kounios and Holcomb (1992) showed that the
ffect of category level does not interact with semantic congruity
r repetition.

Both versions were characterized by effects of semantic match-
ng and of semantic category on N400s and RTs. Such effects have, to
ur knowledge, never been found on an N400-like potential elicited
y content words in conditions of massive repetition. The fact that
he topography of their distributions on the scalp in version 2 was
imilar to that of version 1 strongly supports the idea that they are
enuine N400 effects obtained with concrete words.2 This conclu-
ion is reinforced by the finding that the match effect seemed to
nvolve common brain regions in both versions: the anterior part
f the parahippocampal gyrus and the medial frontal gyrus.

Behavioral and electrophysiological results are therefore con-
istent with the idea that, at least in certain circumstances, RT and
400 effects can be found in massive repetition conditions and thus

hat the semantic processes these measures index can persist in
hese conditions.

The effect of the semantic category of target words was simi-
ar in both versions. Compared to ERPs evoked by animal targets,
RPs evoked by artifact targets were more negative over centro-
arietal sites and tended to be more positive over frontal sites.
hese scalp distributions are consistent with the results of a num-
er of studies (Antal et al., 2000; Kiefer, 2001; Paz-Caballero et
l., 2006; Proverbio et al., 2007). Meanwhile, in both versions, RTs
o artifact targets were longer than those to animal targets, with
he exception of mismatching targets in version 2 where no differ-
nce was observed. Nevertheless, even in this condition, the scalp
istribution of ERPs depended on category. Longer RTs to artifact
argets compared to animal targets have been frequently described
Kiefer, 2001; Paz-Caballero et al., 2006; Price & Humphreys, 1989;
roverbio et al., 2007). They are sometimes interpreted as reflecting
n easier categorization of names of natural categories because of
greater overlap in semantic features (e.g., Saffran & Scholl, 1999).
ere, the use of a cohesive category (‘living’) associated with names
f animals and a non-cohesive category (‘thing’) associated with
arious sets of artifacts (i.e., kitchen/desk objects, clothes, tools, fur-
iture, buildings and transportation means) was also accompanied
y smaller semantic matching effects for the artifact category in
oth versions. This manipulation allowed us to compare two differ-
nt levels of priming across repetition conditions. In both versions,
he match effect on N400s and RTs was significant for animal tar-
ets but not for artifact targets, with the exception of Cz electrode
here the match effect was marginally significant for artifact tar-

ets in the second version. As this difference between versions was
estricted to one electrode site and not supported by reaction time
ata, no further attempt to interpret it was made.

Our finding of a maintenance of the effect of category over
umerous repetitions is in accordance with the observation that
he distinction between living and man-made items is the most
ommon and robust category dichotomy reported in the literature
Devlin et al., 2002). However, it contrasts with the marked reduc-
ion of this effect with one repetition reported by Sim and Kiefer
2005) and Kiefer (2005). Category-related modulations of brain
2 The scalp distribution of these N400 effects are known to be more anterior than
he scalp distribution of the N400 effects obtained with abstract words (see for
nstance Kiefer, 2001, 2005; West & Holcomb, 2000).
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ig. 4. Mean scalp distributions and equivalent current dipoles for all independen
ocations for each cluster are plotted on a mean MRI image showing top, sagittal an

ay resist repetition only when category information is required to
erform the task. Such a phenomenon was observed by Kounios and
olcomb (1994) for the effect of concreteness: the N400 difference
etween concrete and abstract words was eliminated by repetition

n a lexical decision task but simply reduced in a concrete–abstract
lassification task.

While the conditions of massive repetition in version 2 resulted
n shorter RTs than in version 1, these RTs were still much longer
han those obtained in simple choice reaction time tasks using
ords as stimuli (e.g., Kutas, McCarthy, & Donchin, 1977). Together
ith the differential effect of semantic matching and the effect

f category, this strongly suggests that the processing of the two
epeated target words of the second version was not limited to a
imple discrimination based on the physical features that differen-
iated them. This processing included a semantic stage.

In both versions, the localization technique used led us to
ssociate the match effect with activity in the medial prefrontal
ortex (Brodmann Area: BA 10) and in the anterior part of the
arahippocampal gyrus (BA 28). Intracranial recordings (Grunwald,

ehnertz, Heinze, Helmstaedter, & Elger, 1998; Nobre & McCarthy,
995; Smith, Stapleton, & Halgren, 1986) and high-density ERP
ecordings (Johnson & Hamm, 2000) suggest that one of the most
rominent generators of the scalp N400 is in the anterior medial
emporal lobe (AMTL), close to the collatereral sulcus which sep-

g
&
h
w
(

ponent clusters accounting for the match effect found for animal targets. Dipole
nal views.

rates the parahippocampal gyrus from the fusiform gyrus. This
egion, which includes BA 28, would have a critical role in accessing
emantic information (Van Petten & Luka, 2006).

The involvement of the anterior part of the parahippocampal
yrus in the match effect, independent of repetition, may be related
o the response of neurons in homologous areas in awake monkeys.
hese neurons, located in the entorhinal and perirhinal cortices,
ave been reported to reach a plateau in activity after one repetition
Xiang & Brown, 1998). Our results could thus be used to suggest
hat the AMTL generator is still modulated by semantic matching
ven when its activity has been decreased by repetition.

The other generator obtained for the N400 match effect in both
ersions was located in the anterior medial frontal-polar cortex
AMFPC), in the vicinity of BA 10. Using magnetoencephalography
nd a distributed source modeling method, Halgren et al. (2002)
ound numerous N400 generators in the temporal and frontal lobes,
ncluding frontal-polar regions. Intracranial studies in humans have
lso described generators in several prefrontal areas, with sources
ocated slightly posterior to the present findings in the anterior cin-

ulate gyrus (BA 32) and near areas BA 45 and 46 (Guillem, Rougier,
Claverie, 1999; Halgren et al., 1994). Frontal-polar regions (BA 10)

ave been found to be part of a network of common activations in
orking memory, semantic memory and episodic-memory tasks

Nyberg et al., 2003; see also MacLeod, Buckner, Miezin, Petersen,
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Raichle, 1998). They have been notably implicated in tasks that
equire that information be maintained on line while exploring
nd processing other items (Koechlin, Basso, Pietrini, Panzer, &
rafman, 1999; Koechlin, Corrado, Pietrini, & Grafman, 2000). The
edial part of BA 10, obtained in the present study, along with

he adjacent anterior cingulate cortex (BA 32), have more specifi-
ally been found to be active in conditions where the task sequence
riggers precise expectations (Koechlin et al., 2000). It is thus pos-
ible that this generator was related to the present task conditions
hich required, in both versions, that subjects held the identity of

he prime and compared its meaning to that of the target. The rea-
on why version 1 was associated with a bilateral activation while
ersion 2 was associated with a unilateral activation is unclear, but
ould be due to the greater retrieval demands of version 1 where
ultiple non-repeated targets were presented.
The similarity in the effects of semantic matching on N400-like

RPs across the two versions of the task contrasts with the results
f Besson et al. (1992), who showed a suppression of these effects
fter two repetitions. As mentioned, this discrepancy is likely due
o the repetition of complete sentences used in that study, making
t likely that final words, to which N400s were recorded, could be
nticipated (see also Olichney et al., 2000).

While the peak latency of the N400 deflection of the first version
s comparable to that of most N400 studies, the peak latency of the
290 deflection in the second version is reminiscent of that found
y Simon, Bernard, Largy, Lalonde, & Rebai (2004). These authors
sed a group of three words with massive repetition (100) dur-

ng a lexical decision task. They obtained a negativity peaking at
80 ms. The authors asked if their ‘N280s’ were N400 deflections
hat peaked earlier. Our results support this hypothesis not only
ecause we found semantic effects on the N290 but also because
ur N290 and N400 deflections had the same onset latency. Never-
heless, further experiments will be necessary to test if it is actually
he massive repetition of target words that directly influences the
eak latency of the N400 and the latency of the onset of N400
ffects. Indeed, massive repetition was accompanied by a reduced
umber of different targets in our protocol. This reduced num-
er could thus be responsible for the earlier N400 deflections and
he earlier N400 effects. Results of a recognition memory task by
an Strien et al. (2005) are compatible with this hypothesis, as the
uthors obtained a classic N400 peak latency using 30 target words
resented 10 times each.

It appears unlikely that additional repetitions would produce
urther effects on the ERPs within the N400 time window. How-
ver, the possibility remains that while being reduced after a few
epetitions, N400 effects “rebound” after massive repetition. In an
ttempt to look at this possibility in our data, we compared the
mplitude of the N400s evoked by the first 30 presentations of our
arget words to those evoked by the last 30 presentations. This was

ade in version 2 for animal targets for which significant match
ffects were observed. However, we found no interaction between
he number of repetitions and the match effect.

Together, the similarity of the match and semantic category
ffects between task versions suggests similar semantic process-
ng and the involvement of the same ERP component. Despite the
igh level of repetition in version 2, it thus seems that semantic
rocessing was still effective and, at least partly, similar to that
ccurring in non-repeated conditions. Future investigations should
lso determine if the robustness of the N400 semantic processing
ith repetition may be generalized to different experimental situa-
ions, notably when this processing is implicit, as in lexical decision
asks.

This resistance of semantic processes to numerous repetitions
upports the idea that the processes indexed by RT and N400 could
ccur and thus be measured for one repeated word. Assessing

d

D
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emantic processing for single repeated words allows the study of
emantic categories that subsume just a few exemplars, or just a
ew homogeneous exemplars. Moreover, with massive repetition,
ertain psycholinguistic properties of words, such as the frequency
f their usage, are likely to have little or no impact. Indeed, while
oth repetition and higher frequency of usage reduce N400 ampli-
udes, previous studies using one to three repetitions (Smith &
algren, 1987; Young & Rugg, 1992) showed that the repetition
ffect is larger for rare than for frequent words, resulting in no, or
n much smaller, effects of frequency on N400s as soon as the third
resentation. Note that, even if a small effect of frequency on raw
400 amplitudes still existed in massively repeated conditions, it

hould not have an impact on the N400 effects. The use of massive
epetition should thus allow the comparison of the processing of
ords whose frequencies of usage differ. More generally, it provides
s with the possibility of studying semantic associations between
wo meaningful stimuli, and therefore the link between two specific
oncepts. On the other hand, given the robustness of the semantic
atching effect in version 2, it seems that these links could be stud-

ed in individual subjects. This could be of interest for case studies
n psychiatry, for instance in the exploration of the neurocognitive

echanisms of delusion (Debruille et al., 2007; Neagoe, 2000; Silva
Leong, 1994).

cknowledgements

This study was supported by the grant 194517-02 from the
ational Sciences and Engineering Research Council of Canada

NSERC) allocated to the first author who is supported by the schol-
rship 10084 from the Fonds de la Recherche en Santé du Québec
FRSQ). Louis Renoult is supported by the fellowship 13542 from
he FRSQ.

eferences

ntal, A., Keri, S., Kovacs, G., Janka, Z., & Benedek, G. (2000). Early and late compo-
nents of visual categorization: An event-related potential study. Cognitive Brain
Research, 9, 117–119.

ell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7, 1129–1159.

entin, S., McCarthy, G., & Wood, C. (1985). Event-related potentials, lexical decision,
and semantic priming. Electroencephalography and Clinical Neurophysiology, 60,
353–355.

esson, M., Kutas, M., & Van Petten, C. (1992). An event-related potential analysis
of semantic congruity and repetition effects in sentences. Journal of Cognitive
Neuroscience, 4, 132–149.

arroll, M., & Kirsner, K. (1982). Context and repetition effects in lexical decision
and recognition memory. Journal of Verbal Learning and Verbal Behavior, 21,
55–69.

hwilla, D. J., Brown, C. M., & Hagoort, P. (1995). The N400 as a function of the level
of processing. Psychophysiology, 32, 274–285.

ollins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic pro-
cessing. Psychological Review, 82, 407–428.

ontent, A., Mousty, P., & Radeau, M. (1990). Une base de données lexicales informa-
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