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Parkinson’s disease (PD) is caused by the accelerated death of dopamine (DA) producing neurons.

Numerous studies documenting cognitive deficits of PD patients have revealed impairments in a variety

of tasks related to memory, learning, visuospatial skills, and attention. While there have been several

studies documenting cognitive deficits of PD patients, very few computational models have been

proposed. In this article, we use the COVIS model of category learning to simulate DA depletion and

show that the model suffers from cognitive symptoms similar to those of human participants affected

by PD. Specifically, DA depletion in COVIS produced deficits in rule-based categorization, non-linear

information-integration categorization, probabilistic classification, rule maintenance, and rule switch-

ing. These were observed by simulating results from younger controls, older controls, PD patients, and

severe PD patients in five well-known tasks. Differential performance among the different age groups

and clinical populations was modeled simply by changing the amount of DA available in the model.

This suggests that COVIS may not only be an adequate model of the simulated tasks and phenomena

but also more generally of the role of DA in these tasks and phenomena.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Parkinson’s disease (PD) is caused by the accelerated death of
dopamine (DA) producing neurons. The pattern of cell loss is
opposite from and more severe than in normal aging. Within the
substantia nigra pars compacta (SNpc), cell loss is predominately
found in the ventral tier with less (but still extensive) damage in
the dorsal tier (Fearnley & Lees, 1991; Gibb & Lees, 1991). In
contrast, normal aging yields substantially less cell loss and in a
dorsal-to-ventral pattern. Parkinsonian motor symptoms appear
after a loss of 60–70% of SNpc cells and 70–80% of DA levels in
striatal nuclei (Bernheimer, Birkmayer, Hornykiewicz, Jellinger, &
Seitelberger, 1973; Gibb & Lees, 1991). Motor symptoms include
tremor, rigidity, bradykinesia, and akinesia.

In addition to motor deficits, non-demented PD patients
present cognitive symptoms that resemble those observed in
patients with frontal damage. Numerous studies documenting
cognitive deficits of PD patients have revealed impairment in a
variety of tasks related to memory, learning, visuospatial skills,
and attention (e.g., ignoring irrelevant and maintaining relevant
information: Gotham, Brown & Marsden, 1988). While there are a
ll rights reserved.
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plethora of studies documenting cognitive deficits of PD patients
(for a review, see Price, Filoteo, & Maddox, 2009), very few
computational models have been proposed to investigate the
variegated landscape of deficits observed in those studies. In this
article, we use the COVIS model of category learning (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Paul, & Maddox,
2011) to simulate DA depletion and we show that the depleted
model suffers from cognitive symptoms similar to those of human
participants affected by PD.
2. The COVIS theory of category learning

COVIS (Ashby et al., 1998) is a neurobiologically detailed
theory of category learning that postulates two systems that
compete throughout learning—an explicit, hypothesis-testing
system that uses logical reasoning and depends on working
memory and executive attention, and an implicit system that
uses procedural learning. The hypothesis-testing system of COVIS
is thought to mediate rule-based category learning. Rule-based
category-learning tasks are those in which the category structures
can be learned via some explicit reasoning process. Frequently,
the rule that maximizes accuracy (i.e., the optimal rule) is easy to
describe verbally. In the most common applications, only one
stimulus dimension is relevant, and the observer’s task is to
discover this relevant dimension and then to map the different
dimensional values to the relevant categories. The Wisconsin Card
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Sorting Test (WCST; Heaton, Chelune, Talley, Kay, & Curtiss, 1993)
is a well-known rule-based task. More complex rule-based tasks
can require attention to multiple stimulus dimensions. For exam-
ple, any task where the optimal strategy is to apply a logical
conjunction or disjunction is rule-based. The key requirement is
that the optimal strategy can be discovered by logical reasoning
and is easy for humans to describe verbally.

The procedural system of COVIS is hypothesized to mediate
information-integration category learning. Information-integration
tasks are those in which accuracy is maximized only if informa-
tion from two or more stimulus components (or dimensions) is
integrated at some pre-decisional stage. Perceptual integration
could take many forms—from treating the stimulus as a Gestalt to
computing a weighted linear combination of the dimensional
values. Typically, the optimal strategy in information-integration
tasks is difficult or impossible to describe verbally. Rule-based
strategies can be applied in information-integration tasks, but
they generally lead to sub-optimal levels of accuracy because
rule-based strategies make separate decisions about each stimu-
lus component, rather than integrating this information.
3. Parkinson’s disease and cognitive impairments

Many experiments have contributed to the identification of
PD-related cognitive deficits. Although the diverse landscape of
impairments may appear disparate, they can largely be attributed
to failures in one of the two COVIS learning systems. Impairments
in rule-based tasks will be considered first followed by impair-
ments in procedural-learning tasks. The evidence presented here
is by no means exhaustive, but instead has been selected as
representative of learning failures that are amenable to exposition
through model simulation without modifying the existing COVIS
model architecture (Ashby et al., 1998, 2011). A fuller treatment
of PD cognitive deficits can be found in Price et al. (2009).
3.1. Rule-based learning

PD patients display many of the same deficits in rule-learning
tasks as patients with frontal lobe damage (Owen, Roberts,
Hodges, & Robbins, 1993). These tasks demand attention, working
memory, and logical reasoning to maximize performance. This
section reviews empirical evidence for rule-related deficits in PD
patients, with a focus on deficits in rule-based category learning,
rule maintenance, and perseverative response tendencies. This
focus is warranted considering that COVIS is a model of category
learning that uses hypothesis-testing as a mechanism for rule
learning, and that the goal here is not to design a specific
computational model of PD deficits, but rather to simulate PD
symptoms using an existing neurobiologically-detailed model
(COVIS) without any modifications or additional assumptions.
Evidence reviewed in Cools (2006) suggests that these impair-
ments in ‘executive functions’ are DA related. More specifically,
Price et al. (2009) reviewed evidence suggesting that rule shifting
and rule selection impairments are DA related. Hence, rule-
related cognitive symptoms will be simulated in COVIS by
reducing DA levels (see Section 5).

Ashby and his colleagues (2003) tested PD patients, age-
matched controls, and younger controls in a rule-based categor-
ization task similar to the WCST, except that the stimuli varied on
four dimensions instead of three. Like the WCST however, a
simple one-dimensional rule could be used to categorize the
stimuli perfectly. Each participant was classified as a learner if
the rule was successfully learned (i.e., 10 consecutively correct
responses) within 200 trials. Compared to controls, significantly
more PD patients failed to learn in this task than both the young
and age-matched controls.

The above experiment successfully identified a gross impair-
ment in rule learning via simple rule-based categorization. More
nuanced deficits have also been identified by using different kinds
of rule-based tasks and performance metrics. For example, PD
patients tend to demonstrate a failure of rule maintenance. Rule
maintenance requires sustained attention to the relevant stimu-
lus dimension (as determined by the rule) while ignoring varia-
tions in the other dimensions. Typically, rule maintenance is
measured by set loss errors, which are defined as errors following
several consecutively correct responses. In the WCST, PD patients
exhibit significantly more set loss errors than controls (Beatty,
Staton, Weir, Monson, & Whitaker, 1989). Similarly, Filoteo,
Maddox, Ing, and Song (2007) observed more set loss errors in a
rule-based categorization task when the irrelevant dimensions
varied randomly than when there was no variability in the
irrelevant dimension.

PD patients also appear to exhibit a perseverative tendency—

patients often persist with the previous response strategy despite
feedback suggesting a change in the relevant rule. Using a simplified
version of the WCST (Nelson, 1976), Gotham et al. (1988) found PD
patients to make significantly more perseverative errors than
control participants. In addition, Beatty et al. (1989) found greater
mean perseverative errors and responses than controls in the
standard WCST. Finally, a meta-analysis of PD patient performances
in WCST experiments found moderate effect sizes for both perse-
verative errors and perseverative responses, further supporting
the hypothesis that PD patients exhibit perseverative tendencies
(Zakzanis & Freedman, 1999).

3.2. Procedural learning

Using a different class of learning problems, some studies have
identified a different pattern of learning deficits in PD patients.
Procedural learning is important in categorization tasks in which
optimal responding cannot be obtained via logical reasoning or by
using any explicit rule-based strategy. Shohamy, Myers,
Grossman, Sage, and Gluck (2005) reviewed evidence and col-
lected data suggesting that at least some forms of procedural
learning are DA-related. As such, procedural-learning deficits
are simulated in COVIS by reducing DA levels in the model
(see Section 5).

In a now classic study, Knowlton, Mangels, and Squire (1996)
tested several patient groups in the Weather Prediction Task
(WPT), a probabilistic classification task that requires participants
to learn gradually to associate a number of stimuli with the
correct outcome. Knowlton and her colleagues found that PD
patients performed significantly worse than controls in this task,
and PD patients with the most severe symptoms never performed
above chance. Importantly, amnesic patients performed as well as
controls, thus lending strong evidence that a failure of memoriza-
tion was not the cause of the PD impairment and indirectly
supporting the hypothesis that performance in this task depends
on an intact mesostriatal dopamine system.

Ashby and his colleagues (2003) tested PD patients with an
information-integration category-learning task that used the
same stimuli as in the rule-based task described in Section 3.1.
In the information-integration condition, the stimuli were sepa-
rated into two categories in such a way that no easily verbalized
rule would yield optimal performance. Interestingly, PD patients
were unimpaired in this task compared to age-matched controls
(although both groups were massively impaired relative to young
controls). Similarly, PD patients showed no deficits in two other
information-integration category-learning tasks that used two-
dimensional continuous-valued stimuli when the categories
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were linearly separable, although they were impaired relative to
controls when the categories were non-linearly separable (Filoteo,
Maddox, Salmon, & Song, 2005; Maddox & Filoteo, 2001). These
results suggest that PD patients are impaired relative to age-
matched controls in tasks that rely on procedural learning, but
only when the task is sufficiently complex.

3.3. A model-based approach to understanding Parkinson’s disease

impairments

Despite the tremendous amount of behavioral research in PD,
very few computational models have been proposed that attempt
to account for the cognitive impairments concomitant with the
disease. In this article, we describe how an implementation of the
COVIS theory of category learning (Ashby et al., 1998) can be used
to simulate DA depletions and we show that the resulting model
mimics some cognitive symptoms of PD patients (Hélie, Paul, &
Ashby, 2012). The neurobiological specificity of COVIS uniquely
allows this degree of flexibility. Notably, the model requires no
substantive modification to account for some neuropsychological
patient and normal aging data despite the fact that it was
originally built as a model of human category learning in healthy
adults, not as a model of PD (Ashby et al., 2011).

While this approach is useful in further testing the COVIS
model of categorization, it will, by its very nature, result in an
incomplete model of PD symptoms. For instance, COVIS does not
include a model of the ventral striatum (e.g., nucleus accumbens).
This region is thought to play a major role in reversal learning and
feedback processing (e.g., Cools, Altamirano, & D’Esposito, 2006)
and, as a result, the present model could not account for reversal
learning data without adding additional assumptions (which is
not in line with the goal of this work). For this reason, we avoid
simulating tasks that include major feedback manipulations in
this article.

Likewise, a model of the ventral striatum is required in order to
adequately model the effect of dopaminergic medication on cogni-
tive deficits. First, according to the overdose hypothesis (Cools,
2006; Price et al., 2009), the dosage of dopaminergic medication
required to improve motor symptoms (i.e., restoring DA levels in the
dorsal striatum) may result in too much DA in the ventral striatum
(because DA innervation to the dorsal striatum is more affected than
DA innervation to the ventral striatum in PD). The overdose
hypothesis explains some of PD patients’ cognitive deficits as a
result of the dopaminergic medication ‘overdosing’ the ventral
striatum (not included in the current version of COVIS). Second,
some dopaminergic medications predominantly target the ventral
striatum (e.g., D3 agonists; Foll, Gallo, Strat, Lu, & Gorwood, 2009)
whereas others similarly increase DA levels in the whole striatum
(e.g., levodopa; Cools, 2006). While D3 agonists, such as pramipex-
ole, also bind to other receptors in the D2-class within the dorsal
striatum, their effect on the ventral striatum can hardly be ignored.
As such, the effect of dopaminergic medication cannot be modeled
using the current computational implementation of COVIS.

It should be noted that even if a ventral striatum was added to
COVIS, some major challenges would still have to be overcome
before it would be possible to account for the published effects of
medication on the cognitive performance of PD patients. In
addition to the issues discussed above, building such a model is
complicated by the fact that a number of different medications
are used to treat PD, and many patients are prescribed a cocktail
that includes two or more of these. The specific effects of some of
these drugs is still unclear (e.g., anticholinergics), and to compli-
cate things even further, a number of drugs have complex
interactions that are poorly understood. In addition, there are
important individual differences regarding the locus and extent of
basal ganglia dysfunction in PD, and most studies do not currently
control for these differences. For all these reasons, the simulations
described in this article focus on PD patients ‘‘ON’’ medication.

The remainder of this article is organized as follows. First, we
describe a computational implementation of COVIS with a focus
on the role played by DA in the model. Second, we propose a
model of how the DA deficits found in PD patients can be modeled
within the COVIS framework. Third, we reproduce some of the PD
deficits identified above by simulating five well-known tasks (i.e.,
rule-based categorization, information-integration categorization,
the WPT, the WCST, and the simplified WCST). Fourth, we
conclude with a general discussion of alternative models of PD
and discuss the implications of computational PD modeling for
future research.
4. A computational implementation of COVIS

The computational version of COVIS includes three separate
components—namely a model of the hypothesis-testing system, a
model of the procedural-learning system, and an algorithm that
monitors the output of these two systems and selects a response
on each trial. Because the goal of this paper is to provide a COVIS-
based account of PD, we present a verbal description of the COVIS
subsystems, and only describe the equations directly related to
DA levels. Note that none of the processes described in this
implementation were added to account for PD cognitive deficits;
they were all present in the initial formulation of COVIS published
more than a decade ago (Ashby et al., 1998). The reader interested
in a more recent full formal description of COVIS is referred to
Hélie et al. (2012).

4.1. The hypothesis-testing system

The hypothesis-testing system in COVIS selects and tests
explicit rules that determine category membership. The simplest
rule is one-dimensional. More complex rules are constructed from
one-dimensional rules via Boolean algebra (e.g., to produce logical
conjunctions, disjunctions, etc.). The neural structures that have
been implicated in this process include the prefrontal cortex,
anterior cingulate, head of the caudate nucleus, and hippocampus
(Ashby et al., 1998; Ashby, Ell, Valentin, & Casale, 2005; Hélie,
Roeder, & Ashby, 2010). The computational implementation of the
COVIS hypothesis-testing system is a hybrid neural network that
includes both symbolic and connectionist components. The mod-
el’s hybrid character arises from its combination of explicit rule
selection and switching and its incremental salience-learning
component.

On each trial, the hypothesis-testing system computes a
response using the following algorithm. Suppose rule Ri is used
on trial n. A response for stimulus x is selected by computing a
discriminant value hE(x) on the relevant rule dimension(s) and
using the following decision rule:

Respond A on trial n if hEðxÞre;
Respond B if hEðxÞ4e ð1Þ

where e is a normally distributed random variable with mean 0 and
variance s2

E, and hE(x) is the signed distance between the stimulus
and the category boundary (positive on one side and negative on the
other). The variance s2

E increases with trial-by-trial variability in the
participant’s perception of the stimulus and memory of the decision
criterion (i.e., perceptual and criterial noise). As argued in Ashby and
Casale (2003), s2

E is inversely related to cortical DA levels (for similar
arguments, see also Durstewitz & Seamans, 2008; Frank, 2005;
Moustafa & Gluck, 2010).

After a response is given and feedback has been received, rule
selection proceeds as follows: if the response on trial n was



Fig. 1. A schematic illustrating the architecture of the COVIS procedural system.
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correct, then rule Ri is used again on trial nþ1 with probability 1;
if the response on trial n was incorrect, then the probability of
selecting each rule in the set R for use on trial nþ1 is a function of
each rule’s current weight. The weight associated with each rule
is determined by the participant’s lifetime history with that rule,
the reward history associated with that rule during the current
categorization training session, the tendency of the participant to
perseverate, and the tendency of the participant to select unusual
or creative rules. Together, these factors determine rule salience.

On correct trials, the salience of the current rule is increased,
but no further action is required (because the current rule is used
again with probability 1). On incorrect trials, the first step is to
decrease the salience of the current rule. Next, the salience of
each rule is used to produce a weight Y, according to the following
procedure. For the rule Ri that was active on trial n,

YiðnÞ ¼ ZiðnÞþg ð2Þ

where Zi(n) is the salience of rule Ri on trial n, and the constant g
is a measure of the tendency of the participant to perseverate on
the active rule, even though feedback indicates that this rule is
incorrect. If g is small, then switching will be easy, whereas
switching is difficult if g is large. COVIS assumes that switching of
executive attention is mediated within the head of the caudate
nucleus, and that the parameter g is inversely related to basal
ganglia DA levels (for a detailed argument, see Ashby et al., 1998).

After the active rule weight has been computed using Eq. (2), a
rule is chosen at random from the list of all possible rules
(including the active rule1). Call this rule Rj. The weight for this
rule is

YjðnÞ ¼ ZjðnÞþX ð3Þ

where Zj(n) is the salience of rule Rj on trial n, and X is a random
variable that has a Poisson distribution with mean l. Larger
values of l increase the probability that rule Rj will be selected
for the next trial, so l is called the selection parameter. COVIS
assumes that a cortical network including the anterior cingulate
and the prefrontal cortex mediates selection, and that l increases
with cortical DA levels (for a detailed argument, see Ashby et al.,
1998). The weight of every other rule is set to its previous salience
value (i.e., Yk(n)¼Zk(n)).

Finally, rule Rk (for all k) is selected for use on trial nþ1 with
probability

Pnþ1ðRkÞ ¼
Ya

kðnÞPm
s ¼ 1 Ya

s ðnÞ
ð4Þ

where a is a parameter that determines how much variability there
is in the selection process. When ao1, the selection is noisy and
the probability differences are diminished (making the selection
probabilities more uniform). When a41, the selection becomes
more deterministic—the rule with the greatest weight is almost
always chosen. Hence, a can be interpreted as a gain parameter
and, as such, COVIS assumes that a increases with cortical DA
(Ashby & Casale, 2003; for similar arguments, see Durstewitz &
Seamans, 2008; Frank, 2005; Moustafa & Gluck, 2010).

This model has a number of attractive properties. First, the
more salient the rule, the higher the probability that it will be
selected, even after an incorrect trial. Second, after the first trial,
feedback is used to adjust the selection probabilities up or down,
depending on the success of the rule. Third, the model has
separate selection and switching parameters, reflecting the COVIS
assumption that these are separate operations. The random
variable X models the selection operation. The greater the mean
of X (i.e., l) in Eq. (3), the greater the probability that the selected
1 Note that if the active rule is selected (i.e., Rj¼Ri), then the rule weight is

updated by Eq. (3); not the rule salience.
rule (Rj) will become active. In contrast, the parameter g from
Eq. (2) models switching, because when g is large, it is unlikely
that the system will switch away from to the currently active rule
Ri. It is important to note, however, that with both parameters
(i.e., l and g), optimal performance occurs at intermediate
numerical values. For example, note that if l is too large, some
extremely low salience rules will be selected, and if g is too low
then a single incorrect response could cause a participant to
switch away from an otherwise successful rule.

4.2. The procedural system

The current implementation of the procedural system is called
the Striatal Pattern Classifier (SPC: Ashby, Ennis, & Spiering, 2007;
Ashby & Waldron, 1999). The SPC learns to assign responses to
regions of perceptual space. In such models, a decision bound
could be defined as the set of all points that separate regions
assigned to different responses, but it is important to note that in
the SPC, the decision bound has no psychological meaning. As the
name suggests, the SPC assumes that the key site of learning is at
cortical-striatal synapses within the striatum.

The SPC architecture is shown in Fig. 1 for an application to a
categorization task with two contrasting categories. This is a straight-
forward three-layer feedforward network with up to 10,000 units in
the input layer and two units each in the hidden and output layers.
The only modifiable synapses are between the input and hidden
layers. The more biologically detailed version of this model proposed
in Ashby et al. (2007) included lateral inhibition between striatal
units and between cortical units. In the absence of such inhibition,
the top motor output layer in Fig. 1 represents a conceptual
placeholder for the striatum’s projection to premotor areas.

The key structure in the model is the striatum (i.e., the putamen),
which is a major input structure within the basal ganglia
(Waldschmidt & Ashby, 2011). In humans and other primates, all
of extra-striate cortex projects directly to the striatum and these
projections are characterized by massive convergence, with the
dendritic field of each medium spiny cell innervated by the axons
of approximately 380,000 cortical pyramidal neurons (Kincaid,
Zheng, & Wilson, 1998). COVIS assumes that, through a procedural-
learning process, each striatal unit associates an abstract motor
program with a large group of sensory cortical cells (i.e., all that
project strongly to it). The dendrites of striatal medium spiny
neurons are covered in protuberances called spines. These play a
critical role in the model because glutamate projections from sensory
cortex and DA projections from the SNpc converge (i.e., synapse) on
the dendritic spines of the medium spiny neurons. COVIS assumes
that these synapses are a critical site of procedural learning.

Sensory cortex is modeled as an ordered array of up to 10,000
units, each representing a different radial-basis function.
The model assumes that each unit responds maximally when its



Fig. 2. Model used to relate the amount of dopamine (DA) released as a function

of the reward prediction error (RPE).
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preferred stimulus is presented, and that its response decreases as
a Gaussian function of the distance in stimulus space between the
stimulus preferred by that unit and the presented stimulus. COVIS
assumes that the activation of each striatal unit (within the
middle or hidden layer) is determined by the weighted sum of
activations in all sensory cortical cells that project to it. The
striatal neuron with maximum activation produces more premo-
tor activation and hence determines the model’s response.

The connection weights between sensory cortex and the
striatum are modified using a reinforcement learning algorithm
(Haykin, 2008). The three factors thought to be necessary to
strengthen cortical-striatal synapses are (1) strong pre-synaptic
activation, (2) strong post-synaptic activation, and (3) DA levels
above baseline (e.g., see Arbuthnott, Ingham, & Wickens, 2000).
According to this model, the synapse between a neuron in sensory
association cortex and a medium spiny neuron in the striatum is
strengthened if the cortical neuron responds strongly to the
presented stimulus, the striatal neuron is also strongly activated
(i.e., factors 1 and 2 are present) and the participant is rewarded
for responding correctly (factor 3). On the other hand, the
strength of the synapse will weaken if the participant responds
incorrectly (factor 3 is missing), or if the synapse is driven by a
cell in sensory cortex that does not produce much activation in
the striatum (i.e., factor 2 is missing).

The learning conditions described above require a model that
specifies how much DA is released on every trial in response to
the feedback signal. The key empirical results are (Schultz, Dayan,
& Montague, 1997): (1) midbrain DA cells fire spontaneously (i.e.,
tonically), (2) DA release increases above baseline following
unexpected reward, and the more unexpected the reward the
greater the release, and (3) DA release decreases below baseline
following unexpected absence of reward, and the more unex-
pected the absence, the greater the decrease. One common
interpretation of these results is that over a wide range, DA firing
is proportional to the reward prediction error (RPE), which is
defined as the value of the obtained reward minus the value of
the expected reward. In all the simulations included herein, we
defined the value of obtained reward as þ1 if the feedback was
positive and �1 if the feedback was negative. Following, Ashby
and Crossley (2011), expected reward was computed using the
single-operator learning model (Bush & Mosteller, 1955).

Bayer and Glimcher (2005) reported activity in midbrain DA
cells as a function of RPE. A simple model that nicely matches
their results is

DðnÞ ¼

Dmax if RPE4 Dmax�Dbase

Dslope

Dslope � RPEþDbase if � Dbase
Dslope

rRPEr Dmax�Dbase
Dslope

0 if RPEo� Dbase

Dslope

8>>>><
>>>>:

ð5Þ

where Dmax, Dslope, and Dbase are constants. This model is illu-
strated in Fig. 2. Note that the baseline DA level is Dbase (i.e., when
the RPE¼0) and that DA levels increase linearly with the RPE
between 0 and Dmax. In general, higher values of Dmax allow for a
larger increase in DA following unexpected reward, higher values
of Dbase allow for a larger decrease of DA following the unexpected
absence of reward, and higher values of Dslope increase the effect
of RPE on DA release. Thus, increasing the value of any of these
constants should improve learning in the procedural system (up
to a point).

4.3. Resolving the competition between the hypothesis-testing and

procedural systems

Because on any trial the model can make only one response,
the final task is to decide which of the two systems will control
the observable response. In COVIS, this competition is resolved by
combining two factors: the confidence each system has in the
accuracy of its response, and how much each system can be
trusted. In the case of the hypothesis-testing system, confidence
equals the absolute value of the discriminant function (as in
Eq. (1)). When the value is small, the stimulus is close to the
hypothesis-testing system’s decision bound, so the model has no
confidence in its ability to predict the correct response. When the
discriminant value is large, the stimulus is far from the bound and
confidence is high. In the procedural system, confidence is defined
as the difference between the maximum striatal activation and
the mean striatal activation. Here the rationale is similar to that of
the hypothesis-testing system: when the stimulus is equally
activating all of the striatal units, the procedural system has no
confidence in its ability to predict the correct response, but when
one unit is activated much more strongly than the others, the
evidence strongly favors one response over the others.

The amount of trust that is placed in each system is a function
of an initial bias toward the hypothesis-testing system, and the
previous success history of each system. In typical applications,
COVIS assumes that the initial trust in the hypothesis-testing
system is much higher than in the procedural system, partly
because initially there is no procedural learning to use. As the
experiment progresses, feedback is used to adjust the two system
weights up or down depending on the success of the relevant
component system. Finally, confidence and trust are combined
multiplicatively and the system with the highest resulting value
determines the overall response.
5. Modeling Parkinson’s disease with COVIS

DA cells in the SNpc and the ventral tegmental area (VTA) die
in PD, which results in decreased DA levels in the prefrontal
cortex and the striatum. In COVIS, DA has a differential effect on
the hypothesis-testing and procedural systems. In the hypothesis-
testing system, COVIS assumes that selection and switching both
depend on brain DA levels. In particular, selection should improve
as levels of DA rise in frontal cortex (up to some optimal level),
and switching should improve if levels of DA rise in the head of
the caudate nucleus (Ashby et al., 1998). Thus, the selection
parameter l should increase with DA levels in frontal cortex,
and the switching parameter g is assumed to decrease with
increased DA levels in the caudate nucleus. In addition, it has
been argued that DA in the prefrontal cortex increases signal-to-
noise ratio (Ashby & Casale, 2003; Frank, 2005; Durstewitz &
Seamans, 2008; Moustafa & Gluck, 2010). Hence, a in Eq. (4)



Table 1
Dopamine-related parameters in COVIS.

Parameters Ashby et al.
(2003)

Filoteo
et al.(2005)

Knowlton et al.
(1996)

WCST/
simplified
WCST

YC OC PD OC PD OC PD SPD OC PD

s2
E 0.50 – – 13.00 14.00 0.30 0.85 5.00 0.25 0.35

g 10.00 10.00 55.00 5.00 10.00 20.00 55.00 55 2.45 5.03
l 1.50 1.50 0.15 10.00 5.00 15.00 0.15 0.05 10.47 8.66
a 1.00 – – 1.00 0.10 10.00 1.00 1.00 1.39 0.39
Dslope 0.80 0.25 0.20 0.70 0.10 00.80 0.15 0.05 0.80 0.15

Note: YC¼young control; OC¼old control; PD¼Parkinson’s disease patients;

SPD¼severe PD patients. WCST/simplified WCST shows a common set of para-

meter values for Gotham et al. (1988) and Beatty et al. (1989).

Table 2
Task-related parameters in COVIS.
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should increase with DA levels (similar to l), and s2
E should

decrease with more DA (similar to g).
In the procedural system, DA plays a crucial role in learning: it

provides the reward signal required for reinforcement learning. A
decreased DA baseline or range can affect the ability of the
procedural system to learn stimulus-response associations.
Hence, decreasing DA levels in the striatum should decrease the
values assigned to Dbase, Dslope, and Dmax. Note that the hypothesis-
testing and procedural systems mostly rely on different nuclei of
the striatum (head of the caudate nucleus and putamen, respec-
tively). As such, striatal DA levels have a different effect on the
hypothesis-testing and procedural systems that happen on dif-
ferent time scales: rule switching in the head of the caudate
nucleus happens within a trial (for hypothesis-testing) whereas
procedural learning in the putamen requires several trials of
practice (for dopamine mediated reinforcement learning). This is
consistent with lesion studies, which show that lesions to the
caudate nucleus generally produce more ‘cognitive’ deficits while
lesions to the putamen generally produce more ‘motor’ deficits
(Bhatia & Marsden, 1994).

Many factors are known to affect brain DA levels including age,
mood, genetic predisposition, drug-taking history, and neuropsy-
chological patient status (Ashby, Isen, & Turken, 1999). For
example, brain DA levels are known to decrease by approximately
7% per decade of life due to normal aging, and PD patients are
thought to have lost at least 70% of their birth DA levels (Gotham
et al., 1988; Price et al., 2009). Also, many studies, including those
simulated in this article, do not systematically control the time
since the last dose of dopaminergic medication for PD patients
‘‘ON’’ medication. For this reason, it is reasonable to assume that,
on average, PD patients ‘‘ON’’ medication have less DA than aged-
matched controls, who in turn have less DA than young control
participants. Moreover, the more severe the PD symptoms (as
measured by, e.g., the Hoehn and Yahr scale), the lower the DA
level. Hence, in COVIS, we model an ordinal relationship where
DA(young adults; YC)ZDA(old adults; OC)ZDA(PD)ZDA(severe
PD; SPD) (where more DA results in lower g and s2

E, and higher l,
a, Dbase, Dslope, and Dmax).

Note that Dbase and Dmax, which represent the range of DA,
were calculated to reflect the proportion of DA cells remaining as
a function of age and diagnosis (Hélie et al., 2012). For instance, in
the studies considered here, young adults (YC) are usually under-
graduate students in their late teens or early 20s. Hence, they
should have approximately 86% of their birth DA levels (assuming
they lost 7% of birth DA per decade of life). Typically, these
participants have been modeled with Dbase¼0.20 and Dmax¼1.00
(e.g., Ashby & Crossley, 2011; Ashby et al., 2011). Likewise, age-
matched controls (OC) are typically about 70 years old and should
thus have 50% of their birth DA level. As such, their Dbase was set
to 0.15 and their Dmax was set to 0.60. Finally, on average, PD
patients are predicted to have 30% of their birth DA remaining.
Hence, their Dbase was set to 0.10 and their Dmax was set to 0.35.2

Thus, only five DA-related parameters were varied in the simula-
tions (i.e., g, s2

E, l, a, and Dslope).
Parameters Ashby et al.

(2003)

Filoteo et al.

(2005)

Knowlton et al.

(1996)

WCST/

simplified

WCST

DC 0.0025 0.0400 0.0380 0.4553

DE 0.0200 0.0100 0.0180 0.6827

yNMDA 0.0020 0.1500 0.0020 0.0570

yAMPA 0.0010 0.0010 0.0010 0.0001

DOC 0.0100 0.0050 0.0100 0.0500

DOE 0.0400 0.0400 0.0200 0.0010
6. Simulations

In this section, we test the COVIS model of PD patient deficits
against data from five well-known tasks, namely rule-based
categorization, information-integration categorization, the WPT,
the WCST, and the simplified WCST. The values given to the
2 Because the Hoehn and Yahr scale does not directly measure DA levels, we

did not use different values of Dbase and Dmax for PD and SPD.
DA-related parameters in all simulations are shown in Table 1.
Only these parameters were varied to simulate the different
participant populations. In addition to these DA-related para-
meters, COVIS also requires setting some task-related parameters
(which did not vary when modeling the different participant
populations). These are shown in Table 2. Note that a single set of
parameters was used to simulate the WCST (Beatty et al., 1989)
and the simplified WCST (Gotham et al., 1988). However, different
parameter values were used in the two perceptual categorization
tasks because Ashby et al. (2003) used discrete-value stimuli
(modeled using binary values [0, 1]) whereas Filoteo et al. (2005)
used continuous-value stimuli (modeled continuously [0,y,100]).
The WPT also used a different set of parameter values because of
rule complexity.

It is important to note that the unit of measurement of almost
all parameters in the model is arbitrary (as in most computational
models). For example, it is straightforward to rescale parameters
in a way that reduces the DA parameters by any arbitrary factor
(e.g., in much the same way that a z-transform rescales the
variance to a value of 1). This would reduce the change in the
value of the DA parameters across applications by the same
factor. Thus, the ordering of DA parameters within an application
is important, but differences in the magnitude of these values
across applications are not.

None of the parameter estimates were optimized; reasonable
values were assigned using a rough grid search. Specifically, we
used the model to fit the control data in each task. Then, a number
of DA-related parameters were varied to fit the experimental
group(s). Overall, 24 parameter values were used to account for
33 data points, leaving a total of 9 degrees of freedom to test the
model validity. The robustness of the model to exact parameter
values was also tested. Specifically, we performed a sensitivity
analysis for each DA parameter in each simulation (Hélie et al.,
2012). For each parameter listed in Table 1, we successively
changed the parameter estimate from the value used to fit the
Note: The role of these parameters is described in Ashby et al. (2011) and Hélie

et al. (2012). WCST/simplified WCST shows a common set of parameter values for

Gotham et al. (1988) and Beatty et al. (1989).



Fig. 3. Human and simulation data for the categorization task of Ashby et al. (2003). RB¼rule-based; II¼ information-integration.
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data by 710%. After each change, we simulated the behavior of
the model in the same conditions used to simulate the task. Next,
after each new simulation (and for each condition), we computed
the mean root squared error (MRSE) between the simulated
learning curves (used to fit the data) and the learning curve
produced by the new version of the model. The MRSE has the
advantage of being on the same scale as the simulated dependent
variable. To identify the most relevant parameters in each
simulation, we also ran the sensitivity analysis with a change of
795% of the parameter values. The results will be discussed in
each simulation’s ‘Results and discussion’ subsection.

6.1. Perceptual categorization

The first series of simulations address two key results regard-
ing PD deficits in perceptual categorization. First, PD patients
exhibit impaired performance in rule-based categorization com-
pared to normal age-matched controls, but perform as well as
age-matched controls in (linear) information-integration categor-
ization (Ashby et al., 2003). Second, follow-up studies replicate
the finding that PD patients are not impaired in linear informa-
tion-integration categorization, but instead observe PD deficits
relative to age-matched controls in non-linear information-inte-
gration categorization (Filoteo et al., 2005).
3 For simplicity, the stimulus space was re-scaled between 0 and 100.
6.1.1. Rule-based vs. linear information-integration categorization

Ashby and his colleagues (2003) compared the performances
of 16 PD patients in rule-based and information-integration
categorization tasks with the performance of 15 aged-matched
(OC) controls and 109 undergraduate students (YC). The stimuli
varied on the four binary-valued dimensions of background color,
symbol color, symbol shape, and number of symbols. The result-
ing 16 possible stimuli were separated into two categories of
equal sizes with a different stimulus assignment in each of the
categorization conditions. In the rule-based condition, a stimulus
dimension was selected randomly, and stimuli were assigned to
different categories based on their value on the selected dimen-
sion. In the information-integration condition, one dimension was
randomly selected to be irrelevant. Next, one level from each of
the remaining dimensions was randomly assigned a numerical
value of 1 and the other level was assigned a value of 0. One
category included all 8 stimuli for which the sum of the assigned
numerical values across the three relevant dimensions was
greater than 1.5. The 8 stimuli for which this sum was less than
1.5 were assigned to the contrasting category. Note that the rule-
based categories were easily verbalizable (e.g., blue vs. yellow
background) whereas no such simple verbalizable rule was
available for the information-integration categories.
If a participant was able to correctly classify 10 consecutive
stimuli before reaching the 200-trial limit, s/he was classified
as a ‘learner’. Otherwise, the participant was classified as a
‘non-learner’. The dependent measure was the proportion of ‘non-
learners’ in each participant group in each categorization condition.
The results show that, compared with older controls, PD patients
were impaired in learning the rule-based categories but not the
information-integration categories (see Fig. 3, left panel).

6.1.2. Linear vs. non-linear information-integration categorization

Filoteo et al. (2005) further tested the performance of 20 PD
patients and 20 aged-matched controls in information-integration
categorization. The stimuli were lines that continuously varied in
length and orientation and were separated into two different
categories using either a linear or a non-linear (quadratic) bound.
As in Ashby et al. (2003), no simple verbalizable rule could yield
optimal performance in either condition.

Each participant was trained for 600 trials on each category
structure (in separate sessions). The dependent measure was the
proportion of correct classifications in each block of 100 trials.
The results showed that, compared with aged-matched controls,
PD patients are impaired in non-linear information-integration
but not in linear information-integration category learning (Fig. 4,
left column).

6.1.3. Simulation

For the Ashby et al. (2003) data, 500 simulations were run for
each participant group in each categorization condition with the
COVIS model described in Section 4. The procedural system
received an object-based representation of the stimuli while the
hypothesis-testing system received a feature-based representation.
The stimuli were all perceptually distinct, so for the procedural
system each stimulus was represented as a 16-dimensional vector.
For stimulus i, this vector had a value of 1 in row i and 0 in all other
rows. In contrast, the stimuli presented to the hypothesis-testing
system were 4-dimensional binary vectors. The entry in row i was
set to 1 if feature i had one value and 0 if it had the other. Each
system received a separate copy of the feedback. The simulation
results are shown in Fig. 3 (right panel).

For the Filoteo et al. (2005) data, 200 simulations were run for
each participant group in each condition. The simulation details
were the same as for Ashby et al. (2003) except for the following.
In this simulation, the stimulus-values were continuous (percep-
tually confusable) and generated using the same distributions
described in Filoteo et al.3 Hence, the procedural system input
was modeled using two radial-basis functions (as described in



Fig. 4. Human and simulation data for the information-integration categorization task of Filoteo et al. (2005).
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Hélie et al., 2012) centered at (line length, line orientation)
coordinates (30, 50) and (70, 50) (respectively) with a common
variance of 125 and no covariance. The stimulus presented to the
hypothesis-testing system was the (continuous) stimulus value
on the dimension specified by the selected rule (either the line
length or the line orientation coordinate). The criterion used for
each rule was the mean value of the stimulus set on the
dimension of the relevant rule. The simulation results are shown
in the right column of Fig. 4.

6.1.4. Results and discussion

Figs. 3 and 4 show that COVIS did a good job of simulating the
performance of the younger controls, older controls, and PD
patients for both rule-based and information-integration category
structures. As in the human data, the PD version of the model was
impaired compared to the simulated age-matched controls in
rule-based and non-linear information-integration categorization,
but not in linear information-integration categorization. The
performance of the simulated younger controls was better than
the older controls and PD patients in rule-based and information-
integration categorization tasks.

The parameter sensitivity analysis shows that changing the
DA-related parameters by 710% produced a RMSE of only 2.5%
for the Ashby et al. (2003) simulation and 1% for the Filoteo et al.
(2005) simulation. Further, analyses on individual parameters
suggest that the same parameters account for the most variance
in both simulations, namely s2

E and Dslope. These parameters
correspond to noise on the decision criterion of the hypothesis-
testing system and the effect of feedback on DA released in the
procedural system (respectively). Overall, these good fits were
achieved by varying only DA-related parameters, each of which
was theoretically justified and had a clear conceptual meaning.

6.2. Probabilistic classification

This simulation addresses PD deficits in learning probabilistic
classification tasks. The main results are that, compared to aged-
matched controls, PD patients achieve a lower accuracy score and
that the more severe the disease, the larger the deficit.

6.2.1. The Weather Prediction Task (WPT)

The WPT is one of the most popular probabilistic classification
tasks (Gluck, Shohamy & Myers, 2002). In the WPT, participants
are asked to predict whether the outcome of each trial will be
‘‘rain’’ or ‘‘sun’’ as a function of four possible cue cards. Each cue
card is independently associated with the outcome ‘‘sun’’ with
probability 0.75, 0.57, 0.43, and 0.25 (respectively). On each trial,
the participants see one, two, or three cue cards and make
predictions about the trial outcome (i.e., ‘‘rain’’ or ‘‘sun’’). Accu-
racy feedback is then provided. The dependent variable is
response accuracy.

Knowlton et al. (1996) tested 20 non-demented PD patients
and 15 aged-matched controls in the WPT. The results for the first
50 trials are shown in Fig. 5 (left panel). As can be seen, aged-
matched controls quickly learned the task and achieved an
accuracy of about 70%. In contrast, the PD patients failed to learn
the task and only achieved about 55% correct. In addition to these
results, Knowlton and her colleagues investigated patients with
the most severe PD symptoms (Hoehn and Yahr scale Z3; n¼10).
These patients performed at chance throughout the task (SPD in
the figure).

6.2.2. Simulation

Three hundred simulations were run for each participant
group with the COVIS model described in Section 4. The proce-
dural system received an object-based representation of the
stimuli while the hypothesis-testing system received a feature-
based representation. The stimuli were all perceptually distinct,
so for the procedural system each stimulus was represented as a
14-dimensional vector. For stimulus i, this vector had a value of
1 in row i and 0 in all other rows. In contrast, the stimuli
presented to the hypothesis-testing system were 4-dimensional
binary vectors. The entry in row i was set to 1 if cue card i was



Fig. 5. Human and simulation data for the WPT of Knowlton et al. (1996). Each block contains 10 trials. SPD¼severe PD.

Fig. 6. Human and simulation data for the WCST from Beatty et al. (1989).
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present and 0 otherwise. On each trial, the hypothesis-testing
system selected a rule that focused its attention on a subset of the
cue cards. All possible combinations of cue cards were repre-
sented as rules (for a total of 14 rules). In line with COVIS’
assumptions about rule complexity (Ashby et al., 1998), the initial
saliency of all the rules focusing on only 1 cue card was set to 0.2
(4 rules), the initial saliency of all rules focusing on 2 cue cards
simultaneously was set to 0.025 (6 rules), and the saliency of all
rules focusing on 3 cue cards simultaneously was set to 0.0125 (4
rules). On each trial, the hypothesis-testing system chose the
most likely outcome by considering only the cue cards specified
by the selected rule (i.e., using the conditional probability of the
outcomes, as computed in Knowlton, Squire, & Gluck, 1994). As in
the previous simulations, each system received a separate copy of
the feedback. The simulation results are shown in Fig. 5 (right
panel).
6.2.3. Results and discussion

Fig. 5 shows that COVIS did a good job of simulating the
performance of the aged-matched controls, PD patients, and
severe PD patients in the WPT. As in the human data, the PD
version of the model was impaired compared to the simulated
age-matched controls, and severe PD performed at chance
throughout the experiment. The parameter sensitivity analysis
shows that changing the DA-related parameters by 710% pro-
duced a RMSE of only 1%. Analyses on individual parameters
suggest that s2

E and l accounted for the most variance in the
simulation. These parameters correspond to noise on the decision
criterion of the hypothesis-testing system and rule selection.
These are both parameters of the explicit system, which suggests
that the model is largely treating the WPT as an explicit task.
Empirical evidence suggests humans also solve the WPT using
explicit strategies (Gluck et al., 2002), even though the WPT was
originally designed as an implicit task. Again, the good fits of
COVIS were achieved by varying only DA-related parameters,
each of which was theoretically justified and had a clear
conceptual meaning.
6.3. Rule maintenance and perseveration

The next two simulations address PD deficits in rule main-
tenance and perseveration. The key results are that compared to
age-matched controls, PD patients display a larger number of set-
loss errors and perseverative responses (Beatty et al., 1989). In
addition, their more frequent perseverative errors lead to diffi-
culties in achieving a learning criterion (Beatty et al., 1989;
Gotham et al., 1988). On the other hand, PD patients do not
produce more non-perseverative errors than age-matched con-
trols (Beatty et al., 1989; Gotham et al., 1988). Note that only one
set of parameter values was used to simulate the WCST and the
simplified WCST.
6.3.1. The Wisconsin Card Sorting Test (WCST)

The WCST is a popular clinical measure of conceptual ability
and hypothesis testing. In short, the experimenter has a deck of
cards with a variety of figures displayed on each card. The cards
differ in the shape, number, and color of the figures. Each one of
these dimensions has four possible values (for a total of 43

¼64
different cards). On each trial, the participant is shown a card and
asked to categorize it using a rule on one of the dimensions. After
10 consecutive correct categorizations, the dimension relevant
for categorization is changed (without telling the participants).
The experiment ends after the participant has reached the
categorization criterion six times or the deck of cards has been
cycled twice (i.e., 128 stimuli).



Table 3
Sensitivity analyses in the WCST and simplified WCST.

Dependent variables MRSE Highest variance

WCST

Sorts 0.2 s2
E, l

Perseverative errors 2.1 l, a

Non-perseverative errors 0.8 s2
E, l

Set-loss errors 0.1 s2
E, l

Perseverative responses 2.4 l, g

Simplified WCST

Sorts 0.2 s2
E, l

Perseverative errors 0.5 l, a

Non-perseverative errors 0.5 s2
E, l

Note: Each DA-related parameter was varied by 710% to calculate the MRSE for

each dependent measure. Highest variance parameters were identified by varying

each DA-related parameter by 795%.
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Beatty et al. (1989) tested 25 PD patients and 13 age-matched
control participants. The dependent measures were the number
of sorts completed, the number of perseverative errors (error
trials where the previously correct rule is used), the number of
non-perseverative errors (error trials that are not perseverative
errors), the number of set loss errors (when five or more
consecutive correct responses are followed by an error), and the
number of perseverative responses. All these measures were
calculated as described in Heaton et al. (1993). The results are
shown in Fig. 6 (left panel). As evidenced in the figure, the PD
patients completed fewer sorts and committed more set-loss
errors than age-matched controls. There was also a tendency
toward more perseverative errors and responses for the PD
patients, but these differences did not reach statistical
significance.

6.3.2. The simplified WCST

Gotham et al. (1988) compared the performance of 16 PD
patients with 16 age-matched controls on a battery of psycholo-
gical tests. One of the tasks used was the simplified WCST
(Nelson, 1976), which is similar to the ‘regular’ WCST but uses
only a subset of 24 cards. The criterion for rule switching is
6 consecutive correct responses, and the participants are expli-
citly told when the rule changes. The experiment ends after
6 sorts have been completed or the entire set of cards has been
seen twice (i.e., 48 stimuli). The dependent measures are the
number of sorts completed, the number of perseverative errors,
and the number of non-perseverative errors. The results showed
that PD patients achieved fewer sorts and made more persevera-
tive errors than age-matched controls (see Fig. 7, left panel).

6.3.3. Simulations

For the WCST, 200 simulations were run for each participant
group with the COVIS model described in Section 4. As in the
previous simulations, the procedural system received an object-
based representation of the stimuli whereas the hypothesis-
testing system received a feature-based representation. The
stimuli presented to the procedural system were 64-dimensional
binary vectors, with a 1 in row i for stimulus i and a 0 in all other
rows. The stimuli presented to the hypothesis-testing system
were 12-dimensional binary vectors. Rows 1–4 encoded the value
of feature 1, with a separate row for each level of the feature. Row
i had a value of 1 if feature 1 had value i (i¼1,y,4) and the other
3 rows had a value of 0. Rows 5–8 encoded the value of feature
2 using this same coding scheme, and rows 9–12 encoded the
value of feature 3. Each system received a separate copy of the
feedback. The simulation results are shown in Fig. 6 (right panel).

For the simplified WCST, 200 simulations were run for each
participant-group with the COVIS model described in Section 4.
Fig. 7. Human and simulation data for the sim
The simulation methodology and parameter values were the
same as in the WCST. Note that, while the whole deck of WCST
cards was represented, only 24 stimuli were used (corresponding
to the subset of cards used in the simplified WCST). Because the
participants were told when the rule changed, the rule saliences
were reset after each sort (i.e., whenever 6 consecutive correct
responses occurred). The simulation results are shown in Fig. 7
(right panel).
6.3.4. Results and discussion

For both the WCST and the simplified WCST, the COVIS
simulations provide a good match to the PD patient and control
data on all five dependent measures using a single set of
parameter values. As in the human data, the PD version of the
model had a larger number of set-loss errors and perseverative
responses, as well as a larger number of perseverative errors,
which led to difficulties in achieving the learning criterion
(compared with simulated aged-matched controls). Because the
sensitivity analysis yields results that are scaled with the simu-
lated dependent variable, a separate analysis was run for each
measure. The results are shown in Table 3. As can be seen, the
model performance is highly robust on all dependent variables. In
addition, the same parameters accounted for the most variance in
both tasks, even though the measures are calculated differently
in the two versions of the WCST. This further supports the
stability of the model. Analyses on individual parameters suggest
that, similar to the WPT, s2

E and l accounted for the most variance
overall in both simulations. These parameters correspond to noise
on the decision criterion of the hypothesis-testing system and
rule selection. It is critical to note that this good fit was achieved
by using only DA-related parameter values, without any ad hoc
hypotheses or arbitrary parameter changes. This suggests that
plified WCST from Gotham et al. (1988).
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COVIS is an adequate model of the behavioral deficits observed in
PD patient in tasks that evaluate hypothesis-testing performance.
7. General discussion

This article proposed a formal account of a variety of cognitive
deficits commonly displayed by PD patients that is based on the
COVIS model of categorization (Ashby et al., 1998). Without
adding any extra parameters or assumptions to the COVIS model
of categorization (Ashby et al., 1998, 2011), the model achieved a
good fit of the data in perceptual categorization, probabilistic
classification, the WCST, and the simplified WCST. These tasks
were used to highlight PD deficits in rule-based categorization
(Ashby et al., 2003), non-linear information-integration categor-
ization (Filoteo et al., 2005), the WPT (Knowlton et al., 1996), and
rule maintenance and switching (Beatty et al., 1989; Gotham
et al., 1988). It is noteworthy that differential performance
between younger adults, older adults, PD patients, and severe
PD patients was achieved simply by changing the amount of DA
available in the model. This suggests that COVIS may be an
adequate model, not only of the tasks and phenomena presented
herein but also more generally of the role of DA in these tasks and
phenomena. Changing the amount of DA available to the model
reproduces behavioral patterns of different human participant
populations who correspondingly have different numbers of DA
producing cells in the SNpc and the VTA as a consequence of aging
or of disease. Sensitivity analyses further suggested that the most
important parameters to simulate PD cognitive deficits are s2

E, l,
and Dslope. These parameters correspond to noise on the decision
criterion of the hypothesis-testing system, the tendency to select
new rules, and the sensitivity (i.e., gain) of the DA system to
changes in RPE.

7.1. Other computational models of PD

Very few computational models of PD have been proposed.
Monchi, Taylor, and Dagher (2000) used a working memory
model to simulate PD deficits. Their model include three basal
ganglia-thalamocortical loops: two with the prefrontal cortex
(one for spatial information and the other for object information),
and one through the anterior cingulate gyrus (for strategy selec-
tion). PD is simulated in the Monchi et al. model by reducing the
connection strengths between the cortex and the caudate, and
between the caudate and the internal segment of the globus
pallidus (with reduction of the latter strengths being twice as
large as the former). The model was used to simulate a delayed
response task, a delayed match-to-sample task, and the WCST. In
all of these tasks, PD deficits are accounted for by improper
encoding of the stimuli in working memory.

An alternative model was proposed by Frank (2005) to explain
cognitive deficits in PD. This model includes basal ganglia-
thalamocortical loops with an emphasis on a more biologically
detailed model of the basal ganglia that included both the direct
and indirect pathways. In Frank’s model, PD is simulated by
lesioning SNpc DA cells to reduce the range of DA in the basal
ganglia. This reduction in DA’s dynamic range reduces activation
in the direct pathway (through D1 receptors) and amplifies
activation in the indirect pathway (through D2 receptors). In
addition, DA plays the role of the reward signal in synaptic
plasticity. This model has been used to simulate a probabilistic
classification task and a probabilistic reversal learning task. In
both tasks, PD deficits were explained by abnormal direct/indirect
pathway interactions.

More recently, Moustafa and Gluck (2010, 2011) proposed a
new computational model of PD deficits. Their model is a three-
layer feed-forward connectionist network where the input acti-
vates the prefrontal cortex, which in turn activates the striatum to
produce a response. Similar to Frank (2005), the role of tonic DA is
to modulate neural activation and the role of phasic DA is to
facilitate synaptic plasticity. However, the Moustafa and Gluck
model allows for differential effects of DA in the prefrontal cortex
and striatum by varying the slope of the transfer functions and
learning rates separately for neurons in these two regions. The
model has been used to simulate instrumental conditioning,
probabilistic classification, and probabilistic reversal learning
tasks. PD impairments in these tasks were explained by noisy
activation and learning.

7.2. Theoretical implications

One of the main contributions of the COVIS simulation of PD
deficits is that it brings into focus the different roles of DA in
different brain regions. In the Monchi et al. (2000) and Frank
(2005) models, the simulated role of DA was restricted to
producing abnormal dynamics in the basal ganglia. Moustafa
and Gluck (2010, 2011) were the first to independently simulate
the role of DA in the prefrontal cortex and striatum, but the role of
DA was the same in both regions: activation gain and learning
rate. In COVIS, DA can be independently manipulated in the
prefrontal cortex and basal ganglia, but it also has a different role
in each region. In the prefrontal cortex, DA facilitates rule
selection and increases signal gain (reducing noise). In the basal
ganglia, DA facilitates rule switching (in the hypothesis-testing
system) and synaptic plasticity (in the procedural system). This
dual role is made possible by the COVIS subsystems each relying
mostly on different basal ganglia structures (the caudate nucleus
and putamen for the hypothesis-testing and procedural systems,
respectively). These differential roles of DA in the prefrontal
cortex and the basal ganglia not only allowed for the explanation
of a wide range of tasks and phenomena, but also allowed for a
more fine-grained account of the deficits in each task. For
instance, COVIS predicts that in rule-based categorization tasks
the primary behavioral effect of DA deficits in the basal ganglia
should be to impair rule switching. In information-integration
tasks, however, DA reductions in the basal ganglia should mostly
affect synaptic plasticity. Previous modeling of PD performance
did not allow for this level of specificity.

Another interesting contribution of the present modeling is
that it predicts that PD patients may often not be using the same
response strategies as control participants. According to COVIS,
humans are initially biased toward using their hypothesis-testing
system, and switch away to the procedural system only if the
hypothesis-testing system does not attain satisfactory perfor-
mance. However, the hypothesis-testing system is heavily
impaired in PD patients, so one prediction is that PD patients
will often switch away from explicit strategies even in tasks
where a rule-based strategy is optimal. This phenomenon was
observed in many of our simulations, where most responses from
the simulated controls were produced by the hypothesis-testing
system, but about half of the responses made by the simulated PD
patients were produced by the procedural system. This is a
qualitative prediction that should be tested empirically in the
future.

7.3. Limitations and future work

While COVIS is successful at accounting for many behavioral
phenomena observed in PD, it cannot yet account for at least
three PD-related abnormalities. First, differential behavioral
effects of dopaminergic medication have been observed in PD
(e.g., Cools et al., 2006; Frank, Seeberger, & O’reilly, 2004; Gotham



S. Hélie et al. / Neuropsychologia 50 (2012) 2290–2302 2301
et al., 1988), and two of the PD models reviewed in Section 7.1
have proposed a computational account of PD medication effects
(Frank, 2005; Moustafa & Gluck, 2010). We have not made a
similar attempt with COVIS for two different reasons. First,
Cools et al. (2006) report that different PD medications may
have different behavioral effects. For instance, post hoc analyses
suggest that only patients treated with pramipexole (a D3
agonist) were impaired in reversal learning. Bódi et al. (2009)
found a similar but non-specific impairment in reversal learning
for PD patients using a variety of D3 agonists. Most papers where
PD patients are tested ON medication report which medications
appear in their samples, but do not delineate the ON medication
patients according to drug. Hence, it would be difficult to simulate
the exact behavioral effects of different PD-related drugs within a
particular sample of patients, especially considering that the
affinity of D3 agonists is highest for D3 receptors (affinity for
D2 and D4 receptors is lower), and that these receptors are mostly
expressed in the ventral striatum (Foll et al., 2009). As mentioned
earlier, this structure is not part of the COVIS model of categor-
ization (Ashby et al., 1998, 2011). The issue of medication is
further complicated by the observation that dopaminergic treat-
ments have different effects depending on the progression of the
disease and this interaction very well could be drug dependent.
Second, a recent review of behavioral PD deficits posits that,
because of the gradient of DA loss within the striatum, dopami-
nergic medication required to restore normal-like functionality
can effectively ‘‘overdose’’ other regions of the striatum that are
less afflicted (Price et al., 2009). The computational version of
COVIS implemented herein has specific DA parameters for differ-
ent regions in the striatum and prefrontal cortex, but the gradient
effects of dopaminergic medication may exceed the spatial
resolution of the COVIS DA parameters. However, it should be
noted that the effect of the values given to the DA parameters on
COVIS’ performance follows a U-shape function. As shown in this
article, values that are too low result in poor performance
(e.g., difficulty in rule switching and selection), but values that
are too high will also yield poor performance (e.g., propensity to
switch to or select a new rule on every trial). This could allow for
a natural explanation for some PD deficits that are worsened by
dopaminergic (over) medication (for a review, see Price et al.,
2009). Thus, while the variable effects of medication on PD
performance were not addressed by the current computational
model, future work with COVIS could be devoted to adding the
ventral striatum to the model and attempting to investigate the
differential effects of PD medications when these become more
reliably reported in published articles.

Second, attention has recently been devoted to understanding
patterns of abnormal neuronal synchrony in a variety of disorders
(Uhlhass & Singer, 2006). It is hypothesized that aberrant dis-
charge rates evident in PD are related to motor deficits (e.g.,
tremor) and these observations are being considered to update
models of normal/abnormal BG function accordingly (Hammond,
Bergman, & Brown, 2007; Wichmann & DeLong, 1996). Although a
COVIS implementation with spiking neurons has been proposed
(e.g., Ashby et al., 2007; Ashby & Crossley, 2011), firing synchrony
has not been explored. Such explorations could allow for a deeper
investigation of abnormal neural synchrony exhibited in PD and
its corresponding cognitive effects.

Finally, it has been hypothesized that schizophrenia may also be
characterized by DA imbalances (e.g., Cohen & Servan-Schreiber,
1992). As such, the Monchi et al. (2000) and Moustafa and Gluck
(2011) models of PD have also tried to address schizophrenia.
In Monchi et al., schizophrenia is explained by problems with select-
ing working memory items due to a decrement of mesolimbic DA.
In Mustafa and Gluck, schizophrenia is caused by damage to the
hippocampus, which is used to pre-process the stimuli. COVIS does
not include a detailed model of the hippocampus. As such, we would
adopt an approach similar to other models that manipulate DA (e.g.,
Cohen & Servan-Schreiber, 1992; Monchi et al., 2000) to reflect the
particular imbalance of DA in schizophrenic patients. For example,
DA in the head of the caudate nucleus and the prefrontal cortex
could be manipulated. Future work should allow us to determine
whether these manipulations to DA parameters in COVIS could
produce cognitive deficits similar to those observed in schizophrenia.
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