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Abstract  

Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one 

side of space. Recent studies suggest that such hemispatial biases may determine how well people 

memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that 

learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. 

However, the exact neural and computational mechanisms underlying the influence of individual 

orienting biases on reward learning remain unclear. Because reward-based behavioral adaptation 

depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we 

hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual 

spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human 



participants while they performed a lateralized reward task. Learning differences between 

hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the 

left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric 

differences in DA function were estimated through differential fMRI responses to positive vs. 

negative feedback in the left vs. right ventral striatum, and a computational approach was used to 

identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in 

the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere 

and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. 

These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning 

mechanisms, with individual differences between hemispheres contributing to reinforcing spatial 

biases.  
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1. Introduction  

Spatial orienting biases implicate a preferred and consistent direction of attention or locomotion 

toward one side of space (i.e. hemispace). Such biases can be expressed as increased body rotations 

toward one side (Mohr, Brugger, Bracha, Landis, & Viaud-Delmon, 2004) or better detection of 

targets located in one hemispace (Nash, McGregor, & Inzlicht, 2010; Tomer, et al., 2013). Orienting 

biases have been attributed to the imbalanced activation of hemispheres (Kinsbourne, 1970; Nash, et 

al., 2010), with, for example, increased orienting responses to stimuli presented to the hemifield 

contralateral to the more activated hemisphere (Kelly, Gomez-Ramirez, & Foxe, 2009; Newman, 

O'Connell, & Bellgrove, 2013; Thut, Nietzel, Brandt, & Pascual-Leone, 2006). Moreover, orienting 



biases have been found to be consistent over time in both humans and animals, therefore indicating 

a trait-like disposition (Andrade, Alwarshetty, Sudha, & Suresh Chandra, 2001; Tomer, 2008). 

There is evidence suggesting that traits influence individual learning processes. For example, 

participants displaying high trait optimism show strong deficits in learning information that is worse 

than expected, i.e. information inconsistent with their optimistic predisposition (Sharot, Korn, & 

Dolan, 2011). Conversely, trait anxiety impedes fear extinction (Indovina, Robbins, Nunez-Elizalde, 

Dunn, & Bishop, 2011), and high sensitivity to social rejection prevents extinction of conditioned 

responses to angry faces (Olsson, Carmona, Downey, Bolger, & Ochsner, 2013). Thus, trait-like 

dispositions may influence learning mechanisms so as to reinforce and maintain trait-related 

behavioural biases. Similarly, animal data suggest that orienting biases could affect spatial learning. 

Rats displaying preferences for one arm in a T-maze showed strong deficits when learning to enter 

the arm contralateral to their bias, but not when learning to enter the ipsilateral arm (Andrade, et al., 

2001). However, it is not known whether individual orienting biases may also influence hemispatial 

learning in humans. More generally, the computational and neural learning mechanisms underlying 

trait-related effects on learning are largely understudied.  

On the one hand, both animals and humans orient away from the hemisphere with more 

dopamine (DA) activity, as found in both locomotion (Barone, Bankiewicz, Corsini, Kopin, & Chase, 

1987; Bracha, Shults, Glick, & Kleinman, 1987) and attention (Lee, Harris, Atkinson, & Fowler, 2001; 

Tomer, et al., 2013). Given that orienting biases are believed to be caused by imbalanced activity 

between hemispheres (Kinsbourne, 1970), together with activational aspects of DA (Robbins & 

Everitt, 1992, 2007), orienting biases caused by the asymmetric activation of hemispheres could be 

mediated by asymmetries in DA function (Tomer, et al., 2013). For example, it is plausible to assume 

that orientation is biased towards visual stimuli presented in the hemifield contralateral to the 

hemisphere with relatively increased DA function. On the other hand, there is evidence suggesting 

that the striatum, a subcortical brain region receiving projections from midbrain DA neurons 



(Glimcher, 2011), is important for hemispatial reward learning. For example, Lucas et al. (2013) 

investigated hemispatial reward learning in stroke patients displaying hemispatial neglect. In their 

experiment, patients gained more rewards for detecting targets in the neglected hemispace, leading 

to transient reductions of hemispatial neglect. Importantly, some patients displayed hemispatial 

learning deficits, and careful examination revealed that their lesions extended into the contralateral 

(i.e. ipsilesional) striatum. Similarly, patients with lesions extending into the contralateral striatum 

were unable to show reward-related reductions of hemispatial neglect (Malhotra, Soto, Li, & Russell, 

2013). Together these results suggest that hemispheric asymmetries in striatal function may not only 

subtend orienting biases, but could also be involved in biasing hemispatial learning. Because DA 

levels directly influence the neural encoding of prediction errors (PEs), i.e. the mismatch between 

actual and predicted outcomes (Chowdhury, et al., 2013; Jocham, Klein, & Ullsperger, 2011; 

Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Sutton & Barto, 1998) in the striatum (Abler, 

Walter, Erk, Kammerer, & Spitzer, 2006; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003), here 

we hypothesized that hemispheric asymmetries in DA function could be associated with hemispheric 

asymmetries in the neural encoding of PEs. In particular, a relative increase of DA function in one 

hemisphere would lead to better encoding of PEs related to stimuli presented in the contralateral 

(vs. ipsilateral) hemispace, and thus also result in hemispatial learning biases. Supporting this 

hypothesis, one recent study applied deep-brain stimulation of the subthalamic nucleus in one 

hemisphere, a procedure known to mimic DA enhancers, and found enhanced reward-learning for 

stimuli presented to the contralateral visual hemifield (Palminteri, et al., 2013). However, the neural 

structures (beyond the subthalamic nucleus) involved in mediating this effect were not investigated. 

In the present study, we tested whether an asymmetry in neural activity across dopaminergic 

regions in favor of the left (vs. right) hemisphere implicates better reward learning in the right (vs. 

left) hemispace, and how such hemispatial biases in reward learning may be explained in terms of 

underlying computational and neuronal learning mechanisms. Specifically, we investigated individual 

biases in reward learning between hemispaces by presenting stimuli with different reward  



probabilities to the left and right of a central fixation, i.e. in the left and right hemifields (Frank, 

Seeberger, & O'Reilly, 2004). Based on the close connection between DA function and reward 

processing in the striatum (Knutson & Gibbs, 2007; van der Vegt, et al., 2013),  we estimated 

hemispheric differences in DA function during the probabilistic selection task as the differential 

neural response of the left vs. right ventral striatum to positive vs. negative feedback (Aberg, Doell, & 

Schwartz, 2015). We then used a computational reinforcement learning model to identify 

modulations of fMRI signal corresponding to the PE for stimuli presented in each hemifield.  

The results show that participants displaying a larger reward response in the left (vs. the right) 

ventral striatum learned rewarded stimuli better when they were presented in the right (vs. the left) 

hemifield, as indexed by higher learning rates. Moreover, these participants encoded PEs better in 

the left ventral striatum for stimuli presented in the right (vs. the left) hemifield. These data uncover 

a neural mechanism whereby the expression of hemispatial biases during learning implicates 

hemispheric asymmetries in DA-related functions.  

2. Materials and Methods 

2.1 Participants 

After having provided written consent according to the ethical regulations of the Geneva 

University Hospital, 42 healthy volunteers participated in this experiment which was conducted in 

accordance with the Declaration of Helsinki. All participants were right-handed, native French 

speakers, and without any previous history of neurological or psychological disorders. Two 

participants failed to follow task instructions, four did not reach the performance criteria (see 

below), two fell asleep in the MRI scanner, and the data of one participant was excluded because of a 

bad fit between the behaviour data and the computational model. Finally, data from 33 participants 

[18 females; age=23.61 ± 0.79 years ± SEM] were included in the analyses. 



2.2 Probabilistic selection task (PST) 

In the PST, reward probabilities associated with different symbols were learned through a trial-

and-error procedure (Frank, Woroch, & Curran, 2005). During the (main) training period, taking place 

outside the MRI scanner, a central fixation cross (average presentation time: 1.25 s; jitter range: 0.5-

2.0 s) signalled the start of a trial, followed by a pair of symbols (presentation time: 1.0 s) presented 

to the left and to the right of fixation (Figure 1A). Selection of a symbol (left or right) was done by 

pressing its corresponding button (left or right) with the right hand and resulted in the presentation 

of either a happy or a sad smiley face, i.e. positive and negative feedback (presentation time: 0.6 s). 

The feedback type depended on a reward probability associated with the selected symbol (Figure 

1B), i.e. selection of the A symbol yielded positive feedback in 80% of the trials while selecting the B 

symbol resulted in negative feedback in 80% of the trials. Participants were instructed to collect as 

many happy smiley faces as possible while avoiding getting sad smiley faces. Each of the three pairs 

of symbols (i.e. AB, CD, and EF pairs) were presented 20 times in blocks of 60 trials in a 

pseudorandom order. This ensured that one pair was not repeated until one trial of each other pair 

had been presented. Critically, each symbol was presented an equal number of times to each 

hemifield. Between participants, the symbols were randomly assigned to different pairs and reward 

probabilities were randomly assigned to different symbols. To guarantee that some learning had 

occurred before entering the MRI scanner, participants had to reach a selection rate of the A and C 

symbols of more than 60% (12/20 trials) and 55% (11/20 trials), respectively, in one block of 60 trials, 

while no criteria were enforced for the more difficult EF pair (for a similar procedure see Frank et al., 

2005). Four participants did not reach the criteria within 45 minutes of training, and their data were 

not included in the analyses.  

Two additional training blocks of 60 trials were then performed inside the MRI scanner in order 

to investigate the neural correlates of reward processing and reinforcement learning. To make the 

task design suitable for an event-related fMRI design, the average presentation time for the central 

fixation cross was changed to 3.5 s with a jitter range between 2.0 and 5.0 s.  



During the subsequent test phase, twelve additional novel pairs (AC, AD, AE, AF, BC, BD, BE, BF, 

CE, CF, DE, and DF) were created by combining the symbols from the original trained pairs (AB, CD, 

and EF). This phase was largely similar to the training phase inside the scanner except that feedback 

was no longer provided in order to prevent further learning of the new pairs. Thus, this phase tested 

the generalization of learned symbol values from the trained pairs to the novel pairs, and participants 

were instructed to perform the task as well as possible and to trust their instincts, or guess, when 

uncertain. Each of the 15 pairs were presented eight times in a pseudorandom order with each pair 

presented once before any other pair was repeated, and each symbol was presented an equal 

number of times to each hemifield. The fMRI data analyses are explained in the MRI Data Analysis 

section below (e.g. Section 2.5). 

 
Figure 1. A. A training trial in the probabilistic selection task. After fixation, one symbol was presented to the left 

hemifield and another symbol was presented to the right hemifield.  Participants had to select one symbol within 1s. A 

happy or a sad smiley face was then presented based on the reward probability associated with the selected symbol. RT = 

response time. B. Reward probabilities associated with each pair and symbol. The symbols associated with each reward 

probability were randomized between participants. 

2.2.1 Asymmetry indexes 

This study investigates how hemispatial biases expressed after learning relate to asymmetries in 

reward and reinforcement learning processes. As subtle differences in reward learning are more 

likely to be detected for the most rewarded stimuli, subsequent analyses will focus on the A symbol 



with the highest reward probability (Frank, et al., 2004). Specifically, the presence of post-learning 

hemispatial biases is estimated during the test phase as the difference in selection rates for the most 

rewarded A symbol when presented to the right (vs. the left) hemifield. 

                           
                              

                             
 

A positive selection asymmetry index indicates that the selection rate of the A symbol is higher 

when presented in the right hemifield (RHF) vs. left hemifield (LHF), indicating better reward learning 

in the RHF. 

However, better reward learning in one hemifield could also lead to increased incentive 

motivation for highly rewarded objects in this hemifield (Palminteri, et al., 2013; Schmidt, Palminteri, 

Lafargue, & Pessiglione, 2010). Incentive motivation is associated with increased response vigor (Niv, 

Daw, Joel, & Dayan, 2007) and reduced response times (Adcock, Thangavel, Whitfield-Gabrieli, 

Knutson, & Gabrieli, 2006; Knutson, Fong, Adams, Varner, & Hommer, 2001). For this purpose, a 

response time (RT) asymmetry index was calculated as another measure of post-learning, reward-

related hemispatial biases. 

                    
                

               
 

A positive RT asymmetry index indicates that the RT of the A symbol was faster in the RHF (vs. 

the LHF), indicating better reward learning in the RHF. As the RT provides a continuous estimate of 

incentive motivation, it may more accurately reflect relative differences in incentive motivation 

between hemifields, as compared to selection rates which are related to discrete reward 

probabilities. 

2.3 Reinforcement learning model 

Computational learning models provide a mechanistic approach to study learning-related trial-

by-trial variations in behaviour (Watkins & Dayan, 1992) and in neural activity (Glascher, Daw, Dayan, 



& O'Doherty, 2010). Moreover, such models can be used to summarize complex learning behaviours 

into a few parameters which can be used to link differences in post-learning behaviour to differences 

in learning processes (Frank, Moustafa, Haughey, Curran, & Hutchison, 2007). Here, we used a 

modified version of the classical Q-learning model to account for differences in learning from 

different hemifields (for similar approaches, see Palminteri, Boraud, Lafargue, Dubois, & Pessiglione, 

2009; Palminteri, et al., 2013). In this modified Q-learning model, each symbol is assigned a value      

which depends on its reward history. The value of      is updated each time the corresponding 

symbol i has been selected in the hemifield j: 

    (   )      ( )    (      ( )) 

where    is the learning rate for items selected in the hemifield j and   is the reward outcome 

(set to 1 for positive outcomes and 0 for negative outcomes). The probability of selecting a specific 

symbol is modeled by a softmax rule:  
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where in this example,        is the probability of selecting symbol A presented to the left 

hemifield in an AB pair. The   controls ‘exploit vs. explore’ behavior. When this parameter is small, 

symbols with the highest Q value are most likely selected (exploitation) while a large   leads to 

selections less dependent on the symbol’s value (exploration). The three parameters     ,    , and 

  are fit to each participant’s training data by minimizing the negative log likelihood estimate (LLE): 
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) 

where     ( ) is the probability of selecting symbol   presented to the hemifield j in trial  .  

Reinforcement learning crucially depends on the feedback, as no updating of Q-values (i.e. 

learning) occurs in the absence of feedback. Therefore, it is assumed that the Q-values obtained at 

the end of training remained constant throughout the test phase.  



2.4 Statistical methods 

ANOVAs were used to estimate statistical significance between more than two conditions. 

However, in small sample sizes Monte-Carlo randomization methods are particularly useful when 

estimating statistical significance between two conditions as these methods do not require any 

assumption concerning the distribution of data (Howell, 2013). Accordingly, we estimated statistical 

significance between two conditions by comparing original observed effects with a null-distribution 

created from 10000 samples, each created by shuffling the original data between conditions.  

2.5 MRI data 

2.5.1 Image acquisition 

MRI images were acquired using a 3T whole body MRI scanner (Trio TIM, Siemens, Germany) 

with a 12-channel head coil. Functional images were acquired with a susceptibility weighted EPI 

sequence (voxel dimensions = 3.2 mm isotropic, TR/TE = 2100/30 ms, 64 x 64 x 36 voxels, flip angle = 

80 degrees). Standard structural images were acquired with a T1 weighted 3D sequence (MPRAGE, 

voxel dimensions = 1 mm isotropic, TR/TI/TE = 1900/900/2.27 ms, 256 x 256 x 192 voxels, flip angle = 

9 degrees). Proton density (PD) structural images were acquired with a turbo spin echo sequence 

(voxel dimensions = 0.8x0.8x3 mm, TR/TE = 6000/8.4 ms, 205 x 205 x 60 voxels, flip angle = 149 

degrees). The PD scan was added in order to localize dopaminergic brain regions in the midbrain, i.e. 

the ventral tegmental area/substantia nigra (VTA/SN). For this reason, the acquisition volume was 

oriented in order to scan the brain from the top of the thalamus to the lower part of the pons.  

2.5.2 MRI Data Analysis 

All fMRI data were pre-processed and then analysed using the general linear model (GLM) for 

event-related designs in SPM8 (Welcome Department of Imaging Neuroscience, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm). During pre-processing, all functional volumes were realigned to 

the mean image, co-registered to the structural T1 image, corrected for slice timing, normalized to 

the MNI EPI-template, and smoothed using an 8 mm FWHM Gaussian kernel. Statistical analyses 

http://www.fil.ion.ucl.ac.uk/spm


were performed on a voxelwise basis across the whole-brain. At the first-level analysis, individual 

events were modelled by a standard synthetic hemodynamic response function (HRF) and six rigid-

body realignment parameters were included as nuisance covariates when estimating statistical maps. 

Contrasts between conditions (see below) were then calculated and the contrast images entered into 

second-level tests implemented in SPM.  

2.5.2.1 Reward processing and reinforcement learning  

We assessed the neural correlates of prediction errors (PEs) and hemispheric asymmetries in 

reward processing from the data obtained during the two training blocks performed inside the MRI 

scanner. To investigate the neural correlates of reward processing, we first created an event-related 

design with two event-types time-locked to the onset of positive and negative feedback. We 

computed the difference in brain activity between positive and negative feedback for the left vs. the 

right ventral striatum to index the degree of hemispheric reward asymmetry (see Aberg, et al., 2015).  

                             [           ]        [           ]       

To investigate the neural correlates of PEs, we generated another model with two event-types time-

locked to the onset of feedback after selecting symbols in the RHF and the LHF. Model-derived PEs 

related to each HF (i.e. PERHF and PELHF) were added as parametric modulators for each respective 

event-type. By measuring how strongly PEs corresponding to each hemifield modulated activity in 

the left and the right ventral striatum (see Section 2.5.3), we could test whether PEs related to one 

hemifield were better represented in the contralateral hemisphere. We also assessed PE encoding 

within dopaminergic midbrain regions (see Section 2.5.3), because these are known to contribute to 

PE encoding (D'Ardenne, McClure, Nystrom, & Cohen, 2008; Schultz & Dickinson, 2000; Tobler, 

Fiorillo, & Schultz, 2005), which itself was recently shown to relate to the expression of post-learning 

behavioural biases (Aberg, et al., 2015). 

2.5.2.1 Incentive values during testing 



The neural correlates of incentive values were investigated during the test phase inside the MRI 

scanner. To assess differences in the neural response when the A symbol was presented to different 

hemifields, we used an event-related design with 24 event-types (12 different novel pairs and two 

hemifields; AC, CA, AD, DA … DE, ED, EF, FE) time-locked to the onset of stimulus presentation. The 

contrast for each symbol and hemifield was obtained by the linear combination of all trials containing 

the symbol presented to the corresponding hemifield (e.g. ARHF = CA, DA, EA, FA). To specifically 

investigate neural responses related to hemifield-differences in incentive value within a trial, we 

created another event-related design with one event-type time-locked to the onset of stimulus 

presentation, with the relative values between symbols presented to different hemifields added as a 

parametric modulator for each trial (i.e. QRHF-QLHF). The ventral striatum and the dopaminergic 

midbrain have been implicated in incentive motivation and the representation of incentive values 

(Bartra, McGuire, & Kable, 2013; Knutson, Fong, et al., 2001; Knutson & Gibbs, 2007; Knutson, Taylor, 

Kaufman, Peterson, & Glover, 2005). Thus, to test for learning-induced biases in incentive motivation, 

brain activity evoked by value-differences between symbols presented to different hemifields (i.e. 

QRHF-QLHF and ARHF-ALHF) was investigated within these brain regions (see Section 2.5.3).  

2.5.3 Region of interest (ROI)  

A priori ROIs used for small volume corrections (SVC) and extraction of beta parameter estimates 

were created based on previous literature. For the ventral striatum ROIs, centre coordinates were 

obtained from a recent study [Neta, Oliveira, Correia, & Ferreira, 2008; left ventral striatum: MNI 

x=-9 y=9 z=-8; right ventral striatum: MNI x=9 y=8 z=-8]. The left and right ventral striatum ROIs were 

defined as spheres (radius=5mm) centred on these coordinates. For the SVC specifically, a bilateral 

ventral striatum mask was created by combining these two spheres into one mask. For the 

dopaminergic midbrain (i.e. the VTA) ROI, centre coordinates were obtained from a recent study 

[Ballard et al., 2011; left VTA x=-2 y=-15 z=-13; right VTA x=3 y=-17 z=-12]. The VTA ROI was created 

by combining two spheres (radius=4 mm) into one VTA mask, in accordance with a recently described 

procedure (Cha, et al., 2014).  



2.5.4 Statistical Analyses  

For the ventral striatum, the obtained results are reported using a threshold of p<0.001 and a 

minimum cluster size of five contiguous voxels. For the VTA, the obtained results are reported using a 

threshold of p<0.005 and a minimum cluster size of ten contiguous voxels (see Cha, et al., 2014). 

Small volume corrections (SVC) using a threshold of p<0.05 Family-Wise Error Rate for multiple 

comparisons were obtained using the a priori ROIs described above. Conditions were compared using 

traditional t-tests implemented in SPM. Due to recent concerns (see Vul, Harris, Winkielman, & 

Pashler, 2009), displayed effect sizes were calculated by averaging extracted beta values over all 

voxels within a ROI. 

3. Results 

3.1 Behavioral results 

First, we used a linear regression analysis to ensure that training increased performance. Next, 

we tested whether the learned reward-values (derived from the training phase) influenced 

performance in the test phase, by comparing the selection rates and reaction times between symbols 

in the novel pairs, with a particular focus on performance differences between hemifields for the 

highly rewarded A-symbol (see Section 2.2.1 above). Finally, to unveil computational biases 

underpinning reward-related behavioural biases, we compared the model-derived results from the 

training phase with the behaviour during the test phase.  

3.1.1 Training 

Figure 2A displays performance for the different pairs as a function of training. Because 

participants needed a different numbers of trials to reach the performance criteria, performance was 

averaged across ten bins of trials for each participant and for each pair i.e. the bin size for a 

participant requiring 120 trials (i.e. 2 blocks of training) is 4 trials per bin while the bin size is 6 trials 

for a participant requiring 180 trials (e.g. 3 blocks of training). On average, a bin consisted of 



7.47±1.11 (SEM) trials, indicating that participants on average required between 3-4 blocks of 

training to reach the criteria. 

As a measure of learning, performance was linearly regressed over trial bins for each pair and 

participant, and the resulting regression coefficients (indicative of learning speed) were submitted to 

an ANOVA with factor Pair (AB, CD, EF). There was a significant effect of Pair [F(2,64)=4.442, p=0.016] 

because the regression coefficients were significantly larger for AB pairs [regression 

coefficient=0.022±0.004 (SEM)] as compared to EF pairs [regression coefficient=0.005±0.004 (SEM), 

p=0.007], and marginally so for CD pairs [regression coefficient=0.016±0.004 (SEM)] as compared to 

EF pairs [p=0.061]. Regression coefficients did not differ between AB and CD pairs [p=0.335]. 

Additionally, the average regressions coefficients were significantly larger than 0.0 for both AB 

[p<0.0001] and CD [p=0.0005] pairs, but not EF pairs [p=0.170]. These results show that learning 

occurred and was easier in pairs where the difference in reward probability between the symbols 

was large. 

3.1.2 Testing 

3.1.2.1 Selection rates 

On average the frequently rewarded A symbol was not selected more often in the right hemifield 

(RHF) over the left hemifield (LVF) [Selection rate A: RHF=0.839±0.029 (SEM), LVF=0.826±0.032 

(SEM), p = 0.526] (Fig 2B). However, and as expected from previous work (Tomer, 2008; Tomer, et al., 

2013), there was a large individual variability: 11 and 15 participants selected the A symbol more 

frequently in the LHF and the RHF, respectively, while 7 participants displayed no spatial selection 

bias. Next, to ensure that participants were able to generalize learned symbol values to the novel 

pairs during testing, and to test whether there was any general selection bias favouring one 

hemifield, a repeated measures ANOVA with factors Symbol (A, B, C, D, E, F) and Side (LHF, RHF) was 

conducted. There was a main effect of Symbol [F(5,352)=14.181, p<0.0001] because symbols 

associated with high reward probabilities during training were more likely to be selected during 



testing with novel pairs. This result suggests that the learned reward probabilities generalized and 

guided decision making also for the novel pairs. There was no significant effect of Side or interaction 

between Side and Symbol [both p-values>0.335].  

3.1.2.2 Response times 

Participants responded on average quicker when the A symbol was presented to the RHF as 

compared to the LHF [RT A: RHF=598.915±11.891 (SEM), LHF=616.009±11.290 (SEM), p=0.002] (Fig 

2C), with 23 and 10 participants responding quicker when the A symbol was presented to the RHF 

and the LHF, respectively. To determine whether RTs were generally faster for symbols presented to 

one hemifield, a repeated measures ANOVA with factors Symbol (A, B, C, D, E, F) and Side (LVF, RVF) 

was calculated. There was a main effect of Symbol [F(5,352)=84.689, p<0.0001] because RTs were 

faster for symbols associated with higher reward probabilities during training. This result is in line 

with previous studies showing that faster RTs are associated with increased motivational incentives 

and reward values (Adcock, et al., 2006; Knutson, Fong, et al., 2001; Mir, et al., 2011). There was no 

significant main effect of Side or interaction between Side and Symbol [both p-values>0.665].  

According to the theory of spatial priority maps, performance differences between the RHF and 

the LHF could be due to more general differences between hemifields which are independent of the 

incentive values of presented stimuli, i.e. that stimuli presented to one hemifield have higher priority 

than those presented to the other hemifield (Chelazzi, et al., 2014; Itti & Koch, 2001). To test 

whether this is the case in the present study, we tested whether individual differences in the 

hemifield bias expressed for the A symbol (i.e. the RT asymmetry index) correlated with similar biases 

for the other symbols (i.e. BLHF-BRHF, CLHF-CRHF, …, FLHF-FRHF). There were no significant correlations [all 

uncorrected p-values > 0.05], suggesting that the expression of individual spatial biases can be 

attributed to differences in incentive value assigned to the A symbol, rather than stimulus-

independent differences between hemifields (Chelazzi, et al., 2014). 



 

Figure 2. A. Performance as a function of training (Mean±SEM). Performance improved quicker for the AB and CD pairs 

where the difference in reward probability between the symbols was largest. B. Selection rate during testing with novel 

pairs (Mean±SEM). On average the A symbol was not selected more frequently in one hemifield over the other. However, 

symbols associated with higher reward probabilities during training were more frequently selected while symbols 

associated with lower reward probabilities were more frequently rejected, indicating a generalization of learned values to 

the novel pairs (see section 3.1.2.2 for statistics). C. Response times (RTs) during testing with novel pairs (Mean±SEM). RTs 

were fastest for symbols associated with high reward probabilities during training (see section 3.1.2.2 for statistics), and 

also faster when the A symbol was presented to the RHF (vs. the LHF). LHF/RHF=Left/Right hemifield. *p <0.05. 

3.1.3 Modelling results 

Figure 3A displays model-derived performance for the different pairs as a function of training. Of 

note, while the model fits the behavioural data well for AB and CD pairs, it overestimates 

performance for EF-pairs. This overestimation is caused by fitting one exploration/exploitation 

parameter   across conditions with different difficulties. Specifically, because performance in the AB 

and CD pairs is less exploratory than in the more difficult EF pairs, the   parameter will reflect the 

less exploratory performance found in the majority of the trials (i.e. together AB and CD pairs make 

up 2/3rds of the trials). This bias results in an underestimation of exploration in EF pairs which causes 

an overestimation of performance (see Aberg, et al., 2015). Model-derived Q-values at the end of 

training, for each symbol and each side, are displayed in Figure 3B. The Q-values for the A symbol 

differed significantly between the hemifields, with a higher Q-value in the RHF as compared to the 

LHF [QA RVF=0.685±0.042 (SEM); QA LVF=0.624±0.042 (SEM), p=0.0370]. This result goes well in hand 

with the finding that RTs for the A symbol were on average faster in the RHF, indicating that the A 



symbol had acquired a higher incentive value when presented in the RHF. To determine whether Q-

values were generally larger in one hemifield, a repeated measures ANOVA with factors Side (LHF, 

RHF) and Symbol (A,B,C,D,E,F) was conducted and revealed a significant effect of Symbol 

[F(5,352)=153.099, p<0.0001], indicating that symbols with higher reward probabilities had acquired 

the highest values at the end of training. There was no main effect of Side or interaction between 

Side and Symbol [both p-values>0.303].  

 

Figure 3. A. Model-derived performance as a function of training. Lines represent the learning curves generated by the 

model while circles represent actual data. B. Model-derived Q-values at the end of training (Mean±SEM). Q-values for the A 

symbol in the RHF were significantly larger as compared to the LHF (see section 3.1.3 for statistics). Moreover, symbols 

associated with higher reward probabilities had acquired higher Q-values. * p<0.05. C. Learning rates for the different 



hemifields (Mean±SEM). The learning rates for the RHF were significantly larger than for the LHF. * p<0.05 D. Correlation 

between post-learning biases and differences in learning rates between hemifields. Participants displaying faster RTs in the 

RHF also displayed larger learning rates in the RHF. For display purposes, both unranked data and the linear regression 

slope are shown. LHF/RHF=Left/Right hemifield. 

  

Model-derived learning rates are displayed in Figure 3C. The learning rate was larger for items 

selected in the RHF as compared to the LHF [αRHF=0.228±0.036 (SEM); αHVF=0.162±0.029 (SEM), 

p=0.044]. Additionally, hemifield differences in learning rates correlated with the RT asymmetry 

index [Fig 3D; ρ=0.365, p=0.037] indicating that participants displaying faster RTs in the RHF (vs. the 

LHF) during testing also displayed larger learning rates in the RHF (vs. the LHF) during training. This 

latter result provides a computational link between learning biases between hemifields and the 

expression of post-learning hemifield biases. There was no significant correlation with the selection 

rate asymmetry index [ρ=-0.118, p=0.488]. 

 

3.2 Functional MRI results 

We first assessed individual hemispheric asymmetries in DA function by estimating the 

differences in the neural response to positive and negative feedback during training (Aberg, et al., 

2015). Next, we used the computational approach to study the neural correlates of hemifield-specific 

prediction errors. Finally, we tested for neural activity evoked by hemifield differences in incentive 

values during the post-learning test phase.  

3.2.1 Training 

3.2.1.1 Reward processing  

Brain regions showing increased response to positive versus negative feedback are displayed in 

Figure 4A. Activity in the bilateral ventral striatum was higher for positive versus negative feedback 



[left ventral striatum: peak voxel MNI x=-12 y=8 z=-11, t(1,32)=3.966, pSVC=0.005; right ventral 

striatum peak voxel MNI x=9 y=11 z=-11, t(1,32)=6.417, pSVC<0.001].  

To assess hemispheric differences in reward responses, we estimated an asymmetry index for 

each individual by calculating the difference in neural response to positive and negative feedback 

between the right and left ventral striatum (see Section 2.5.2.1). For each participant, the neural 

response to positive and negative feedback was extracted from two 3 mm radius spheres centred on 

the peak voxels of the above reported positive>negative feedback contrast in the left and the right 

ventral striatum. Individual differences in hemispheric reward asymmetry are shown in Figure 4B 

with 14 participants displaying relatively larger reward responses in the left as compared to the right 

ventral striatum while 19 participants displayed the reverse pattern.  

Next, we tested whether the hemispheric reward asymmetry correlated with the two indexes of 

hemispatial learning biases. There was no significant correlation with the selection asymmetry index 

[Fig 4C; ρ=0.184, p=0.323]. By contrast, there was a significant correlation with the RT asymmetry 

index [Fig 4D; ρ=-0.338, p=0.046] because participants with relatively larger reward responses in the 

left (vs. the right) ventral striatum responded faster when the A symbol was presented to the RHF 

(vs. the LHF). Given that reward responses in the ventral striatum are closely associated with DA 

function (Knutson & Gibbs, 2007), this result provides unprecedented evidence linking hemispheric 

asymmetries in DA function to hemispatial learning biases. 



 

Figure 4. A. Increased neural activity to positive versus negative feedback. The neural response to positive feedback 

was larger as compared to negative feedback in the bilateral ventral striatum (VStr). Red circles indicate a priori ventral 

striatum ROIs. For display purposes, activity is displayed at an uncorrected threshold p=0.005. B. The distribution of the 

hemispheric asymmetry in reward processing. Fourteen participants had increased activity in the left (vs. the right) ventral 

striatum for positive (vs. negative) feedback while 19 participants displayed the reverse trend. C. Correlation between the 

selection asymmetry index and the hemispheric reward asymmetry. There was no significant correlation. For display 

purposes, unranked data are shown as well as the linear regression slope. D. Correlation between the RT asymmetry index 

and the hemispheric reward asymmetry. Participants displaying faster RTs in the RHF (vs. the LHF) also displayed larger 

reward responses in the left (vs. the right) ventral striatum. For display purposes, both unranked data and the linear 

regression slope are shown. LHS/RHS=Left/Right hemisphere. LHF/RHF=Left/Right hemifield. 

3.2.1.2 Prediction errors (PEs)  

Next, we sought to identify brain regions involved in the neural encoding of hemifield-specific 

PEs (i.e. PERHF, PELHF). Surprisingly, no brain region correlated with PELHF, even at a threshold of 

p=0.005. By contrast, PERHF correlated significantly with activity in the left ventral striatum [Fig 5B; 

peak voxel MNI x=-6 y=5 z=-8, t(32)=3.728, pSVC=0.009] and the VTA [peak voxel MNI x=6 y=-16 z=-14, 

t(32)=3.972, pSVC=0.004]. We also tested whether PERHF was relatively better encoded as compared to 



PELHF (and vice versa). Neither the left nor the right ventral striatum showed any evidence of 

relatively better encoding of PERHF or PELHF, even at a threshold of p=0.005. However, the left ventral 

striatum showed relatively better encoding of PERHF as compared to PELHF with an increasing RT 

asymmetry index [Fig 5C,D; MNI x=-12 y=11 z=-11, t(32)=3.196, pSVC=0.026]. To pinpoint the exact 

contribution of the different PEs to this relationship, separate correlations were calculated between 

the RT asymmetry index and extracted beta parameters for PERHF and PELHF for the peak voxel activity 

within the left ventral striatum (MNI x=-12 y=11 z=-11). While the RT asymmetry index showed a 

positive correlation with PERHF [ρ=0.352, p=0.047], it showed a negative correlation with PELHF [ρ=-

0.476, p=0.009]. These results support the notion that hemispatial reward learning is largely 

determined by reward and reinforcement learning mechanisms in the contralateral striatum.  

 

 

Figure 5. A. Ventral striatum ROIs, denoted by red circles. B. Neural correlates of RHF prediction errors (PERHF). Activity 

in the contralateral left ventral striatum (VStr) correlated significantly with PERHF. Of note, no neural activity correlated with 



PEs in the LHF (PELVF). For display purposes, activity displayed at an uncorrected threshold p=0.005. C. Neural correlates of 

the relative encoding of PERHF and PELVF as a function of RT asymmetry index. Activity in the left ventral striatum tracked the 

relative encoding of PEs in the different visual hemifields as a function of RT asymmetry index. For display purposes, activity 

is displayed at an uncorrected threshold p=0.005. D. The average activity in the left ventral striatum ROI tracked the relative 

encoding of PERHF and PELVF as a function of RT asymmetry index. Participants with faster RTs in the RHF (vs. the LHF) 

showed better encoding of PEs in the RHF (vs. the LHF). For display purposes, both unranked data and the linear regression 

slope are shown. LHF/RHF=Left/Right hemifield. 

3.2.2 Testing 

3.2.2.1 Learned values 

Next, we tested whether brain regions known to mediate motivation and incentive value 

contributed to the expression of a hemifield bias during testing. Presenting the A symbol to the RHF 

vs. the LHF (ARHF-ALHF) increased activity in the VTA [Fig 6B; MNI x=0 y=-13 z=-14, t(32)=3.437, 

pSVC=0.009; MNI x=3 y=-16 z=-17, t(32)=3.320, pSVC=0.012]. As the VTA has been strongly implicated in 

mediating incentive motivation and decreased RTs (Adcock, et al., 2006; Arsenault, Rima, Stemmann, 

& Vanduffel, 2014; Knutson, et al., 2005; Yun, Wakabayashi, Fields, & Nicola, 2004), this result goes 

well in hand with the observed overall decrease in RTs when the A symbol was presented to the RHF 

(vs. LHF). Moreover, activity in the VTA also increased when the model-derived Q-value was 

increasingly larger for the symbol presented to the RHF (QRHF-QLHF)[Fig 6C; MNI x=3 y=-19 z=-11, 

t(32)=2.881, pSVC= 0.028], indicating that the VTA is not only sensitive to hemifield differences in 

reward value between pairs, but also tracks subtle differences in relative value within pairs of 

symbols. These results thus suggest that the expression of post-learning hemispatial biases is 

influenced by activity in dopaminergic networks commonly believed to underpin incentive 

motivation. Of note, no evidence indicated that activity in the ventral striatum was modulated by 

hemifield-differences in symbol values.  



 
Figure 6. A. VTA ROI, delimited by a red line and overlaid on a proton density (PD) structural scan averaged across 

participants. The VTA is located medially to the substantia nigra (SN) which can be identified as a white strip in PD images. 

B. Neural activity as a function of the difference between ARHF and ALHF between pairs during testing. Activity increased in 

the VTA when the A symbol was presented to the RHF as compared to when it was presented to the LHF. For display 

purposes, activity displayed at an uncorrected threshold p=0.005. C. Neural activity as a function of the difference between 

QRHF and QLHF within pairs. Activity in the VTA increased when the relative difference in Q-value between the RHF and the 

LHF symbol increased.  For display purposes, activity displayed at an uncorrected threshold p=0.005. D. Overlapping voxels. 

Some voxels in the VTA increased activity both when the A symbol was presented to the RHF (vs. the LHF) and when the Q-

value of the symbol in the RHF increased relative the symbol in the LHF. LHF/RHF=Left/Right hemifield. 

4. Discussion  

In the present study, we tested whether the expression of reward-related spatial biases implicates 

hemispheric asymmetries in DA function and in underlying computational learning mechanisms. 

Specifically, we hypothesized that spatial biases in learning the reward value of symbols presented to 

different hemifields would relate to hemispheric asymmetries in reward responses and to the 



efficiency of PE signalling. To this end, participants learned reward probabilities of laterally presented 

symbols in a trial-and-error fashion while being scanned. A computational approach was used to 

unveil computational and neural biases during learning which may relate to the behavioural 

expression of hemispatial biases after the learning. The results are discussed in detail below. 

4.1 Asymmetries in striatal reward responses predicts spatial learning 

biases  

Hemispheric asymmetries in DA function have previously been linked to orienting biases because 

animals and humans tend to orient away from the hemisphere with more DA activity (Mohr, et al., 

2004; Nash, et al., 2010; Tomer, et al., 2013). Yet, while one experiment in rats showed that 

individual orienting biases in a T-maze were associated with deficits when learning to enter the non-

preferred arm in the maze (Andrade, et al., 2001), it remains unclear whether hemispheric 

asymmetries in DA function contributes to hemispatial learning biases. The present study reports a 

relationship between hemispheric asymmetries in reward processing in the ventral striatum and 

biases in learning reward values of symbols presented to different hemifields in humans. Because 

striatal implication to reward processing relies on DA function (Knutson & Gibbs, 2007), the present 

results provide a first indication that biases in hemispatial reward learning may be determined by 

hemispheric asymmetries in striatal DA function (see also section 4.2). 

Importantly, biases in response vigour (RT asymmetry index) rather than symbol selection 

(selection asymmetry index) correlated with asymmetries in hemispheric reward responses. These 

results fit well with the characteristics of the task in which reward probabilities were presented as 

fixed, discrete values. Indeed, although asymmetries in hemispatial learning could induce distinct 

values for the same symbol presented to different hemifields, this may not translate into different 

selection rates as the intra-symbol value difference (i.e. ALHF vs. ARHF) may be smaller than inter-

symbol value differences (i.e. ALHF vs. CLHF and ARHF vs. CRHF), resulting in largely the same selection 

rates for the same symbol presented to different hemifields. By contrast, RTs represent a continuous 



measure which may provide a more sensitive measure of learning-induced differences in incentive 

values, that may also be expressed implicitly (Schmidt, et al., 2010). Further support for this 

interpretation comes from the computational and neuroimaging data (see section 4.2 and 4.3), which 

indicate that the RT asymmetry index, and not the selection rate asymmetry index, relates to biases 

in reinforcement learning mechanisms. 

4.2 Biased computational reinforcement learning relates to spatial learning 

biases 

To better understand spatial learning biases, we used a computational approach to model the 

pattern of behavioural responses during the learning of the probabilistic selection task, separately for 

symbols presented to the RVF and LVF. The model revealed that the frequently rewarded A symbol 

had acquired a significantly higher Q-value in the RHF as compared to the LHF, a result which 

dovetails with the finding that RTs were generally shorter for the A symbol in the RHF. This finding 

also provides insights into possible mechanisms contributing to the expression of post-learning 

spatial biases, as discussed next. 

Previous research reported that RTs for cues associated with high rewards are typically faster as 

compared to RTs for cues associated with low rewards (Adcock, et al., 2006; Knutson, Fong, et al., 

2001; Mir, et al., 2011), suggesting that large Q-values (i.e. reflecting large expected rewards) are 

linked to fast RTs through the concept of incentive motivation. Fluctuations in incentive motivation 

were also found to correlate with activity in brain regions involved in attention and motor function, 

as well as with activity in the dopaminergic midbrain and its projection sites such as the ventral 

striatum (Knutson, Adams, Fong, & Hommer, 2001; Knutson, et al., 2005; Tobler, et al., 2005). These 

findings, together with findings highlighting a crucial role for DA in activational aspects of behaviour 

(Robbins & Everitt, 1992, 2007), have led researchers to suggest that the impact of motivation on 

behaviour is mediated by DA (Chakravarthy, Joseph, & Bapi, 2010; Salamone & Correa, 2012; Wise, 

2004). Several studies have also shown that the same neural circuitry may also represent the 



expected value of stimuli presented to one hemifield, but largely restricted to the contralateral 

hemisphere (Gershman, Pesaran, & Daw, 2009; Palminteri, et al., 2009; Wunderlich, Rangel, & 

O'Doherty, 2009), suggesting the possibility of unilaterally activating the brain’s motivational system. 

This notion was recently confirmed in a study where unilateral deep brain stimulation of the 

subthalamic nucleus, a procedure mimicking the impact of DA enhancers, boosted motivational 

processes within the stimulated hemisphere, as indicated by greater exerted force for the hand 

controlled by the stimulated hemisphere following increased monetary incentives (Palminteri, et al., 

2013). Moreover, unilateral incentive motivation could also be induced by presenting subliminal 

rewards to one hemifield, as indicated by increased response vigour (i.e. greater exerted force) for 

the hand controlled by the hemisphere contralateral (vs. ipsilateral) to the rewarded visual 

stimulation (Schmidt, et al., 2010). Accordingly, the incentive value of stimuli presented to one 

hemifield would determine the degree of activation of motivational brain circuitry in the 

contralateral hemisphere. A derivate of these findings is that differences in incentive values for 

stimuli presented to different hemifields should cause hemispheric asymmetries in the activation of 

motivational brain circuits. This suggestion is well in line with the present results, because 

asymmetric differences in Q-values for the A symbol presented to different hemifields related to 

asymmetric differences in RTs. 

Another interpretation for these results can be offered by the theory of spatial priority (or 

saliency) maps, which suggests that various types of spatial information are integrated into spatial 

maps, which can be accessed by attention and motor processes, and thus guide quick orientation 

towards highly prioritized spatial locations (Chelazzi, et al., 2014; Itti & Koch, 2001). These maps 

combine information related to the spatial location itself (e.g. attentional cues, previous reward 

history), as well as information specific to presented stimuli (e.g. emotional saliency, expected 

reward value). The formation and updating of these maps likely involves reinforcement learning 

processes (Chelazzi, Perlato, Santandrea, & Della Libera, 2013). Critically, this theory predicts that 

biases in orienting responses to two separate spatial locations are related to distortions in these 



priority maps caused by, for example, differences in expected reward value for stimuli presented at 

those locations (Chelazzi, et al., 2014). In line with this prediction, we found shorter response times 

when the highly rewarded A-symbol was presented at the location where it acquired a higher Q-

value (here, in the RHF), thus also confirming a contribution of expected reward to spatial priority 

maps (Navalpakkam, Koch, & Perona, 2009). Because spatial priority maps incorporate aspects of 

incentive motivation, such as the expected value of stimuli, the two aforementioned interpretations 

are not mutually exclusive.  

The learning rate, which controls how quickly symbol values are updated, was on average higher 

for the RHF as compared to the LHF. Additionally, participants displaying higher learning rates in the 

RHF (vs. the LHF) also displayed faster RTs for A symbols in the RHF (vs. the LHF), a result which 

provides a computational link between hemispatial learning biases and the expression of hemispatial 

biases after learning. Elevated learning rates are particularly beneficial in highly deterministic 

contexts when outcomes frequently represent actual values. In the present study, the reward 

probability of A symbol (0.8) is most closely linked to the reward outcomes, suggesting that it should 

be most sensitive to differences in learning rates between hemifields. Corroborating this notion, the 

data indicate both higher learning rates and Q-values for the A symbol in the RHF (vs. the LVF). (Note 

that the B symbol with a reward probability of 0.2 is equally closely coupled to the reward outcome, 

but the estimation of its Q-value may suffer from a more variable reward history as learning causes 

participants to select the B symbol less frequently in AB pairs). 

Finally, we would like to specify why we investigated individual differences in learning using a 

computational approach rather than standard behavioural measures, such as mean RT or selections. 

First of all, it is not clear whether the latter measurements during the training phase would be mainly 

guided by differences in acquired reward probabilities (i.e. stimulus value), or by other factors such 

as habitual responding caused by presenting only three pairs of symbols. Additionally, performance 

could be determined either by selecting the symbol with the highest reward probability (i.e. A in an 



AB pair), or by avoiding the symbol with the lowest reward probability (i.e. B in an AB pair). This 

information cannot be inferred from mean RT or selection measures during the training phase (but 

can be inferred from the test phase where behaviour could only be guided by differences in the 

reward probability, i.e. expected value assigned to each symbol) (Frank, et al., 2004). By contrast, the 

computational approach estimated one value for each symbol based solely on its previous reward 

history, making it insensitive to other confounding factors, such as those mentioned above. It also 

provided one estimate of the Q-value acquired for each symbol during the whole training, a summary 

value which we showed here correlated with individual RT biases in the subsequent test phase. This 

finding further evidence that the computational model successfully extracted relevant information 

from one modality and session (i.e. selection during training) to predict performance for another 

modality and session (i.e. RT during testing). Therefore, the computational approach used in the 

present experimental context offered a more refined, accurate, and meaningful way of capturing 

essential determinants of individual behaviour expressed during the training phase, as compared to 

standard behavioural measures. Moreover, when combined with neuroimaging methods, this 

approach can also provide a detailed description of the development of behavioural biases both at 

the mechanistic and at neural levels, i.e. when combined with neuroimaging methods.  

4.3 Biased neural reinforcement learning relates to spatial learning biases 

To investigate the neural correlates of hemispatial learning and the development of hemispatial 

biases, we analysed the fMRI data using separate PEs for symbols selected in the RHF and the LHF 

(i.e. PERHF and PELHF), as provided by the computational model. Activity in the VTA and the left ventral 

striatum correlated with PERHF. Additionally, the relative encoding of PERHF (vs. PELHF) in the left 

ventral striatum correlated with the hemispatial bias expressed after learning.  

A stronger correlation between PEs and brain activity indicates a better neural representation of 

the learning signal (Schonberg, Daw, Joel, & O'Doherty, 2007), which is causally linked to learning 

efficacy (Aquili, 2014; Schonberg, et al., 2007; Steinberg, et al., 2013). These results therefore 



support, at least partially, the notion that the striatum contributes to hemispatial learning by 

encoding the learning signal needed for behavioural adaptation in the contralateral hemifield. 

Additionally, they provide evidence that a relatively better neural representation of the learning 

signal related to one behaviour leads to behavioural biases favouring that behaviour over other 

behaviours (see also Aberg, et al., 2015).  

Hemisphere-specific reward learning mechanisms, as substantiated here, may also explain some 

recent reports of deficits in hemispatial learning and hemispatial reward processing, specifically in 

patients with unilateral lesions extending into the striatum (Lucas, et al., 2013; Malhotra, et al., 

2013), i.e. such learning deficits could have been caused by disruptions of striatal reward- and 

reinforcement learning processes. Moreover, the degree of rightward-directed hemispatial learning 

bias was associated with both increased reward processing in the ventral striatum, known to be 

modulated by DA (Knutson & Gibbs, 2007; van der Vegt, et al., 2013), and relatively better neural 

encoding of PEs in the contralateral left ventral striatum, which is consistent with pharmacological 

studies showing that the neural encoding of PEs in the ventral striatum is influenced by the level of 

DA function (Chowdhury, et al., 2013; Jocham, et al., 2011; Pessiglione, et al., 2006). This reasoning 

may also provide an alternative explanation for the results of a recent study by Palminteri, et al., 

(2013), in which unilateral increases in DA function, achieved through deep brain stimulation of the 

subthalamic nucleus (DBS-STN), enhanced reward learning for stimuli presented in the hemifield 

contralateral (vs. ipsilateral) to the stimulated hemisphere. Using a computational approach, the 

authors showed that spatial learning biases may have been mediated by increased reward processing 

in the DBS-STN stimulated hemisphere. Based on the present results, we may speculate that better 

reward learning in one hemifield reported by Palminteri, et al., (2013) was caused by enhanced PE 

encoding in the ventral striatum of the contralateral, DBS-STN-stimulated hemisphere. 

Another interpretation of the links between spatial learning biases and hemisphere-specific 

reinforcement learning mechanisms, as we report here, can be derived from research on multi-



effector action reinforcement which posits that different actions are learned and associated to the 

effectors performing them (Daw, 2014; Madlon-Kay, Pesaran, & Daw, 2013; Wunderlich, et al., 2009). 

For example, PEs for actions performed by the right or left hand are predominantly represented in 

the contralateral ventral striatum (Gershman, et al., 2009; Madlon-Kay, et al., 2013; Palminteri, et al., 

2009). Because all effectors used to respond in the present study were controlled by the left 

hemisphere (i.e. the fingers of the right hand), it could be suggested that PEs should be represented 

predominantly in the left ventral striatum. Consistent with this suggestion, the left ventral striatum 

displayed a positive correlation between the encoding of PEs related to the right hemifield and the 

expression of post-learning spatial biases (i.e. the RT asymmetry index), while it showed a negative 

correlation between the RT asymmetry index and the encoding of PEs related to the left hemifield. 

No evidence indicated the involvement of the right ventral striatum in encoding PEs. Moreover, this 

result extends previous literature by showing how asymmetric encoding of PEs influences 

subsequent behaviours. Indeed, although some studies found that PEs related to using the left and 

right hand were predominantly represented in the right and left ventral striatum, respectively, any 

related behavioural consequence has remained unknown (Gershman, et al., 2009; Madlon-Kay, et al., 

2013). By contrast, here we show that encoding of PEs related to one hemifield (vs. the other) was 

associated with the subsequent expression of spatial biases. This result also relates to the recent 

observation that better neural encoding of PEs related to approach (vs. avoidance) learning 

promoted approach (vs. avoidance) behaviours in a subsequent test phase (Aberg, et al., 2015). 

 

Orienting biases (Andrade, et al., 2001; Tomer, 2008), hemispheric asymmetries in reward 

processing (Aberg, et al., 2015), and DA function (Tomer, Goldstein, Wang, Wong, & Volkow, 2008) 

have been related to behavioural predispositions and traits. Our results show that hemispheric 

asymmetries in reward processing, pertaining to asymmetries in DA function, implicated biases in 

spatial learning, both at a neural and mechanistic level. While these results lend further evidence to 

the notion that the expression of trait-like behavioural biases may be maintained and reinforced 



through trait-related modulations of learning processes (Indovina, et al., 2011; Olsson, et al., 2013; 

Sharot, et al., 2011), it also raises the question concerning cause and effect. Some evidence indicate 

that orienting biases are linked to the expression of dopaminergic genes (Greene, Robertson, Gill, & 

Bellgrove, 2010; Newman, O'Connell, Nathan, & Bellgrove, 2012; Zozulinsky, et al., 2014). 

Additionally, there may also be a genetic basis to hemispheric asymmetries in DA function 

(Pohjalainen, et al., 1998; see Zozulinsky, et al., 2014 for a discussion). One plausible explanation 

would therefore be that genetic predispositions cause asymmetric DA function which would in turn 

determine the expression of orienting biases. A similar argument can be made for the expression of 

spatial learning biases. Accordingly, both orienting biases and spatial learning biases may be 

underpinned by genetically determined hemispheric asymmetries in DA function.  However, the 

present study highlights an important, additional factor, namely that asymmetric DA function also 

contributes to the maintenance of spatial biases by modulating the spatial learning of new 

information. 

4.4 The VTA mediates motivational biases between hemifields 

During testing with novel pairs, activity in the VTA increased when the Q-value was larger for the 

symbol presented to the RHF (vs. the LHF) as well as when the A symbol was presented to the RHF 

(vs. the LHF). The VTA has been associated with representing incentive values and incentive 

motivation (Arsenault, et al., 2014; Knutson, et al., 2005; Tobler, et al., 2005). For example, neural 

activity in the VTA increases for cues associated with high (vs. low) rewards and this increase is also 

related to decreased RTs (Adcock, et al., 2006; Knutson, Fong, et al., 2001). Increased VTA activity 

when the A symbol is presented to the RHF (vs. the LHF) therefore goes well in hand with the finding 

that the A symbol had acquired higher Q-values and increased incentive motivation, as reflected in 

faster RTs, when presented to the RHF (vs. the LHF).  

While incentive motivation can be increased in one hemisphere separately (Palminteri, et al., 

2013; Schmidt, et al., 2010), and the neural representation of reward values for lateralized presented 



objects are located in the contralateral hemisphere (Gershman, et al., 2009; Palminteri, et al., 2009; 

Wunderlich, et al., 2009), it remains unclear whether the neural correlates of hemifield-specific 

incentive motivation are also lateralized. The present results demonstrate that subtle differences in 

incentive motivation between hemifields, implicating lateralized brain structures during learning (i.e. 

the ventral striatum), and expressed by hemifield differences in incentive value and response vigour 

during testing, are mediated by brain circuits in the midbrain (i.e. the VTA).  

4.5 Limitations 

We acknowledge a potential limitation of the present study. DA function here was estimated by the 

strength of BOLD responses during reward processing. The BOLD response is not a direct measure of 

DA release or DA neuron activity, and does not discriminate between neural activity evoked by other 

neuromodulators and neurotransmitters, such as acetylcholine, GABA, or glutamate, which may also 

influence activity in the striatum and the midbrain and have been associated with modulations of 

spatial attention (Knudsen, 2011; Stormer, Passow, Biesenack, & Li, 2012). However, transient 

modulations of fMRI signal across the mesolimbic DA system during reward processing has previously 

been demonstrated to be highly consistent with neural recordings in animals (D'Ardenne, et al., 

2008; Knutson, Fong, et al., 2001; Schultz, Dayan, & Montague, 1997; Tobler, et al., 2005). 

Additionally, in line with studies using more direct measures of DA function, such as PET (Tomer, et 

al., 2014) and DA neuron loss in Parkinson’s disease patients (Maril, Hassin-Baer, Cohen, & Tomer, 

2013), our recent fMRI data evidence a link between hemispheric differences in DA function and 

biases in approach and avoidance learning (Aberg, et al., 2015). Note that, for ethical reasons, more 

invasive procedures, such as PET, are not easily available for studying healthy controls in many 

countries, making this fMRI-based approach an attractive alternative for estimating individual 

differences in DA function. 

4.6 Conclusion 



The present study provides computational and brain imaging evidence linking functional 

hemispheric asymmetries in the reward system to spatial learning biases in humans. In particular, our 

results suggest that pre-existing individual neuronal reward-processing biases influence hemisphere-

specific reinforcement learning mechanisms. Beyond hemispatial learning, the present results may 

also have clinical implications. Specifically, some individuals are at higher risk of developing mental 

disorders (Chambers, Power, & Durham, 2004; Indovina, et al., 2011), and recent evidence links the 

development and maintenance of mental disorders to biased learning processes (Itzhak, Perez-Lanza, 

& Liddie, 2014; Mineka & Oehlberg, 2008). Therefore, studying individual differences in the neural 

mechanisms underlying learning may be relevant for understanding why some individuals may be 

more likely than others to develop mental disorders.  
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Highlights  

 Dopamine (DA) function determine reward and reinforcement learning processes 

 Hemispheric asymmetries in DA function determine spatial orienting biases 

 We show that asymmetries in DA function also bias hemispatial reward learning 

 Model-based fMRI revealed the mechanisms mediating such biases  

 Hemispheric asymmetries in striatal function were particularly implicated 

 

 

 

 

 




