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Purpose:Multiplemodalities are used in determining laterality inmesial temporal lobe epilepsy (mTLE). It is un-
clear howmuchdifferent imagingmodalities should beweighted indecision-making. The purpose of this study is
to develop response-driven multimodal multinomial models for lateralization of epileptogenicity in mTLE pa-
tients based upon imaging features in order to maximize the accuracy of noninvasive studies.
Methods andmaterials: The volumes, means and standard deviations of FLAIR intensity andmeans of normalized
ictal–interictal SPECT intensity of the left and right hippocampiwere extracted frompreoperative images of a ret-
rospective cohort of 45mTLEpatientswith Engel class I surgical outcomes, aswell as images of a cohort of 20 con-
trol, nonepileptic subjects. Using multinomial logistic function regression, the parameters of various univariate
and multivariate models were estimated. Based on the Bayesian model averaging (BMA) theorem, response
models were developed as compositions of independent univariate models.
Results: A BMA model composed of posterior probabilities of univariate response models of hippocampal vol-
umes, means and standard deviations of FLAIR intensity, and means of SPECT intensity with the estimated
weighting coefficients of 0.28, 0.32, 0.09, and 0.31, respectively, as well as a multivariate response model incor-
porating all mentioned attributes, demonstrated complete reliability by achieving a probability of detection of

one with no false alarms to establish proper laterality in all mTLE patients.
Conclusion: The proposed multinomial multivariate response-driven model provides a reliable lateralization of
mesial temporal epileptogenicity including those patients who require phase II assessment.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Mesial temporal lobe epilepsy (mTLE) is the most prevalent type of
epilepsy considered for surgery [1]. Reliable lateralization by noninva-
sive means would expedite surgical intervention, reduce the surgical
risk of invasivemonitoring and lessen the expense of investigation. Con-
ventional noninvasive presurgical evaluation has often consisted of
scalp electroencephalography (EEG), magnetic resonance imaging
(MRI) and both ictal single photon emission computer tomography
(SPECT) interictal SPECT to identify seizure onset in mTLE prior to a
em-Zadeh),
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h).
resection. In the imaging realm, quantitative methods have been
applied to both MRI and SPECT with promising results to establish
laterality in mTLE. Automated and manual hippocampal segmentation
approaches for volume assessment have yielded 74% and 78% lateraliza-
tion accuracy [2,3] whereas, fluid-attenuated inversion recovery
(FLAIR) MRI signal analysis yielded a 98% accuracy in a single study
[4]. Compartmentalized hippocampal SPECT analysis correctly
lateralized mTLE in 91% of cases [5].

Where confident lateralization is not possible by qualitative assess-
ment of these imagingmodalities and individual quantitative measures
of each do not provide effective differentiation, patients must undergo
implantation of intracranial electrodes to clarify the situation [6] and
must, in turn, bear the risk of such intervention [7]. An approach that
would further capitalize on the benefits of the quantitative imaging ap-
proach [8] could serve to achieve the goals of improving patient safety
and lessening cost.
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A multimodal lateralization framework would ostensibly increase
sensitivity and confidence in the lateralization of mTLE, if agreement
was confirmed among individual imaging modalities. These modali-
ties differ in their reliabilities and may, to some degree, show dis-
crepancies in predicting laterality. The approach uniformly taken in
these circumstances involves an assignment of a score of zero or
one as a measure of this reliability in lateralizing a mTLE [9,10]. A
weighted integration scheme, in which a probability is assigned to in-
dividual modalities as a measure of their reliability, may provide a
more accurate reflection of laterality, particularly in those cases that
ultimately require invasive monitoring. Multimodal postprocessing
is defined as a simultaneous rendering of various modalities which
are spatially coregistered [11]. It can incorporate all anomalous infor-
mation of multiple modalities simultaneously without having to
assign a posterior probability to the lateralization result of any indi-
vidual modality.

Any variability in quantitative imaging indices can be attributed
to natural physiological occurrences or pathology underlying the
epileptogenicity. In order to distinguish these features, imaging indices
of a cohort of control, nonepileptic subjects must be ascertained
to account for the variability seen in natural circumstances. A multino-
mial response model that takes into account such natural variability
would overcome the limitations of a binomial response model that
does not.

We hypothesize that a quantitative multimodal multinomial re-
sponse model, using a preferred list of MRI and SPECT attributes, will
optimize lateralization of mTLE and the selection of surgical candidates
while reducing the need for extraoperative electrocorticography
(ECoG).
2. Methods

2.1. Patients and treatment

The current research study at Henry Ford Health System is federally
regulated and approved by the Henry Ford Health System Institutional
Review Board (IRB). Between June 1993 and June 2009, 113 patients
with mTLE underwent resection of the mesial temporal structure.
Only those caseswith Engel class I outcomeswere selected from this ini-
tial cohort. Subsequently, those patientswere excluded forwhomany of
their T1-weighted and FLAIR MRI or SPECT ictal imaging and interictal
imaging had not been acquired. Others, whose acquired images were
contaminated by imaging artifact that compromised the quality of im-
aging attributes in or near the hippocampi, such asmagnetic field inho-
mogeneity were also removed from consideration. Forty-five patients
remained (17 males aged 42.6 ± 8.5 (mean ± std); 28 females aged
35.1 ± 11.4). The majority of cases achieved an Engel class Ia outcome
(41 Ia, 2 Ib, 2 Id). Resections were performed on the left side in 28 pa-
tients and on the right in 17. Fifteen patients required ECoG as part of
their investigation. Twenty control, nonepileptic subjects were also in-
cluded in this study.
2.2. MRI and SPECT data acquisition

PreoperativeMRIwas acquired on a 1.5 T or a 3.0 TMRI system (Signa,
GE, Milwaukee, USA) including coronal T1-weighted (using inversion re-
covery spoiled gradient echo, IRSPGR protocol) and coronal T2-weighted
(using fluid attenuated inversion recovery, FLAIR protocol) images. For
the 1.5 T MRI, T1-weighted imaging parameters were TR/TI/TE = 7.6/
1.7/500 ms, flip angle = 20°, voxel size = 0.781 × 0.781 × 2.0 mm3

and FLAIR imaging parameters were TR/TI/TE = 10002/2200/119 ms,
flip angle = 90°, voxel size = 0.781 × 0.781 × 3.0 mm3. For the 3.0 T
MRI, T1-weighted imaging parameters were TR/TI/TE = 10.4/4.5/
300 ms, flip angle = 15°, voxel size = 0.39 × 0.39 × 2.00 mm3 and
FLAIR imaging parameters were TR/TI/TE = 9002/2250/124 ms, flip
angle = 90°, voxel size = 0.39 × 0.39 × 3.00 mm3.

Patients underwent preoperative SPECT imaging with a triple-
head Picker gamma camera 3000XP imaging system with high-
resolution fan-beam collimators (Picker International, Inc., Cleveland
Heights, OH) within 2−3 h after the injection of 99mT ethylcysteinate
diethylester at a dose of 550 MBq. The energy window was set at
140 keV ± 7.5%. For ictal studies, the radiotracer was injected within
56 s of seizure onset. Interictal SPECT studies were performed when
the patient had no documented seizure activity for at least 24 h.
Total acquisition time was about 30 min. The images were recon-
structed by filtered backprojection and then filtered with a Wiener
filter into a 128 × 128 image matrix with a voxel size of 2.2 × 2.2 ×
6.1 mm3.

Control subjects underwent the same 3.0 T MRI system and
T1-weighted and FLAIR images were acquired with the same parame-
ters mentioned above. They also underwent SPECT imaging, with six
receivingTechnetium-99 m (99mTc) ethylcisteinate dimer (ECD), and
14 receiving [99mTc]-labeled hexamethyl-propylene amine oxime
(HMPAO).

2.3. MRI and SPECT image co-registration and feature extraction

For each of the 65 cases (45 mTLE patients and 20 control subjects),
both left and right hippocampi were first segmented from manually
drawn ROIs on T1-weighted images. The manually segmented
hippocampi were then co-registered to both FLAIR and ictal and
interictal SPECT images using a rigid registration technique (FLIRT;
[12]; Fig. 1).

The four hippocampal imaging attributes used for this study were
volume [4], mean and standard deviation of FLAIR intensity [4], and
mean of normalized ictal–interictal SPECT intensity (the difference be-
tween ictal and interictal intensities normalized to the whole brain
interictal mean value) [5].

2.4. Development of single lateralization response models

The extracted imaging features were incorporated into the develop-
ment of four univariate (Models 1 to 4) and three multivariate (Models
5 to 7) single response models for lateralization of epileptogenicity. Im-
aging attributes were considered as independent variables whereas
laterality (i.e., left and right in the case of mTLE patients and neutral
for control subjects) was considered the dependent variable in the
development of response models using multinomial logistic function
regression [13]:

• Model 1 univariate attributes: hippocampal volumes
• Model 2 univariate attributes: means of FLAIR intensity in left and
right hippocampi

• Model 3 univariate attributes: standard deviations of FLAIR intensity
in left and right hippocampi

• Model 4 univariate attribute: means of normalized “ictal interictal”
SPECT intensity in left and right hippocampi

• Model 5 bivariate attributes: means and standard deviations of FLAIR
intensity in left and right hippocampi

• Model 6 multivariate attributes: volumes, means and standard devia-
tions of FLAIR intensity in left and right hippocampi

• Model 7 multivariate attributes: volumes, means and standard devia-
tions of FLAIR intensity and means of normalized “ictal− interictal”
SPECT intensity in left and right hippocampi

In order to assess how the multinomial logistic function generalized
to an independent data set andhow accurately this responsemodel per-
formed in practice, a cross-validation was performed using leave-one-
out for sixty-five repetitions considering a single case as validation



Fig. 1. Extraction of hippocampal volumes and FLAIR and SPECT intensities by co-registering themanually segmented hippocampi on T1-weighted image (A) to FLAIR (B), and ictal (C) and
interictal (D) SPECT images using FLIRT [12].
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data and the remaining 64 cases as training data [14]. The multinomial
logistic models were regressed to training data as follows:

ln
Pr Yi ¼ LjMkð Þ
Pr Yi ¼ NjMkð Þ

� �
¼ βk

L � Xi;X
k
i ϵD ð1Þ

ln
Pr Yi ¼ Rj Mkð Þ
Pr Yi ¼ NjMkð Þ

� �
¼ βk

R � Xi;X
k
i ϵD ð2Þ

where Xi
k is a vector of ith observation in training dataset D incorporated

in Model k. Pr(Yi = L| Mk), Pr(Yi = R| Mk), and Pr(Yi = N| Mk) are the
posterior probabilities of the epileptogenic side Yi being left (L), right
(R), and neutral (N), respectively.βL

k andβR
k are the vectors of regression

coefficients of Model k associated with Xi
k and the posterior probabili-

ties. Since, in multinomial logistic regression, the epileptogenic side
Yi for each observation in training dataset was assumed to be known,
the posterior probabilities Pr(Yi = L| Mk), Pr(Yi = R| Mk), and Pr(Yi =
N| Mk) were set to 0 or 1 depending on the decision made on the
laterality. By estimation of coefficients βL

k and βR
k for Model k, the poste-

rior probability of the epileptogenic side Yj for jth validation data being
left, right, or neutral were calculated, where

Pr Yj ¼ LjMk

� �
þ Pr Yj ¼ RjMk

� �
þ Pr Yj ¼ NjMk

� �
¼ 1: ð3Þ

The goodness-of-fit for the response models was assessed by the fit
deviance as a generalized residual sum of squares.
2.5. Bayesian model averaging

Bayesianmodel averaging (BMA) constructs a model with a posteri-
or probability by linearly weighting the posterior probabilities of multi-
plemodels [15]. Based on BMA,we developed imaging-basedmodels as
linear combinations of imaging-based response models:

Pr Yj ¼ Sj D
� �

¼
XT

k¼1
Pr Yj ¼ SjMk

� �
Pr Mkj Dð Þ ð4Þ

where S ϵ {L, R, N} and T is the total number of models considered to
make the posterior probability.

We used multinomial regression to estimate Pr(Yj = S| Mk) using
Eqs. (1) and (2). A difficulty associated with BMA involved estimating
the posterior probability of model k given training dataset D, Pr(Mk|
D). Using Bayes' theorem:

Pr Mkj Dð Þ ¼ Pr Dj Mkð ÞPr Mkð ÞXT
i¼1

Pr Dj Mið ÞPr Mið Þ
; Pr DjMkð Þ

¼
Z

Pr Dj θk;Mkð ÞPr θkjMkð Þdθk ð5Þ

where θk is the vector of regression parameters in Model k with
Pr(θk| Mk). The integrated likelihood Pr(D| Mk) can be estimated using
the Bayesian information criterion (BIC) or Markov chain Monte Carlo
(MCMC) method [15,16]. However, a distribution for the regression pa-
rameters θk (βL

k and βR
k in this application) has to be assumed properly.

Instead of a model-based approach, we estimated the posterior proba-
bilities for models Pr(Mk| D) in an observation-based approach.

Pr Yj ¼ Sj D
� �

¼
XT

k¼1
αk Pr Yj ¼ SjMk

� �
ð6Þ



Table 1
Parameters of the response models.

Response models Regression coefficients Regression deviance

Model 1 β0L
1 = 0.814

β1L
1 = −0.006

β2L
1 = 0.005

β0R
1 = −2.52

β1R
1 = 0.004

β2R
1 = −0.003

68.1 ± 0.2

Model 2 β0L
2 = 2.65

β1L
2 = 0.259

β2L
2 = −0.274

β0R
2 = −10.24

β1R
2 = −0.302

β2R
2 = 0.337

65.5 ± 0.2

Model 3 β0L
3 = −5.34

β1L
3 = 0.228

β2L
3 = −0.048

β0R
3 = −4.10

β1R
3 = 0.014

β2R
3 = 0.115

104.8 ± 0.4

Model 4 β0L
4 = −1.197

β1L
4 = 35.17

β2L
4 = −27.83

β0R
4 = −1.537

β1R
4 = −26.00

β2R
4 = 21.08

65.1 ± 0.2

Model 5 β0L
5 = 4.435

β1L
5 = 0.472

β2L
5 = −0.518

β3L
5 = 0.553

β4L
5 = −0.398

β0R
5 = −17.82

β1R
5 = −0.338

β2R
5 = 0.368

β3R
5 = −0.163

β4R
5 = 0.430

32.9 ± 0.2

Model 6 β0L
6 = 8.85

β1L
6 = −0.007

β2L
6 = 0.002

β3L
6 = 0.380

β4L
6 = −0.394

β5L
6 = 0.482

β6L
6 = −0.326

β0R
6 = −18.92

β1R
6 = 0.008

β2R
6 = −0.006

β3R
6 = −0.126

β4R
6 = 0.167

β5R
6 = −0.070

β6R
6 = 0.171

25.9 ± 0.2

Model 7 β0L
7 = −5.80

β1L
7 = −0.011

β2L
7 = 0.010

β3L
7 = 0.083

β4L
7 = −0.088

β5L
7 = 0.156

β6L
7 = 0.024

β7L
7 = 35.91

β8L
7 = −12.97

β0R
7 = −25.38

β1R
7 = 0.005

β2R
7 = −0.005

β3R
7 = −0.321

β4R
7 = 0.359

β5R
7 = −0.203

β6R
7 = 0.590

β7R
7 = −21.54

β8R
7 = 43.04

11.9 ± 0.1

Table note: βjL
k and βjR

k are the regression coefficients j of Model k associated with Xi
k, the

ith observation of the training dataset in Eqs. (1) and (2).
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where αk are the weighting coefficients subject to the constraint:

XT
k¼1

αk ¼ 1: ð7Þ

We considered the cost function £ to be minimized:

£ ¼
X

jϵL TLE

1−Pr Yj ¼ Lj D
� �h i2 þ Pr Yj ¼ Rj D

� �h i2 þ Pr Yj ¼ Nj D
� �h i2

þ
X

jϵR TLE

Pr Yj ¼ Lj D
� �h i2 þ 1−Pr Yj ¼ Rj D

� �h i2 þ Pr Yj ¼ Nj D
� �h i2

þ
X

jϵControl
Pr Yj ¼ Lj D
� �h i2 þ Pr Yj ¼ Rj D

� �h i2 þ 1−Pr Yj ¼ Nj D
� �h i2

ð8Þ

where L _ TLE, R _ TLE, and Control denote patients with left TLE,
patients with right TLE, and control subjects, respectively. By inserting

αT ¼ 1−∑
T−1

k¼1
αk and Eq. (6) into Eq. (8), and taking the derivative with

respect to αi, T − 1 linear equations were generated from which the
weighting coefficients αk were estimated:

∂£
∂αi

¼ 0→
XT−1

k¼0

Aikαk ¼ 0 ; i ¼ 1 : T−1; α0 ¼ 1

Ai0 ¼
X

jϵL TLE

Pr Yj ¼ LjMT

� �
−Pr Yj ¼ LjMi

� �

þ
X

jϵR TLE

Pr Yj ¼ RjMT

� �
−Pr Yj ¼ RjMi

� �

þ
X

jϵControl

Pr Yj ¼ NjMT

� �
−Pr Yj ¼ NjMi

� �

þ
X
jϵD

Pr Yj ¼ Lj MT

� �
Pr Yj ¼ Lj Mi

� �
−Pr Yj ¼ LjMT

� �h i

þ Pr Yj ¼ RjMT

� �h
Pr Yj ¼ RjMi

� �
−Pr Yj ¼ RjMT

� �i

þ Pr Yj ¼ NjMT

� �h
Pr Yj ¼ NjMi

� �
−Pr Yj ¼ NjMT

� �i

Aik ¼
X

jϵD
Pr Yj ¼ LjMi

� �
−Pr Yj ¼ LjMT

� �h i

� Pr Yj ¼ LjMk

� �
−Pr Yj ¼ LjMT

� �h i

þ Pr Yj ¼ RjMi

� �
−Pr Yj ¼ RjMT

� �h i

� Pr Yj ¼ RjMk

� �
−Pr Yj ¼ RjMT

� �h i

þ Pr Yj ¼ Nj Mi

� �
−Pr Yj ¼ NjMT

� �h i

� Pr Yj ¼ NjMk

� �
−Pr Yj ¼ Nj MT

� �h i
k ¼ 1 : T−1:

ð9Þ

We developed imaging-based Models 8 to 12 as various linear com-
binations of independent MRI- and SPECT-based response Models with
optimal coefficients estimated based on observations.

• Model 8 attributes: posterior probabilities of 3 Models — 1, 2, and 3.
• Model 9 attributes: posterior probabilities of 3 Models — 1, 2, and 4.
• Model 10 attributes: posterior probabilities of 3 Models — 1, 3, and 4.
• Model 11 attributes: posterior probabilities of 3 Models — 2, 3, and 4.
• Model 12 attributes: posterior probabilities of 4 Models — 1, 2, 3,
and 4.

For each validation dataset, by comparing the lateralization result Yj

with the correctly decided side, Sidej, we evaluated the performance of
the responsemodels by calculating the probability of detection and false
alarm of the correct side for all subjects (PrD, PrFA), the probability of de-
tection and false alarm of the epileptogenic side, the left and right epi-
leptogenic sides for the TLE patients (Pr TLE

D , Pr TLE
FA , Pr L

D, Pr L
FA, Pr R

D, Pr R
FA,
respectively), and the probability of detection and false alarm of the
Neutral label for the control subjects (Pr N

D, and Pr N
FA) as:

PrD ¼ 1
n

Xn
j¼1

1 Yj ¼ Lj Sidej ¼ L
� �

þ 1 Yj ¼ Rj Sidej ¼ R
� �

þ1 Yj ¼ Nj Sidej ¼ N
� �

PrFA ¼ 1
n

Xn
j¼1

1 Yj ¼ Lj Sidej ¼ R
� �

þ 1 Yj ¼ Lj Sidej ¼ N
� �

þ 1 Yj ¼ Rj Sidej ¼ L
� �

þ 1 Yj ¼ Rj Sidej ¼ N
� �

þ 1 Yj ¼ Nj Sidej ¼ L
� �

þ 1 Yj ¼ Nj Sidej ¼ R
� �

PrDTLE ¼ 1
nLþ nR

Xn
j¼1

1 Yj ¼ Lj Sidej ¼ L
� �

þ 1 Yj ¼ Rj Sidej ¼ R
� �

PrFATLE ¼ 1
nLþ nR

Xn
j¼1

1 Yj ¼ Lj Sidej ¼ R
� �

þ 1 Yj ¼ Rj Sidej ¼ L
� �

PrDL ¼ 1
nL

Xn
j¼1

1 Yj ¼ Lj Sidej ¼ L
� �

PrFAL ¼ 1
nRþ nC

Xn
j¼1

1 Yj ¼ Lj Sidej ¼ R
� �

þ 1 Yj ¼ Lj Sidej ¼ N
� �

PrDR ¼ 1
nL

Xn
j¼1

1 Yj ¼ Rj Sidej ¼ R
� �

PrFAR ¼ 1
nLþ nC

Xn
j¼1

1 Yj ¼ Rj Sidej ¼ L
� �

þ 1 Yj ¼ Rj Sidej ¼ N
� �

PrDN ¼ 1
nC

Xn
j¼1

1 Yj ¼ Nj Sidej ¼ N
� �

PrFAN ¼ 1
nLþ nR

Xn
j¼1

1 Yj ¼ Nj Sidej ¼ L
� �

þ 1 Yj ¼ Nj Sidej ¼ R
� �

:

ð10Þ
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where nL, nR, nC, and n are the number of patientswith left TLE, patients
with right TLE, control subjects, and all subjects, respectively. 1(.) is a
unit function with the value of 1 for true arguments and 0 otherwise.

3. Results

3.1. Single lateralization response Models

The regression coefficients of the response Models were estimated
and listed in Table 1. Fig. 2 shows the regressed multinomial logistic
function for the data points using univariate response Models 1 to 4
Fig. 2. Regressed multinomial logistic function to the data points using univariate response M
probability of detected side being Left, Right, or Neutral for each TLE or control case. The horizon
of lateralization.
and multivariate response Model 7, along with the probability of the
detected side being Left, Right, or Neutral for each TLE or control
case. Table 2 shows the probability of detection and false alarm of later-
alization for all subjects, the epileptogenic side, the left epileptogenic
side, and the right epileptogenic side for TLE patients, and the Neutral
label for control nonepileptic subjects. Among univariate response
Models 1 to 4, response Model 4, with SPECT attributes, achieved the
lowest fit deviance (65.1 ± 0.2; mean ± standard error), while re-
sponse Models 1 and 2, with volumetrics and means of FLAIR intensity,
reached the highest detection probability of 0.82 and lowest false alarm
probability of 0.18 for the correct side in all subjects (Table 2).
odels 1 (a), 2 (b), 3 (c), and 4 (d), and multivariate response Model 7 (e), along with the
tal axes are the multivariate imaging feature space and the vertical axis is the probability

image of Fig.�2


Fig. 2 (continued).
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Integrating means and standard deviations of FLAIR, the bivariate re-
sponse Model 5 outperformed both univariate response Models 2 and
3 (withmeans and standard deviations of FLAIR attributes, respectively)
by achieving a higher probability of detection (0.94) as well as a lower
probability of false alarm (0.06) for the correct side in all subjects
(Table 2). The response Model 6 incorporating multivariate attributes
of volumetrics, means and standard deviations of FLAIR intensity
outperformed response Model 5 with means and standard deviations
of FLAIR intensity by achieving a higher probability of detection (0.97)
and a lower probability of false alarm (0.03) for the correct side
in all subjects (Table 2). Incorporating all multivariate attributes of vol-
umetrics, means and standard deviations of FLAIR intensity, and means
of SPECT intensity, response Model 7 reached a significantly lower fit
deviance (11.9 ± 0.1) than any other single response Model 1 to 6
(p b 0.001). It performed well in terms of achieving the probability of
detection of 1 with no false alarms for the correct side in any subject
and epileptogenicity in TLE patients (Table 2). As can be seen in Fig. 2,
in this model more separability has been achieved for data points be-
longing to different classes of Left, Right, and Neutral in themultivariate
imaging feature space, and the regressed multinomial logistic function
did not misclassify any multivariate data point.

The averages of posterior probabilities for the Left, Right, and Neutral
for the various response Models are presented in Table 3. The posterior
probabilities of Left, Right, and Neutral along with the lower and upper
limits of their confidence intervals have been depicted for univariate re-
sponseModels 1 to 4,multivariate responseModel 7, and BMA response

image of Fig.�2


Fig. 2 (continued).
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Model 12 in Fig. 3. As can be inferred from Table 3 and Fig. 3, response
Model 7 assigned higher probabilities to the correct label, demonstrat-
ing high level of confidence in lateralization.
3.2. BMA lateralization response models

Table 4 shows the weighting coefficients estimated for BMAModels
8 to 12. Note that the coefficient corresponding to Model 3, with the
standard deviation of FLAIR intensity, is negligible in the construction
of BMA Models 8, 10, 11, and 12, demonstrating that Model 3 does not
contribute adequately to the lateralization results of these models.

The BMAModel 9, composed of the three univariateModels 1, 2, and
4, and BMA Model 12, composed of the four univariate Models 1 to 4,
reached the probability of detection of 1 with no false alarms
(Table 3). In the construction of BMA Model 12, the univariate models,
based on hippocampal volumes, means of hippocampal FLAIR intensity,
and means of hippocampal SPECT intensity had comparable impacts
(with estimated weighting coefficients 0.28, 0.32, and 0.31, respective-
ly). However, the univariate model based on the standard deviation of
Table 2
Lateralization results of various response models using leave-one-out cross-validation.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

PrD 0.82 0.82 0.71 0.80 0.94 0.97 1.00 0.89 1.00 0.94 0.94 1.00
PrFA 0.18 0.18 0.29 0.20 0.06 0.03 0.00 0.11 0.00 0.06 0.06 0.00
PrTLED 0.78 0.82 0.64 0.82 0.93 0.96 1.00 0.87 1.00 0.93 0.96 1.00
PrTLEFA 0.02 0.02 0.18 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.02 0.00
PrLD 0.86 0.82 0.79 0.89 0.96 0.96 1.00 0.86 1.00 1.00 0.96 1.00
PrLFA 0.03 0.11 0.22 0.08 0.00 0.03 0.00 0.03 0.00 0.05 0.08 0.00
PrRD 0.65 0.82 0.41 0.71 0.88 0.94 1.00 0.88 1.00 0.82 0.94 1.00
PrRFA 0.04 0.02 0.06 0.06 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00
PrND 0.90 0.80 0.85 0.75 0.95 1.00 1.00 0.95 1.00 0.95 0.90 1.00
PrNFA 0.20 0.16 0.18 0.16 0.07 0.02 0.00 0.11 0.00 0.04 0.02 0.00

Table note: PrD, PrFA, Pr TLE
D , Pr TLE

FA , Pr L
D, Pr L

FA, Pr R
FA, Pr R

D, Pr N
D, and Pr N

FA represent the prob-
ability of detection and false alarm of the lateralization for all subjects, the epileptogenic
side, the left epileptogenic side, and the right epileptogenic side for TLE patients, and the
neutral label for control nonepileptic subjects, respectively. M1 to M12 denote response
Models 1 to 12, resectively.
hippocampal FLAIR had a negligible impact (with associated weighting
coefficients 0.09) upon the process of lateralization. In the construction
of BMAModel 9, the univariatemodels, based on hippocampal volumes,
means of hippocampal FLAIR intensity, and means of hippocampal
SPECT intensity had comparable impacts similar to BMA Model 12
(with correspondingweighting coefficients 0.29, 0.36, and 0.35, respec-
tively) upon the process of lateralization.
3.3. Clinical decision-making on laterality based on response Models

Response Models 7, 9, or 12, detected the epileptogenic side for all
15 patients who had undergone phase II evaluation (i.e., intracranial
monitoring). Sixty percent in this group showednodiscrepancy in later-
alization results using response Models 1 to 7. Moreover, the side of
epileptogenicity was detected for all 30 patients who had undergone
only phase I of EEGmonitoringwith no false alarms raised for detection
of left or right sides. Ninety-three percent of this latter group were also
in agreement with the results of other response models.
4. Discussion and conclusion

In this work, univariate andmultivariate response-driven lateraliza-
tion models were proposed based on hippocampal MRI and SPECT
attributes. Multinomial logistic regression and Bayesian model averag-
ing were used to determine the side of epileptogenicity in temporal
lobe epilepsy patients.We showed, by lateralization of the epileptogen-
ic side using the proposed response models that this process succeeded
in establishing laterality in all cases that had required intracranial
monitoring to define the site of epileptogenicity, raising the notion
that the latter might be supplanted, at least in some cases, by such an
approach. Prior study has suggested the same while indicating the
ultimate need for intracranial monitoring in cases of nonlesional
extratemporal cases, in particular [17]. The proposed response model
also proved reliable for those patients who had undergone only phase
I EEG monitoring, affirming the side of epileptogenicity for all with no
false alarms.
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Bayesianmodel averaging (BMA) accounts for the uncertainty asso-
ciated with single models by weighing their posterior model probabili-
ties [15]. It has been shown that BMA outperforms single models on
new observations in theory [18] and practice [15]. In our acquired
dataset, a less complicated single multivariate model, incorporating all
multivariate attributes, performed as well as the BMA model, incorpo-
rating all univariate models of those attributes, in achieving the proba-
bility of detection of ‘one’ with no false alarms for establishing the
laterality of epileptogenicity in TLE patients. Nevertheless, our aim
was to introduce a potential framework with the application of BMA
in lateralization of the epileptogenic side in TLE patients that can quan-
tify how much different imaging modalities are weighted in decision-
making to achieve a better outcome.

Successful surgical treatment of focal epilepsy requires a reliable
localization of seizure onset which, in the case of TLE, often amounts
to a proper lateralization of the causative pathophysiology. The process
of epileptogenesis and the subsequent epileptogenicity expressed in the
mesial temporal structure brings about alterations in tissue properties,
some of which may be characterized by imaging attributes rendered
by various MR and SPECT postprocessing applications. Each technique
by itself, however, provides only a limited perspective upon the
condition and each has inherent weaknesses in its respective applica-
tion [11]. Ostensibly, a multimodal imaging approach would enhance
lateralization capability by accruing data, which, if concordant, would
provide the required confirmation to proceed with either intracranial
electrographic study targeting the appropriate area or to proceed
directly with resective surgery in those cases where electrophysiologi-
cal attributes were in agreement. As such, a multimodal integrative
approach could reduce themagnitude of the required surgical exposure
and, in some cases, even forego the need for invasive monitoring [19].

A number of studies have addressed the comparative and combined
strengths of various individual imaging studies in cases where
nonlesional EEG and MRI findings were present. Proton magnetic reso-
nance spectroscopy (1HMRS) has been shown concordant with EEG in
MRI-negative unilateral TLE in 60–75% of cases [17,20,21]. Group com-
parisons of the diagnostic accuracy of temporal metabolite changes
studied by Linear Combination of Model Spectra via water reference in
TLE and control cases show reduced N-acetylaspartate (NAA) and ele-
vated choline in the epileptogenic temporal lobe [21]. Despite this,
1HMRS itself has not correlatedwell with seizure outcome, demonstrat-
ing a poor predictive value [17]. Hippocampal atrophy, on the other
hand, has been shown to strongly correlate with seizure-free outcome
and, when combined with 1HMRS, has demonstrated lateralization in
83% of cases [22]. Positron emission tomography (PET) lateralized 87%
of TLE cases in a prospective study of 23 patientswith age-matched con-
trols, better than what was possible using hippocampal volumetry
(65%); however, only 6/10 cases with nonlateralizing MRI study could
be correlated with scalp EEG [22]. Although both PET and 1HMRS
were capable of lateralizing the site of epileptogenicity in TLE patients
with nonlateralizing MRI study, only hippocampal volumetry was
found predictive of a seizure-free outcome. Lateralization by single pho-
ton emission computed tomography (SPECT) has been found concor-
dant with EEG in 84% of MRI-positive and 67% of MRI-negative TLE
patients [20]. The concordance rate of 1HMRS and SPECT in unilateral
TLE patients was 74% in MRI-positive and 67% in MRI-negative situa-
tions. Contralateral findings with each modality, however, were identi-
fied in almost 30% of patients. Concordance of these imaging modalities
with EEG was found highly predictive of a favorable postoperative out-
come. Hippocampal fluid-attenuated inversion recovery (FLAIR) MRI
lateralization accuracywhen using bothmean signal intensity and stan-
dard deviation has been shown to be 75%when control cases were used
to establish a boundary domain within which study cases were deemed
inconclusive [4]. Using a similar approach with subtraction SPECT
coregistered to MRI, a lateralization accuracy of 89% was achieved
for patients attaining a seizure-free outcome [5]. Interestingly, no
significant correlation arose between hippocampal FLAIR MRI and
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SPECT suggesting that the two modalities bore complementary infor-
mation. More recently, reduced fractional anisotropy detected in the
inferolateral cingulum ipsilateral to mesial temporal epileptogenicity,
has been shown to be a strong indicator of laterality in mTLE, including
cases without hippocampal sclerosis [23]. Unique in this approach was
an assessment of interhemispheric variation uncertainty (HVU) to en-
sure that a true quantitative difference existed for the individual patient.
Such assurances may prove worthwhile in all quantitative applications
involving comparisons of bilateral structures.

In cases where imaging modalities are discordant regarding
laterality or by the absence of any distinguishing attribute, the clinician
must weigh the relative contributions of each modality and assign a
qualitative estimate upon the reliability of each in relation to electro-
physiological findings. Most studies to-date have used simple asymme-
try analysis of an imaging index in a bilateral structure such as the
hippocampus and showed its concordance with scalp or intracranial
EEG as a gold standard but did not integrate multimodal findings into
a comprehensive multivariate lateralization framework [17,20–22].
Agreement regarding lateralization among imaging studies enhances
confidence in decision-making and is predictive of a favorable outcome
ig. 3. Posterior probabilities (solid lines) of Left (red), Right (blue), and Neutral (green) along with the lower and upper limits of their confidence interval (dash lines) for univariate re-
ponse Models 1 (a), 2 (b), 3 (c), 4 (d), multivariate response Model 7 (e), and BMA response Model 12 (f).

F
s

[24], whereas, discordance creates uncertainty in decision-making in
the absence of a definable scheme bywhich to judge the relative contri-
butions of each. Other multimodal studies adopted a hierarchical
scoring scheme for individual modalities. Positive evidence of laterality
with each modality was regarded equally and a notation of inter-
modality concordance was derived [9,10,19,24]. Semiquantitative
scores and a quantitative Bayesian framework using conditional proba-
bilities and likelihood ratios constitute a more refined approach. Using
such Bayesian probabilistic reasoning, one can estimate the diagnostic
worth of individual lateralization methods in numerical terms for the
purpose of cross-modality comparisons [9,10]. The quantitative ap-
proach in all of these multimodal applications assigns a score of zero
or one to the lateralization results of individual modalities as a measure
of a distinguishing attribute. Aweighted integration scheme that assigns
a probability for each individual modality, however, would provide a
more realisticmodel bywhich to judge the outcomeof the investigation.

Multimodal postprocessing can incorporate the information of mul-
tiple modalities simultaneously without having to assign a posterior
probability to the lateralization result of any individual modality. It
overcomes the intrinsic limitation of individual modalities such as the
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inherent sensitivity, specificity, temporal resolution, and spatial resolu-
tion to increase the information contentmade available in order to draw
a conclusion [11]. Scalp EEG is a vital component of the investigation of
focal epilepsy, offering excellent temporal resolution in milliseconds,
but apart from the limitations in its recording and interpretation, the
poor spatial resolution detracts from its sole use as a localizingmodality
[11].

The presence of variability in quantitative hippocampal imaging in-
dices can be attributed to imaging system-specific or subject-specific
factors. Supposing the left and right hippocampi undergo the same
imaging conditions, the hippocampal interhemispheric variations in
imaging indices in epilepsy patients can be related to subject-specific
factors including natural physiological occurrences and to actual
epileptogenicity expressed variably in each hippocampus. In order to
establish that lateralization response models actually lateralize the site
of epileptogenicity based upon pathology-induced interhemispheric
variation in the case of a unilateral TLE, we incorporated into the pro-
posed lateralization response models the imaging indices of a cohort
of control, nonepileptic subjects who had undergone their studies
with the same scanner and imaging parameters. Variability for any nat-
ural physiological occurrences would therefore be taken into account in
the modeling. Under these circumstances, the proposed multinomial
response models can more confidently reflect the predominance of
pathological effects in lateralizing the epileptogenic site. On the other
hand, in the case of a neutral label, a physiological effect is most proba-
bly predominant even in the presence of interhemispheric variation
among any of the imaging modalities.
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Table 4
Weighting coefficients assigned to various BMA Models 8 to 12.

Model 8 Model 9 Model 10 Model 11 Model 12

Constructing
models and
coefficients

α1Model1
þα2Model2
þα3Model3

α1Model1
þα2Model2
þα3Model4

α1Model1
þα2Model3
þα3Model4

α1Model2
þα2Model3
þα3Model4

α1Model1
þα2Model2
þα3Model3
þα3Model4

α1 0.46 0.29 0.48 0.51 0.28
α2 0.53 0.36 0.07 0.04 0.32
α3 0.01 0.35 0.45 0.45 0. 09
α4 − − − − 0.31
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