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A B S T R A C T   

Neuroimaging studies often either look at functional activation in response to an explicit task, or functional 
connectivity (i.e., interregional correlations) during resting-state. Few studies have looked at the intensity of 
brain activity or its relationship with age, behavior, and language. The current study investigated both intensity 
(i.e., the Amplitude of Low-Frequency Fluctuations, ALFF) and the functional connectivity of spontaneous brain 
activity during rest and their relationship with age and language. A life-span sample of individuals (N = 152) 
completed a battery of neuropsychological tests to assess basic cognitive functions and resting-state functional 
MRI data to assess spontaneous brain activity. Focusing on an extend language network, the mean ALFF and total 
degree were calculated for this network. We found that increased age was associated with more intense activity 
(i.e., higher ALFF) but lower within-network connectivity. Additionally, these increases in activity within the 
language network during resting-state were related to worse language ability, particularly in younger adults, 
supporting a dedifferentiation account of cognition. Our results support the utility of using resting-state data as 
an indicator of cognition and support the role of ALFF as a potential biomarker in characterizing the relationships 
between resting-state brain activity, age, and cognition.   
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1. Introduction 

Older adults experience decline in many cognitive functions, 
including working memory, general processing speed (Park et al., 2002; 
Park and Reuter-Lorenz, 2009), and cognitive control (Paxton et al., 
2008; Schaie, 1996). However, unlike other cognitive functions, lan
guage is variably affected by aging. For instance, older adults typically 
show declines in language production (Burke and Shafto, 2008; Shafto 
et al., 2007; Zhang et al., 2019). However, language comprehension and 
vocabulary are well maintained, and sometimes even improve 
throughout the lifespan (Kavé and Halamish, 2015; Verhaeghen, 2003; 
For comprehensive reviews of language and aging studies, see Burke and 
Shafto, 2008). 

In addition to age-related behavioral differences, functional neuro
imaging studies have also shown that older adults often elicit different 
patterns of functional activation such as increased bilateral activation 
and increased activation in prefrontal regions compared to younger 
adults (Cabeza, 2002; Cabeza and Dennis, 2012; Davis et al., 2008; 
Grady et al., 2015; Langenecker and Nielson, 2003; Logan et al., 2002; 
Wierenga et al., 2008). Specific to language, while younger adults 
typically engage a left-lateralized network, especially during language 
production (Hickok and Poeppel, 2007; Indefrey and Levelt, 2004; Price, 
2010), older adults often show less lateralized patterns of fMRI activa
tion compared to younger adults (Destrieux et al., 2012; Diaz et al., 
2014; Diaz et al., 2019; Diaz et al., 2016; Nagels et al., 2012; Rizio et al., 
2017; Wierenga et al., 2008; Zhang et al., 2019). 

In addition to functional activation during a task, some studies have 
examined spontaneous brain activity during resting-state, mainly 
focusing on the patterns of correlated activity in the human brain (i.e., 
functional connectivity). In general, aging is associated with lower 
connectivity among brain regions within a functional network (e.g., 
default mode network; Betzel et al., 2014; Cao et al., 2014; Geerligs 
et al., 2015; Onoda et al., 2012; Siman-Tov et al., 2017; Song et al., 
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2014; Tomasi and Volkow, 2012). These age-related differences in 
network characteristics have been associated with worse behavioral 
performance across several different cognitive domains (King et al., 
2018; Onoda et al., 2012; Sala-Llonch et al., 2015; Varangis et al., 2019; 
L. Wang et al., 2010). To date, only a few studies have investigated 
age-related differences in a language resting-state network and its 
relationship with language ability (Ferré et al., 2019; Gertel et al., 
2020). For instance, Ferré et al. (2019) reported that increased age was 
associated with increased connectivity in a language network during 
language tasks, but decreased connectivity during resting-state. How
ever, they found no relationship between functional connectivity and 
age-related increases in vocabulary measures, suggesting that the 
functional networks supporting vocabulary remain intact across the 
lifespan. 

As reviewed above, traditional neuroimaging studies have either 
looked at functional activation in response to an explicit task, or func
tional connectivity during resting-state or during a task. However, few 
studies have looked at the Blood Oxygen Level Dependent (BOLD) 
amplitude during resting-state, which mainly consists of lower frequency 
brain oscillations (i.e., Amplitude of Low-Frequency Fluctuations, ALFF; 
Zang et al., 2007). Importantly, these low frequency oscillations are 
related to brain function (e.g., Achard et al., 2006). Compared to func
tional connectivity studies that look at the connections among brain 
regions (“highways”), the ALFF method looks at the regional neural 
activity (“cities”) during resting-state, by measuring BOLD signal power, 
or amplitude, within the low-frequency range during resting-state, 
typically between 0.01 and 0.08 HZ (Lv et al., 2018). In other words, 
ALFF reflects the intensity of brain activity during rest. Because ALFF 
relies on BOLD signal, it also reflects vascular function (Agarwal et al., 
2017; Di et al., 2013). Moreover, other studies have shown that ALFF 
can reliably detect differences in physiological states (e.g., higher ALFF 
in bilateral visual cortices during eyes-open resting-state compared to 
eyes-closed resting-state; Yang et al., 2007). Thus, similar to investi
gating how brain regions are connected during rest, exploring the 
amplitude of brain activity at rest and relating it to behavior could also 
provide insights into individual difference in cognitive abilities. 

In addition to linking ALFF to physiological states, it has also been 
linked to clinical and psychological phenomena. For example, ALFF 
methods have been used to differentiate neural activation patterns be
tween typical and patient populations such as individuals with amnestic 
mild cognitive impairment (Han et al., 2011), schizophrenia (Shen et al., 
2014; Turner et al., 2012), and idiopathic generalized epilepsy (Z. Wang 
et al., 2014), providing promising evidence that ALFF can be used to 
detect disease-related differences in local brain activity. A few studies 
have also examined the psychological and behavioral correlates of ALFF 
in younger adults (Mennes et al., 2011; Wei et al., 2012). For instance, 
Mennes et al. (2011) reported that higher ALFF in midline cingulate 
regions was associated with better performance during the Flanker task, 
a task known to be involved in attention and executive function, and Wei 
et al. (2012) found that higher ALFF in the left posterior middle tem
poral gyrus was associated with more efficient semantic processing. 

In addition to studies focusing on patient populations or younger 
adults, some studies have also examined ALFF with older adults to un
derstand its relationship with behavior. For instance, Yan et al. (2011) 
reported that although there were no ALFF differences in the visual 
cortex between older and younger adults, there were larger ALFF vari
ances in older adults. However, Mather and Nga (2013) reported 
increased ALFF in the thalamus in older adults compared to younger 
adults. Relating ALFF to behavior, Hou et al. (2019) found that older 
adults who played video games had increased ALFF in the left inferior 
occipital gyrus, left cerebellum and left lingual gyrus relative to their 
peers who did not play video games. Additionally, these increases in 
ALFF in the left inferior occipital gyrus and left lingual gyrus were 
positively associated with overall cognitive status, as measured by the 
Mini-Mental State Exam (MMSE), even though these regions are not 
typically thought to be related to higher level cognition. Of particular 

relevance to the current study, Yin et al. (2015) reported an age-related 
decrease in ALFF in the precuneus. Additionally, they found that among 
older adults, better verbal fluency performance was related to lower 
ALFF in the precuneus. Although the authors argued that the precuneus 
is involved in language processing, this region has also been recognized 
as a major hub in the default mode network (e.g., Fransson and Mar
relec, 2008; Utevsky et al., 2014). The lower ALFF in the precuneus 
might reflect a more efficient and segregated network structure during 
resting-state, which could be related to better off-line behavioral 
performance. 

To summarize, while the majority of resting-state studies have 
focused on functional connectivity, a few studies have also investigated 
the amplitude of brain activity during resting-state and its relationship 
with cognition. Functional connectivity studies often report age-related 
decreases in within-network connectivity and these reductions are often 
associated with worse performance. However, the relationship between 
ALFF and age or cognition is less clear. Additionally, very few studies 
have focused on a language network and the relationship between 
network properties and aging or language. Furthermore, the previous 
literature has primarily relied on the differences between younger and 
older adults, in which significant differences in cognitive and brain 
functions are typical. Few studies have included a middle-aged popu
lation to investigate age-related differences in cognition and brain 
functions across the lifespan (but see Chan et al., 2014; Varangis et al., 
2019). 

To fill the above-mentioned gaps, the current study investigated both 
the amplitude of spontaneous brain activity (i.e., ALFF) and the func
tional connectivity (i.e., degree, the number of strong connections 
among nodes) in a pre-defined language network during resting-state 
and their relationship with age and language ability across the adult 
lifespan . Language ability was assessed broadly through several inde
pendent language tasks measuring different aspects of language func
tions (e.g., production, comprehension, vocabulary, and reading). 
Therefore, we selected a broad, extended language network that was 
based on a previous meta-analysis (Ferstl et al., 2008). Specifically, this 
network included bilateral anterior temporal lobe which has been pro
posed as a semantic hub (e.g., Lambon Ralph, Jefferies, Patterson and 
Rogers, 2017; Lambon Ralph, Pobric and Jefferies, 2009), bilateral 
posterior middle temporal gyri which are involved in semantic and 
lexical processes (e.g., Wilson et al., 2009), bilateral superior temporal 
gyri which are involved in auditory language processes (e.g., Per
amunage et al., 2011; Vaden et al., 2010), left inferior frontal gyrus, 
which has been implicated in executive aspects of language such as 
lexical selection (e.g., Thompson-Schill, D’Esposito, Aguirre and Farah, 
1997), as well as its right hemisphere homolog. We also included a 
non-language-related visual network as a control network (Damoiseaux 
et al., 2006; Power et al., 2011), to test the specificity of the relationship 
between brain activity in a language network and language ability. We 
predicted that age would be significantly correlated with both brain 
activity and functional connectivity in the language network, although 
the direction of this correlation could not be easily predicted based on 
the limited literature. Additionally, we hypothesized that both brain 
activity and functional connectivity in the language network but not in 
the visual network would show an association with language ability but 
not other cognitive abilities. Last but not least, age may modulate the 
relationship between language ability and network characteristics dur
ing resting-state. 

2. Method 

2.1. Participants 

One hundred and fifty-four adults participated in the experiment, 1 
was removed due to poor performance and a second participant was 
removed due to the possibility of depression as measured by the GDS 
(Guerin et al., 2018; Sheikh and Yesavage, 1986), leaving 152 complete 
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data sets (ages: 20–78 years, mean age = 46.9 years, sd = 17.1 years, 91 
female, 61 males). All participants were community-dwelling, right-
handed, native American English speakers who were not fluent in a 
second language. All participants had normal or corrected-to-normal 
vision, and reported no history of neurological, psychological, or 
major medical conditions (Christensen et al., 1992). Participants were 
also screened for mild cognitive impairment or dementia (MMSE, Fol
stein et al., 1975). Prior to the MRI session, each participant completed a 
battery of psychometric and neuropsychological tests to assess basic 
cognitive functions such as speed, executive function, memory, and 
language (For a complete list of tasks, task descriptions, and partici
pants’ performance, see: https://osf.io/e2rga/?view_only=895 
88fb3a6bc489fae6ae40a95c88af7). In this paper, we focused on lan
guage assessments which included the WAIS-III vocabulary to assess 
vocabulary size (Wechsler et al., 1997); phonemic (F, A, S) and cate
gorical (animals) verbal fluency to assess speech fluency, and the author 
recognition test and a comparative reading habit questionnaire to assess 
reading habits (Acheson et al., 2008). We also included working mem
ory assessments in our analyses to test the specificity of our findings. 
These working memory tasks included a reading span task (Conway 
et al., 2005) and forward and backward digit span. During the MRI 
session, participants also completed fMRI tasks (either a picture naming 
task or a word naming task to assess language production) which are 
reported elsewhere (Diaz et al., 2021) or in progress (Diaz et al., 2020). 
Demographic characteristics and assessment scores of language and 
working memory related assessments are reported in Table 1. All par
ticipants gave written, informed consent, and all procedures were 
approved by the Institutional Review Board at The Pennsylvania State 
University. 

Only language-related and working memory-related tasks are re
ported here. The second column displays the group means, with stan
dard deviations in parentheses. The numbers represent the raw scores of 
each test. The third column indicates its correlation with age. Statisti
cally significant effects are noted as follows: *p < .05; **p < .01; ***p <
.001. 1ART scores are calculated as the number of correct identifications 
– the number of incorrect responses. 

2.2. Acquisition of MRI data 

MRI scanning was completed on a 3T Siemens Prisma Fit MRI 
scanner with a 64-channel head coil. Sagittal T1 weighted localizer 
images were collected and used to define a volume for data collection, 
higher-order shimming, and alignment to the anterior and posterior 
commissures (AC-PC). Prior to the resting-state scan, T1-weighted 
anatomical images were collected using a magnetization-prepared, 
rapid acquisition, gradient echo (MP-RAGE) sequence (repetition time 

[TR] = 2300 ms; echo time [TE] = 2.28 ms; Inversion Time [TI] = 900 
ms; flip angle = 8◦; echo spacing = 7 ms; acceleration factor = 2; field of 
view [FOV] = 256 mm2; voxel size = 1 × 1 × 1 mm; 160 contiguous 
slices). 

Functional resting-state images were collected using an echoplanar 
imaging (EPI) sequence (TR = 2000 ms; TE = 25.0 ms; flip angle = 90◦; 
echo spacing = 0.49 ms; FOV = 240 mm2; voxel size = 3 × 3 × 4 mm; 33 
contiguous slices, parallel to the AC-PC; phase encoding = anterior to 
posterior; fat saturation = on; slice acquisition = sequential, descending; 
volumes = 180; run duration = ~6 min). Two additional volumes were 
acquired and deleted at the start of the functional scan to reach steady 
state equilibrium. During the resting-state run, participants were 
instructed to relax in the scanner with their eyes open and to look at a 
fixation cross presented in the center of the screen. 

A field map sequence was also collected with a double-echo, spoiled 
gradient echo sequence (TR = 446 ms; TE = 4.92 ms; flip angle = 60◦; 
FOV = 240 mm2; voxel size = 3 × 3 × 4 mm; 33 contiguous slices; phase 
encoding = anterior to posterior, fat saturation = off; duration = 1:12 
min) that was used to correct for field inhomogeneites. that was. 

2.3. Behavioral data analyses 

As mentioned earlier, participants performed a series of standardized 
behavioral tests to measure cognitive functions across different domains 
(i.e., speed, memory, language) and an exploratory factor analysis was 
conducted to identify the components that reflect different cognitive 
functions. Before conducting the factor analysis, a data cleaning pro
cedure was conducted as follows. First, all reaction time measures were 
reverse coded to be consistent with other variables (i.e., higher values =
more efficient). In individuals with missing data, the missing values 
were replaced using the predictive mean matching (PMM) method from 
the mice package in the R environment (Buuren and 
Groothuis-Oudshoorn, 2010). Outliers in the factor analysis were iden
tified and removed using Mahalanobis Distances (Probability < .001). 
For all behavioral tasks, only trials with a correct response and a reac
tion time longer than 200 ms and within 2.5 SDs of that participant’s 
mean were included in further analyses. These data cleaning procedures 
resulted in the loss of 4 participants, leaving a final sample of 148 in
dividuals to be included in the factor analysis and any analyses including 
factor analysis scores. There was no multi-collinearity concern among 
the cognitive variables as assessed by VIFs <4.3 and the data were 
normally distributed. A Bartlett’s test was conducted to determine the 
correlation adequacy among variables from those cognitive tasks, and a 
Kaiser-Meyer-Olkin test (KMO, Kaiser, 1974) was then conducted to 
determine the sampling adequacy. Results suggested that there was a 
substantial correlation among the cognitive variables (Bartlett test p <
.001) and the sample was adequate (KMO = 0.75 greater than the 
acceptable level of .60, Kaiser, 1974). A factor analysis was conducted 
using the psych package in the R environment (R Core Team, 2014; 
Revelle, 2015). We used a parallel analysis (i.e., where the actual data 
and the simulated data cross) to decide how many factors were mean
ingful. The oblimin rotation was used to produce naturally correlated 
psychological factors. Four latent factors were identified (i.e., Language, 
Working memory, Recall, and Processing speed). The factor scores for 
each participant were then calculated. Because we focused on a lan
guage brain network, the Language Factor scores were of primary in
terest. We also incorporated the Working Memory Factor scores to assess 
the specificity of our results. 

2.4. fMRI data analyses 

The fBIRN QA tool was used to assess data quality (Glover et al., 
2012, https://www.nitrc.org/projects/bxh_xcede_tools/), measuring 
the number of potentially clipped voxels, mean signal fluctuation to 
noise ratio (SFNR), and per-slice variation. Additionally, the anatomical 
and functional images were visually inspected for artifacts and signal 

Table 1 
Participant demographics, neuropsychological testing scores, and its correlation 
with age.  

Demographic information Mean (SD) 

N 152 
Age 46.9 (17.1) 
Gender (M/F) 61/91 
Participant characteristics Mean (SD) Age Correlation 
Education (Years) 16.9 (2.8) .17* 
MMSE 28.8 (1.3) -.19* 
Depression (GDS) 0.8 (1.1) -.14 
Language Assessments   
Verbal Fluency (Number of correct tokens) 66.0 (14.0) -.14 
WAIS Vocabulary (Score out of 66) 54.3 (6.1) .02 
Author Recognition Test (ART)1 24.3 (14.3) .50*** 
Comparative Reading (Score out of 35) 25.3 (4.8) .08 
Working Memory Assessments   
Digit Span Forward (Score out of 16) 11.2 (2.2) -.10 
Digit Span Backward (Score out of 16) 7.3 (2.1) -.14 
Verbal Working Memory (Score out of 1) 0.4 (0.2) -.37***  
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drop-out. Preprocessing and first-level analyses were conducted using 
the CONN functional connectivity toolbox version 18.a (Whitfield-G
abrieli and Nieto-Castanon, 2012). First, functional realignment and 
unwarping were done to estimate and correct for participant motion. 
Then, a voxel-displacement map was calculated based on the field map 
data and applied to the resting-state and task-based data for distortion 
correction, followed by slice-timing correction, which corrected for 
maturation of the BOLD signal over time (Huettel et al., 2004). Func
tional outliers were detected with an ART (Artifact Detection Tools) 
based identification method in which outliers were defined using a 
conservative threshold (i.e., data points more extreme than the 97th 
percentile based on a normative sample were removed). Segmentation 
was done on all anatomical and functional images to segment images 
into white matter (WM), gray matter (GM), and cerebrospinal fluid 
(CSF) and all images were normalized to standard Montreal Neurolog
ical Institute (MNI) space. During registration, functional images were 
aligned to anatomical images and both were normalized to standard 
space. A smoothing kernel of 6 mm was used to increase the signal to 
noise ratio, as well as to reduce spurious activations of single voxels. 
During denoising, the representative noise signal from WM (5 compo
nents) and CSF (5 components) was extracted, and any signal correlated 
with these components was removed from the BOLD signal. To eliminate 
frequencies of less interest, a band-pass filter (0.01 Hz, 0.08 Hz) based 
on the existing ALFF literature was used for the resting-state scan. The 
following quality assurance parameters were included as second level 
covariates during data preprocessing: max and mean motion, and max 
and mean global BOLD signal changes (outlier threshold = global-signal 
z-value of 3). For the resting-state scan, the total average number of 
invalid scans was low: 1.45 per participant (SD = 3.03), however there 
was a significant positive correlation between the number of invalid 
scans and age (p = .01). Similarly, the mean amount of motion was low: 
0.20 mm (SD = 0.07 mm), and there was a significant positive corre
lation between the amount of motion and age (p < .001). 

2.5. ALFF calculation 

The current study investigated spontaneous brain activity during 
resting-state by examining the Amplitude of Low-Frequency Fluctua
tions (ALFF), which reflect the average BOLD amplitude or intensity of 
functional activation. ALFF was calculated using the CONN toolbox. 
Briefly, for a given voxel, the filtered time course was first converted to 
the frequency domain using Fast Fourier Transform. The square root of 
the power spectrum was computed and then averaged across the fre
quency band (0.01 Hz, 0.08 Hz). The averaged square root was referred 
as the ALFF (Zang et al., 2007). The normalized ALFF of each participant 
was used for further statistical analysis. 

2.6. Network analysis 

To investigate the relationship between ALFF in the language 
network and language functions, we first identified an extended lan
guage network (Ferstl et al., 2008). For this network, 13, 6-mm radius 
sphere ROIs were created (Fig. 1; Coordinate information can be found 
in Table 2). Then, the ALFF for each ROI was calculated by averaging 
across all the voxels in this ROI, and the mean ALFF for each individual 
was calculated by averaging across all the ROIs in this network. Then, 
linear regressions were conducted on the mean ALFF for the language 
network while including Age, the Language Factor scores from the factor 
analysis, and their interaction as predictors. The Age variable was 
standardized to z-scores to help with interpretation. The Language 
Factor scores were already z-scores so there was no need to rescale those. 
There was no multi-collinearity concern between Age and the Language 
Factor score as assessed by VIFs <1.7. Additionally, to accommodate 
variability in the relationship between ALFF, age and language across 
ROIs, we also conducted a multivariate multiple regression using the 
ALFF from each language network ROI as the dependent variables, and 

Age and Language Factor score as independent variables. 
Additionally, to investigate the specificity of the ALFF results in the 

language network, additional regressions were conducted on the rela
tionship between the working memory factor scores and the ALFF in the 
language network, and on the relationship between Language Factor 
scores and the ALFF in a ‘control’ non-language- related visual network. 
For the visual network, 10, 6-mm radius sphere ROIs were created based 

Fig. 1. The 13 Language Network ROIs. Please note that the 6-mm radius 
sphere ROIs appear to be different shapes and sizes because the axial slices 
depicted here did not always cross the exact centers of each ROI. The ROIs used 
in the analyses were identical in size. Slices are depicted in increments of 
mainly 10 mm, starting at z = − 34 and ending at z = 56. 

Table 2 
MNI coordinates for the Language and Visual Network ROIs. ROIs were created 
using 6-mm radius sphere around these coordinates.  

Language Network Visual Network 

ROI x Y z ROI X y z 

Left inferior 
frontal gyrus, 
pars 
triangularis 

− 48 33 − 4 Right superior 
parietal lobule 

29 − 57 54 

Right orbital 
frontal cortex 

39 25 − 12 Left superior 
parietal lobule 

− 29 − 57 54 

Left anterior 
temporal lobe 

− 44 18 − 26 Right 
intracalcarine 
cortex 

19 − 68 13 

Right anterior 
temporal lobe 

51 11 − 23 Left 
intracalcarine 
cortex 

− 19 − 68 13 

Left 
supplementary 
motor area 

− 6 3 56 Right lingual 
gyrus 

22 − 72 1 

Left precentral 
gyrus 

− 48 − 2 49 Left lingual 
gyrus 

− 22 − 72 1 

Left inferior 
temporal gyrus 

− 46 − 15 − 28 Right superior 
lateral occipital 
cortex 

29 − 80 27 

Left posterior 
inferior 
temporal 
gyrus, fusiform 
gyrus 

− 44 − 29 − 15 Left superior 
lateral occipital 
cortex 

− 29 − 80 27 

Right posterior 
middle 
temporal gyrus 

62 − 17 − 6 Right inferior 
lateral occipital 
cortex 

35 − 80 0 

Left posterior 
middle 
temporal gyrus 

− 63 − 42 − 2 Left inferior 
lateral occipital 
cortex 

− 35 − 80 0 

Left posterior 
superior 
temporal gyrus 

− 63 − 23 3     

Right posterior 
superior 
temporal gyrus 

51 − 33 2     

Left cerebellum − 43 − 52 − 33      
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on coordinates obtained from previous studies (Damoiseaux et al., 2006; 
Power et al., 2011; coordinate information can be found in Table 2). 

We were also interested in the functional connectivity in the lan
guage network and how it related to language task performance. 
Therefore, we calculated the un-weighted, within-network connectivity 
among all the ROIs in the language network. Specifically, for any two 
ROIs that had a correlation coefficient (i.e., correlation between two 
ROIs’ time series) stronger than 0.2, their connection was included in 
the analysis. The total degree (i.e., total number of connections among 
all ROIs in a network) was calculated for each participant and used to 
reflect the within-network connectivity in the language network. Then, 
a linear regression was conducted on the total degree for the language 
network while including Age, Language Factor scores, and their inter
action as predictors. 

3. Results 

3.1. Factor analysis results 

We conducted an exploratory factor analysis to assess the data for 
latent factors. This gave us a four-factor model that accounted for 54% of 
the variance in the data (TLI: 0.95; CFI: 0.98; RMSR: 0.03; RMSEA: 
0.05).1 Among them, one factor had high positive loadings on the total 
verbal fluency score (loading = 0.30), WAIS vocabulary score (loading 
= 0.36), the author recognition task (loading = 0.99), and the 
comparative reading habit questionnaire (loading = 0.43). All these 
measurements were related to different aspects of language (e.g., 
reading, vocabulary), therefore, we referred to this factor as the “Lan
guage Factor.” Higher factor scores indicated more enhanced language 
ability in general. Another factor loaded highly on verbal working 
memory (loading = 0.60), and digit span forwards (loading = 0.72) and 
backwards (loading = 0.67). This was referred to as the “Working 
Memory Factor,” and higher factor scores were associated with better 
verbal working memory ability (i.e., more words recalled, longer 
working memory spans). After identifying the latent factors, individuals’ 
factor scores were calculated. A simple linear regression of age on the 
factor scores showed that increased age was significantly associated 
with higher Language Factor scores (p < .001), and lower Working 
Memory Factor scores (p = .001), indicating that older adults had 
enhanced language but decreased working memory abilities. 

3.2. ALFF results 

To investigate the relationships among age, language task perfor
mance, and the intensity of spontaneous brain activity during resting- 
state, linear regressions were conducted on ALFF (mean = − 0.04, sd 
= 0.13) in the language network while including age, Language Factor 
scores, and their interaction as predictors. Results showed that increased 
age was significantly associated with higher ALFF in the language 
network (p < .01, Fig. 2A), indicating that older adults engaged lan
guage regions more than younger adults at rest. Additionally, the 
marginally significant main effect of language score on ALFF indicated 
that higher Language Factor scores were associated with lower ALFF (p 
= .08, Fig. 2B). The interaction between age and Language Factor score 
on ALFF in the language network was not significant (p = .14). 

Moreover, the multivariate regression analysis which accommodates 
variability in these relationships across different ROIs, showed a similar 
pattern of results. Specifically, the main effect of age on ALFF was sig
nificant (p < .001, Fig. 2A), such that increased age was associated with 
higher ALFF in the language network. The multivariate regression 

analysis also indicated that the age effects were largest in left temporal 
regions including superior and inferior temporal gyri, as well as left 
inferior frontal gyrus, and left cerebellum (ps < .05). Although the main 
effect of the Language Factor score on ALFF was not significant (p = .44) 
in the overall multivariate regression, the language effect was significant 
in one region: left posterior superior temporal gyrus (p < .05). Addi
tionally, the interaction between age and language on ALFF was 
marginally significant (p = .09), which was driven by the significant 
interactions in left middle temporal gyrus and right superior temporal 
gyrus (ps < .05). To clarify the interaction, participants were further 
divided into three age groups (51 Younger, 50 Middle-Aged, and 47 
Older), and a regression was conducted in each group using the mean 
ALFF as the dependent variable and Language Factor score as the pre
dictor. Further analysis showed that only in the younger adult group (p 
< .05), but not in the middle-aged (p = .87) or the older adult group (p =
.67), higher Language Factor scores were associated with lower ALFF 
across all ROIs in the language network (Fig. 2C). 

Additionally, to investigate the specificity of the ALFF results in the 
language network, two additional regressions were conducted. The first 
one included the Working Memory Factor scores, Age, and their inter
action as the predictors and mean ALFF in the language network as the 
dependent variable. Results showed that although the effect of age on 
ALFF was significant (p < .05), there was no significant relationship 
between Working Memory Factor scores and the ALFF in the language 
network (p = .25). Furthermore, a regression was conducted on a non- 
language-related visual network while including Age, Language Factor 
scores, and their interaction as predictors. The main effect of Age on 
ALFF in the visual network was significant such that increased age was 
associated with less intense activity in the visual network at rest (p =
.05). Critically, the relationship between Language Factor scores and 
ALFF in the visual network was not significant (p = .90). Although these 
results suggest that the relationship between Language Factor scores and 
ALFF was specific to the language network, a direct comparison of the 
regression coefficients showed that these regression coefficients were 
not significantly different (Z < 1.96).2 

3.3. Functional connectivity 

We were also interested in the relationship among functional con
nectivity within the language network, age, and language performance. 
Therefore, a regression was conducted on the total degree within the 
language network while including Age, Language Factor scores, and 
their interaction as predictors. Only the main effect of Age on total de
gree was significant, such that increased age was associated with lower 
degree (i.e., lower within-network connectivity) in the language 
network (p < .01, Fig. 3). Neither the main effect of the Language Factor 
score nor its interaction with Age was significant (ps > .1). Since the 
relationship between Language Factor scores and degree in the language 
network was not significant, no further specificity tests were conducted. 

4. Discussion 

This study examined the amplitude of spontaneous brain activity and 
functional connectivity during resting-state in a pre-defined language 
network and their relationships with age and language ability in a life
span sample. We hypothesized that both the amplitude of resting-state 
brain activity and functional connectivity would differ as a function of 
age and language ability. Our results showed that, increased age was 
associated with higher BOLD amplitude but decreased connectivity 

1 TLI: Tucker-Lewis Index, > 0.95 is considered to be excellent; CFI: 
Comparative Fix Index, > 0.95 is considered to be excellent; RMSR: Root Mean 
Square of the Residual, < 0.06 is considered to be excellent; RMSEA: Root Mean 
Square Error of Approximation, < 0.06 is considered to be excellent. 

2 We directly compared the regression coefficients between the Language 
Factor and Working Memory Factor scores on ALFF in the language network, 
and the Language Factor Score effects on ALFF between the language network 
and the visual network, using the methods suggested by (Clogg et al., 1995) and 
(Paternoster et al., 1998). 
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within the language network, controlling for the effect of language 
ability. Additionally, in terms of the brain-behavior relationship, after 
controlling for the effect of age, higher language abilities were associ
ated with lower ALFF in the left posterior superior temporal gyrus. 
Finally, the interaction between age and language in the multivariate 
analysis showed that this language-ALFF relationship was strongest 
among younger adults. 

Looking at the results in more detail, our finding that increased age 

was related to higher ALFF in the language network indicates that older 
adults showed more intense functional brain activity in language-related 
regions during resting-state. Because we used normalized ALFF values 
for each participant, this age-related difference does not necessarily 
indicate that the absolute intensity of ALFF was larger for older adults, 
but still suggests that they utilized their language network to a greater 
extent compared with younger adults. Although others have reported 
age-related increases in ALFF in other regions (Mather and Nga, 2013), 
ours is the first to show this age association in a resting-state language 
network. This finding of age-related increases in ALFF is also broadly 
consistent with age-related increases in task-based functional activation 
that are often reported (Cabeza and Dennis, 2012; Persson et al., 2004; 
Wierenga et al., 2008; Zhang et al., 2019). 

Relating the language network findings to behavioral performance, 
we found a marginally significant main effect of language on mean ALFF 
in the language network (regression analyses), with lower ALFF in the 
language network associated with higher Language Factor scores across 
all individuals. Although this relationship was only marginally signifi
cant, it is consistent with the Yin et al. (2015) study as they also reported 
a negative correlation between the ALFF in the precuneus and verbal 
fluency performance. Although we focused on a network analysis rather 
than individual ROIs in this study, the multivariate regression analysis 
showed that the effects of language on ALFF were most significant in left 
posterior superior temporal gyrus. 

Though the main effect of language ability on ALFF suggests that this 
brain-behavior relationship is consistent across the lifespan, we also 
observed a marginally significant interaction between age and Language 
Factor scores in the multivariate regression analysis using the ALFFs 
from each ROI. Further analysis showed that this negative relationship 
between ALFF and language ability was only significant in the younger 
adult group, and that the effects were strongest in left middle and right 
superior temporal gyri. These regions are consistent with where the 
main effects of Age and Language were localized and are consistent with 
previous literature highlighting temporal regions as core language re
gions (e.g., Ferstl et al., 2008; Hickok and Poeppel, 2007; Price, 2010). 

The difference in the effect of ALFF on language ability across 
different age groups could be due to several reasons. First, as shown in 
Fig. 2C, there were larger Language Factor score variances among older 
adults compared to younger adults. Therefore, it may have been more 
challenging to detect a relationship between language and ALFF among 
older adults. Alternatively, the weaker ALFF-language relationship may 
suggest a reduced cognitive efficiency among older adults (Ghisletta and 

Fig. 2. The relationship between Age, Language Factor scores, and ALFF in the language network. ALFF residuals in A and B are the variances after controlling for the 
other factors. A) Increased age was associated with higher ALFF, after controlling for the effect of language and its interaction with Age (p regular < .01, p multivariate 
<.001). The ages displayed correspond to ± 1 standard deviation and the mean. B) Higher Language Factor scores were marginally significantly associated with 
lower language network ALFF, after controlling for the effect of Age and its interaction with Language Factor scores (p regular = .08, p multivariate = .44). C) In the 
multivariate regression analysis, the interaction between Age and Language Factor score was marginally significant (p multivariate = .09). Only in the younger group 
(YA, p multivariate < .05), but not in the middle-aged (MA), or the older group (OA), were higher Language Factor scores associated with lower language network ALFF. 
We also plotted the effect of Age and Language Factor score on the unadjusted ALFF values, before controlling for other factors. These figures can be found online: htt 
ps://osf.io/e2rga/?view_only=89588fb3a6bc489fae6ae40a95c88af7. 

Fig. 3. Increased age was associated with lower within-network connectivity in 
the language network after controlling for the effect of language and its inter
action with age (p < .01). ALFF residuals are the variances after controlling for 
the effect of language and its interaction with age. Ages displayed correspond 
to ± 1 standard deviation and the mean. We also plotted the effect of Age on the 
unadjusted network degree values, before controlling for other factors. This 
figure can be found online: https://osf.io/e2rga/?view_only=89588fb3a6bc4 
89fae6ae40a95c88af7. 
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Lindenberger, 2003; Li et al., 2001). Weaker brain-behavior relation
ships among older adults have been previously observed (Diaz et al., 
2014, 2019; Meinzer et al., 2009; Reuter-Lorenz and Cappell, 2008). 
However, since the relationship between language and ALFF in the 
language network, and the interaction with age were both only 
marginally significant, these potential relationships should be inter
preted with caution. Nevertheless, our results highlight the general 
utility of ALFF as a proxy for cognitive ability and are consistent with the 
idea that increases in ALFF may be associated with less efficient 
processing. 

Although our results suggest that increases in ALFF are related to 
poorer cognitive performance, the pattern of the language network re
sults are somewhat inconsistent with Hou et al. (2019) who found that 
increases in ALFF in visual regions as a result of playing video games 
were related to better MMSE performance. Although they found a pos
itive relationship between ALFF and MMSE, their study was not 
designed to test for age effects. Since all of their participants were older 
adults, the increases in ALFF can be most directly linked to the video 
game experience as opposed to age. Interestingly, our control network, 
similar to Hou et al. was a visual network. Although it was not the focus 
of our study, we found that in contrast to the language network, 
increased age was associated with decreased ALFF in the visual network. 
Age-related increases in ALFF variability in the visual cortex have pre
viously been reported (Yan et al., 2011). It could be the case that 
age-related increases in variability led to decreases in our mean values of 
ALFF. These results also suggest that there may be regional variability in 
age-related differences in ALFF. However, the functional significance of 
such differences across networks requires further investigation. 

Additionally, although we failed to find a significant relationship 
between language ability and ALFF in the visual network, these 
regression coefficients were not significantly different from the signifi
cant effects of language ability on ALFF in the language network. This 
suggests that these effects of language ability on ALFF may be subtle. 

In addition to examining resting-state brain activity amplitude, we 
were also interested in the functional connectivity within the language 
network and its relationship with age and language ability. We found 
that increased age was related to decreased within-network connectivity 
in the language network. This finding is consistent with the few previous 
studies that have examined the effect of age within the language 
network (Ferré et al., 2019), and other studies that have shown 
age-related decreases in whole-brain connectivity (Betzel et al., 2014; 
Chan et al., 2014; Varangis et al., 2019) or in other resting-state net
works such as the default mode or control networks (Geerligs et al., 
2015; Siman-Tov et al., 2017; Tomasi and Volkow, 2012). Additionally, 
although increasing age was associated with lower within-network 
connectivity, there was no significant relationship between language 
ability and within-network connectivity, consistent with Ferré et al. 
(2019). Comparing the ALFF and connectivity results, the relationship 
with language ability was only significant in resting-state ALFF, but not 
in connectivity. Although ALFF is related to the amplitude of the BOLD 
signal, it’s important to note that the exact underlying biological 
mechanisms of ALFF activity are still not clear. However, the difference 
in the two measures in terms of the relationships between language and 
ALFF suggests that ALFF might be a more sensitive biomarker than 
functional connectivity in characterizing resting-state brain activity and 
its relation to cognition. 

In conclusion, focusing on the resting-state language network, we 
found that increased age was associated with more intense brain activity 
but lower within-network connectivity. Additionally, these increases in 
activity within the language network during resting-state were related to 
worse language ability, particularly among younger adults, supporting a 
dedifferentiation account of cognition. Our results support the utility of 
using resting-state data as an indicator of cognition and suggest that 
brain-behavior relationships are weaker among middle-aged and older 
adults. Our findings also support the role of ALFF as a potential 
biomarker in characterizing the relationships between resting-state 

brain activity, age, and cognition. 
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